# Copyright 2021-2022 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for creating PipelineSpec proto objects.""" import copy import json import typing from typing import (Any, DefaultDict, Dict, List, Mapping, Optional, Tuple, Union) import warnings from google.protobuf import json_format from google.protobuf import struct_pb2 import kfp from kfp.compiler import compiler_utils from kfp.dsl import for_loop from kfp.dsl import pipeline_channel from kfp.dsl import pipeline_context from kfp.dsl import pipeline_task from kfp.dsl import placeholders from kfp.dsl import structures from kfp.dsl import tasks_group from kfp.dsl import utils from kfp.dsl.types import artifact_types from kfp.dsl.types import type_utils from kfp.pipeline_spec import pipeline_spec_pb2 import yaml # must be defined here to avoid circular imports group_type_to_dsl_class = { tasks_group.TasksGroupType.PIPELINE: pipeline_context.Pipeline, tasks_group.TasksGroupType.CONDITION: tasks_group.Condition, tasks_group.TasksGroupType.FOR_LOOP: tasks_group.ParallelFor, tasks_group.TasksGroupType.EXIT_HANDLER: tasks_group.ExitHandler, } _SINGLE_OUTPUT_NAME = 'Output' def to_protobuf_value(value: type_utils.PARAMETER_TYPES) -> struct_pb2.Value: """Creates a google.protobuf.struct_pb2.Value message out of a provide value. Args: value: The value to be converted to Value message. Returns: A google.protobuf.struct_pb2.Value message. Raises: ValueError if the given value is not one of the parameter types. """ # bool check must be above (int, float) check because bool is a subclass of int so isinstance(True, int) == True if isinstance(value, bool): return struct_pb2.Value(bool_value=value) elif isinstance(value, str): return struct_pb2.Value(string_value=value) elif isinstance(value, (int, float)): return struct_pb2.Value(number_value=value) elif isinstance(value, dict): return struct_pb2.Value( struct_value=struct_pb2.Struct( fields={k: to_protobuf_value(v) for k, v in value.items()})) elif isinstance(value, list): return struct_pb2.Value( list_value=struct_pb2.ListValue( values=[to_protobuf_value(v) for v in value])) else: raise ValueError('Value must be one of the following types: ' 'str, int, float, bool, dict, and list. Got: ' f'"{value}" of type "{type(value)}".') def build_task_spec_for_task( task: pipeline_task.PipelineTask, parent_component_inputs: pipeline_spec_pb2.ComponentInputsSpec, tasks_in_current_dag: List[str], ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds PipelineTaskSpec for a pipeline task. A task input may reference an output outside its immediate DAG. For instance:: random_num = random_num_op(...) with dsl.Condition(random_num.output > 5): print_op('%s > 5' % random_num.output) In this example, `dsl.Condition` forms a subDAG with one task from `print_op` inside the subDAG. The task of `print_op` references output from `random_num` task, which is outside the sub-DAG. When compiling to IR, such cross DAG reference is disallowed. So we need to "punch a hole" in the sub-DAG to make the input available in the subDAG component inputs if it's not already there, Next, we can call this method to fix the tasks inside the subDAG to make them reference the component inputs instead of directly referencing the original producer task. Args: task: The task to build a PipelineTaskSpec for. parent_component_inputs: The task's parent component's input specs. tasks_in_current_dag: The list of tasks names for tasks in the same dag. Returns: A PipelineTaskSpec object representing the task. """ pipeline_task_spec = pipeline_spec_pb2.PipelineTaskSpec() pipeline_task_spec.task_info.name = ( task._task_spec.display_name or task.name) # Use task.name for component_ref.name because we may customize component # spec for individual tasks to work around the lack of optional inputs # support in IR. pipeline_task_spec.component_ref.name = ( utils.sanitize_component_name(task.name)) pipeline_task_spec.caching_options.enable_cache = ( task._task_spec.enable_caching) if task._task_spec.retry_policy is not None: pipeline_task_spec.retry_policy.CopyFrom( task._task_spec.retry_policy.to_proto()) for input_name, input_value in task.inputs.items(): if isinstance(input_value, pipeline_channel.PipelineArtifactChannel) or ( isinstance(input_value, for_loop.Collected) and input_value.is_artifact_channel): if input_value.task_name: # Value is produced by an upstream task. if input_value.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.producer_task = ( utils.sanitize_task_name(input_value.task_name)) pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.output_artifact_key = ( input_value.name) else: # Dependent task not from the same DAG. component_input_artifact = ( compiler_utils. additional_input_name_for_pipeline_channel(input_value)) assert component_input_artifact in parent_component_inputs.artifacts, \ f'component_input_artifact: {component_input_artifact} not found. All inputs: {parent_component_inputs}' pipeline_task_spec.inputs.artifacts[ input_name].component_input_artifact = ( component_input_artifact) else: component_input_artifact = input_value.full_name if component_input_artifact not in parent_component_inputs.artifacts: component_input_artifact = ( compiler_utils. additional_input_name_for_pipeline_channel(input_value)) pipeline_task_spec.inputs.artifacts[ input_name].component_input_artifact = ( component_input_artifact) elif isinstance(input_value, pipeline_channel.PipelineParameterChannel) or ( isinstance(input_value, for_loop.Collected) and not input_value.is_artifact_channel): if input_value.task_name: # Value is produced by an upstream task. if input_value.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.producer_task = ( utils.sanitize_task_name(input_value.task_name)) pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.output_parameter_key = ( input_value.name) else: # Dependent task not from the same DAG. component_input_parameter = ( compiler_utils. additional_input_name_for_pipeline_channel(input_value)) assert component_input_parameter in parent_component_inputs.parameters, \ f'component_input_parameter: {component_input_parameter} not found. All inputs: {parent_component_inputs}' pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) else: # Value is from pipeline input. component_input_parameter = input_value.full_name if component_input_parameter not in parent_component_inputs.parameters: component_input_parameter = ( compiler_utils. additional_input_name_for_pipeline_channel(input_value)) pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) elif isinstance(input_value, for_loop.LoopArgument): component_input_parameter = ( compiler_utils.additional_input_name_for_pipeline_channel( input_value)) assert component_input_parameter in parent_component_inputs.parameters, \ f'component_input_parameter: {component_input_parameter} not found. All inputs: {parent_component_inputs}' pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) elif isinstance(input_value, for_loop.LoopArgumentVariable): component_input_parameter = ( compiler_utils.additional_input_name_for_pipeline_channel( input_value.loop_argument)) assert component_input_parameter in parent_component_inputs.parameters, \ f'component_input_parameter: {component_input_parameter} not found. All inputs: {parent_component_inputs}' pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( component_input_parameter) pipeline_task_spec.inputs.parameters[ input_name].parameter_expression_selector = ( f'parseJson(string_value)["{input_value.subvar_name}"]') elif isinstance(input_value, str): # Handle extra input due to string concat pipeline_channels = ( pipeline_channel.extract_pipeline_channels_from_any(input_value) ) for channel in pipeline_channels: # value contains PipelineChannel placeholders which needs to be # replaced. And the input needs to be added to the task spec. # Form the name for the compiler injected input, and make sure it # doesn't collide with any existing input names. additional_input_name = ( compiler_utils.additional_input_name_for_pipeline_channel( channel)) # We don't expect collision to happen because we prefix the name # of additional input with 'pipelinechannel--'. But just in case # collision did happend, throw a RuntimeError so that we don't # get surprise at runtime. for existing_input_name, _ in task.inputs.items(): if existing_input_name == additional_input_name: raise RuntimeError( f'Name collision between existing input name {existing_input_name} and compiler injected input name {additional_input_name}' ) additional_input_placeholder = placeholders.InputValuePlaceholder( additional_input_name)._to_string() input_value = input_value.replace(channel.pattern, additional_input_placeholder) if channel.task_name: # Value is produced by an upstream task. if channel.task_name in tasks_in_current_dag: # Dependent task within the same DAG. pipeline_task_spec.inputs.parameters[ additional_input_name].task_output_parameter.producer_task = ( utils.sanitize_task_name(channel.task_name)) pipeline_task_spec.inputs.parameters[ additional_input_name].task_output_parameter.output_parameter_key = ( channel.name) else: # Dependent task not from the same DAG. component_input_parameter = ( compiler_utils. additional_input_name_for_pipeline_channel(channel)) assert component_input_parameter in parent_component_inputs.parameters, \ f'component_input_parameter: {component_input_parameter} not found. All inputs: {parent_component_inputs}' pipeline_task_spec.inputs.parameters[ additional_input_name].component_input_parameter = ( component_input_parameter) else: # Value is from pipeline input. (or loop?) component_input_parameter = channel.full_name if component_input_parameter not in parent_component_inputs.parameters: component_input_parameter = ( compiler_utils. additional_input_name_for_pipeline_channel(channel)) pipeline_task_spec.inputs.parameters[ additional_input_name].component_input_parameter = ( component_input_parameter) pipeline_task_spec.inputs.parameters[ input_name].runtime_value.constant.string_value = input_value elif isinstance(input_value, (str, int, float, bool, dict, list)): pipeline_task_spec.inputs.parameters[ input_name].runtime_value.constant.CopyFrom( to_protobuf_value(input_value)) else: raise ValueError( 'Input argument supports only the following types: ' 'str, int, float, bool, dict, and list.' f'Got {input_value} of type {type(input_value)}.') if task._ignore_upstream_failure_tag: pipeline_task_spec.trigger_policy.strategy = ( pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy.TriggerStrategy .ALL_UPSTREAM_TASKS_COMPLETED) return pipeline_task_spec def build_component_spec_for_exit_task( task: pipeline_task.PipelineTask,) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec for an exit task. Args: task: The task to build a ComponentSpec for. Returns: A ComponentSpec object for the exit task. """ return build_component_spec_for_task( task=task, is_compiled_component=False, is_exit_task=True) def build_component_spec_for_task( task: pipeline_task.PipelineTask, is_compiled_component: bool, is_exit_task: bool = False, ) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. is_exit_task: Whether the task is used as exit task in Exit Handler. Returns: A ComponentSpec object for the task. """ for input_name, input_spec in (task.component_spec.inputs or {}).items(): if not is_exit_task and type_utils.is_task_final_status_type( input_spec.type) and not is_compiled_component: raise ValueError( f'PipelineTaskFinalStatus can only be used in an exit task. Parameter {input_name} of a non exit task has type PipelineTaskFinalStatus.' ) component_spec = _build_component_spec_from_component_spec_structure( task.component_spec) component_spec.executor_label = utils.sanitize_executor_label(task.name) return component_spec def _build_component_spec_from_component_spec_structure( component_spec_struct: structures.ComponentSpec ) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec proto from ComponentSpec structure.""" component_spec = pipeline_spec_pb2.ComponentSpec() for input_name, input_spec in (component_spec_struct.inputs or {}).items(): # Special handling for PipelineTaskFinalStatus first. if type_utils.is_task_final_status_type(input_spec.type): component_spec.input_definitions.parameters[ input_name].parameter_type = pipeline_spec_pb2.ParameterType.TASK_FINAL_STATUS component_spec.input_definitions.parameters[ input_name].is_optional = True if input_spec.description: component_spec.input_definitions.parameters[ input_name].description = input_spec.description elif type_utils.is_parameter_type(input_spec.type): component_spec.input_definitions.parameters[ input_name].parameter_type = type_utils.get_parameter_type( input_spec.type) if input_spec.optional: component_spec.input_definitions.parameters[ input_name].is_optional = True _fill_in_component_input_default_value( component_spec=component_spec, input_name=input_name, default_value=input_spec.default, ) if input_spec.description: component_spec.input_definitions.parameters[ input_name].description = input_spec.description else: component_spec.input_definitions.artifacts[ input_name].artifact_type.CopyFrom( type_utils.bundled_artifact_to_artifact_proto( input_spec.type)) component_spec.input_definitions.artifacts[ input_name].is_artifact_list = input_spec.is_artifact_list if input_spec.optional: component_spec.input_definitions.artifacts[ input_name].is_optional = True if input_spec.description: component_spec.input_definitions.artifacts[ input_name].description = input_spec.description for output_name, output_spec in (component_spec_struct.outputs or {}).items(): if type_utils.is_parameter_type(output_spec.type): component_spec.output_definitions.parameters[ output_name].parameter_type = type_utils.get_parameter_type( output_spec.type) if output_spec.description: component_spec.output_definitions.parameters[ output_name].description = output_spec.description else: component_spec.output_definitions.artifacts[ output_name].artifact_type.CopyFrom( type_utils.bundled_artifact_to_artifact_proto( output_spec.type)) component_spec.output_definitions.artifacts[ output_name].is_artifact_list = output_spec.is_artifact_list if output_spec.description: component_spec.output_definitions.artifacts[ output_name].description = output_spec.description return component_spec def _connect_dag_outputs( component_spec: pipeline_spec_pb2.ComponentSpec, output_name: str, output_channel: pipeline_channel.PipelineChannel, ) -> None: """Connects dag output to a subtask output. Args: component_spec: The component spec to modify its dag outputs. output_name: The name of the dag output. output_channel: The pipeline channel selected for the dag output. """ if isinstance(output_channel, pipeline_channel.PipelineArtifactChannel): if output_name not in component_spec.output_definitions.artifacts: raise ValueError( f'Pipeline or component output not defined: {output_name}. You may be missing a type annotation.' ) component_spec.dag.outputs.artifacts[ output_name].artifact_selectors.append( pipeline_spec_pb2.DagOutputsSpec.ArtifactSelectorSpec( producer_subtask=output_channel.task_name, output_artifact_key=output_channel.name, )) elif isinstance(output_channel, pipeline_channel.PipelineParameterChannel): if output_name not in component_spec.output_definitions.parameters: raise ValueError( f'Pipeline or component output not defined: {output_name}. You may be missing a type annotation.' ) component_spec.dag.outputs.parameters[ output_name].value_from_parameter.producer_subtask = output_channel.task_name component_spec.dag.outputs.parameters[ output_name].value_from_parameter.output_parameter_key = output_channel.name def _build_dag_outputs( component_spec: pipeline_spec_pb2.ComponentSpec, dag_outputs: Dict[str, pipeline_channel.PipelineChannel], ) -> None: """Builds DAG output spec.""" for output_name, output_channel in dag_outputs.items(): _connect_dag_outputs(component_spec, output_name, output_channel) # Valid dag outputs covers all outptus in component definition. for output_name in component_spec.output_definitions.artifacts: if output_name not in component_spec.dag.outputs.artifacts: raise ValueError(f'Missing pipeline output: {output_name}.') for output_name in component_spec.output_definitions.parameters: if output_name not in component_spec.dag.outputs.parameters: raise ValueError(f'Missing pipeline output: {output_name}.') def build_importer_spec_for_task( task: pipeline_task.PipelineTask ) -> pipeline_spec_pb2.PipelineDeploymentConfig.ImporterSpec: """Builds ImporterSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. Returns: A ImporterSpec object for the task. """ type_schema = type_utils.bundled_artifact_to_artifact_proto( task.importer_spec.schema_title) importer_spec = pipeline_spec_pb2.PipelineDeploymentConfig.ImporterSpec( type_schema=type_schema, reimport=task.importer_spec.reimport) if task.importer_spec.metadata: metadata_protobuf_struct = struct_pb2.Struct() metadata_protobuf_struct.update(task.importer_spec.metadata) importer_spec.metadata.CopyFrom(metadata_protobuf_struct) if isinstance(task.importer_spec.artifact_uri, pipeline_channel.PipelineParameterChannel): importer_spec.artifact_uri.runtime_parameter = 'uri' elif isinstance(task.importer_spec.artifact_uri, str): importer_spec.artifact_uri.constant.string_value = task.importer_spec.artifact_uri return importer_spec def build_container_spec_for_task( task: pipeline_task.PipelineTask ) -> pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec: """Builds PipelineContainerSpec for a pipeline task. Args: task: The task to build a ComponentSpec for. Returns: A PipelineContainerSpec object for the task. """ container_spec = ( pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec( image=task.container_spec.image, command=task.container_spec.command, args=task.container_spec.args, env=[ pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec .EnvVar(name=name, value=value) for name, value in (task.container_spec.env or {}).items() ])) if task.container_spec.resources is not None: if task.container_spec.resources.cpu_request is not None: container_spec.resources.cpu_request = ( task.container_spec.resources.cpu_request) if task.container_spec.resources.cpu_limit is not None: container_spec.resources.cpu_limit = ( task.container_spec.resources.cpu_limit) if task.container_spec.resources.memory_request is not None: container_spec.resources.memory_request = ( task.container_spec.resources.memory_request) if task.container_spec.resources.memory_limit is not None: container_spec.resources.memory_limit = ( task.container_spec.resources.memory_limit) if task.container_spec.resources.accelerator_count is not None: container_spec.resources.accelerator.CopyFrom( pipeline_spec_pb2.PipelineDeploymentConfig.PipelineContainerSpec .ResourceSpec.AcceleratorConfig( type=task.container_spec.resources.accelerator_type, count=task.container_spec.resources.accelerator_count, )) return container_spec def _fill_in_component_input_default_value( component_spec: pipeline_spec_pb2.ComponentSpec, input_name: str, default_value: Optional[type_utils.PARAMETER_TYPES], ) -> None: """Fills in the default of component input parameter. Args: component_spec: The ComponentSpec to update in place. input_name: The name of the input parameter. default_value: The default value of the input parameter. """ if default_value is None: return parameter_type = component_spec.input_definitions.parameters[ input_name].parameter_type if pipeline_spec_pb2.ParameterType.NUMBER_INTEGER == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.number_value = default_value elif pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.number_value = default_value elif pipeline_spec_pb2.ParameterType.STRING == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.string_value = default_value elif pipeline_spec_pb2.ParameterType.BOOLEAN == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.bool_value = default_value elif pipeline_spec_pb2.ParameterType.STRUCT == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.CopyFrom( to_protobuf_value(default_value)) elif pipeline_spec_pb2.ParameterType.LIST == parameter_type: component_spec.input_definitions.parameters[ input_name].default_value.CopyFrom( to_protobuf_value(default_value)) def build_component_spec_for_group( input_pipeline_channels: List[pipeline_channel.PipelineChannel], output_pipeline_channels: Dict[str, pipeline_channel.PipelineChannel], ) -> pipeline_spec_pb2.ComponentSpec: """Builds ComponentSpec for a TasksGroup. Args: group: The group to build a ComponentSpec for. pipeline_channels: The list of pipeline channels referenced by the group. Returns: A PipelineTaskSpec object representing the loop group. """ component_spec = pipeline_spec_pb2.ComponentSpec() for channel in input_pipeline_channels: input_name = compiler_utils.additional_input_name_for_pipeline_channel( channel) if isinstance(channel, pipeline_channel.PipelineArtifactChannel): component_spec.input_definitions.artifacts[ input_name].artifact_type.CopyFrom( type_utils.bundled_artifact_to_artifact_proto( channel.channel_type)) component_spec.input_definitions.artifacts[ input_name].is_artifact_list = channel.is_artifact_list else: # channel is one of PipelineParameterChannel, LoopArgument, or # LoopArgumentVariable. component_spec.input_definitions.parameters[ input_name].parameter_type = type_utils.get_parameter_type( channel.channel_type) for output_name, output in output_pipeline_channels.items(): if isinstance(output, pipeline_channel.PipelineArtifactChannel): component_spec.output_definitions.artifacts[ output_name].artifact_type.CopyFrom( type_utils.bundled_artifact_to_artifact_proto( output.channel_type)) component_spec.output_definitions.artifacts[ output_name].is_artifact_list = output.is_artifact_list else: component_spec.output_definitions.parameters[ output_name].parameter_type = type_utils.get_parameter_type( channel.channel_type) return component_spec def _pop_input_from_task_spec( task_spec: pipeline_spec_pb2.PipelineTaskSpec, input_name: str, ) -> None: """Removes an input from task spec inputs. Args: task_spec: The pipeline task spec to update in place. input_name: The name of the input, which could be an artifact or paremeter. """ task_spec.inputs.artifacts.pop(input_name) task_spec.inputs.parameters.pop(input_name) if task_spec.inputs == pipeline_spec_pb2.TaskInputsSpec(): task_spec.ClearField('inputs') def _update_task_spec_for_loop_group( group: tasks_group.ParallelFor, pipeline_task_spec: pipeline_spec_pb2.PipelineTaskSpec, ) -> None: """Updates PipelineTaskSpec for loop group. Args: group: The loop group to update task spec for. pipeline_task_spec: The pipeline task spec to update in place. """ if group.items_is_pipeline_channel: loop_items_channel = group.loop_argument.items_or_pipeline_channel input_parameter_name = compiler_utils.additional_input_name_for_pipeline_channel( loop_items_channel) loop_argument_item_name = compiler_utils.additional_input_name_for_pipeline_channel( group.loop_argument.full_name) loop_arguments_item = f'{input_parameter_name}-{for_loop.LoopArgument.LOOP_ITEM_NAME_BASE}' assert loop_arguments_item == loop_argument_item_name pipeline_task_spec.parameter_iterator.items.input_parameter = ( input_parameter_name) pipeline_task_spec.parameter_iterator.item_input = ( loop_argument_item_name) # If the loop items itself is a loop arguments variable, handle the # subvar name. if isinstance(loop_items_channel, for_loop.LoopArgumentVariable): pipeline_task_spec.inputs.parameters[ input_parameter_name].parameter_expression_selector = ( f'parseJson(string_value)["{loop_items_channel.subvar_name}"]' ) pipeline_task_spec.inputs.parameters[ input_parameter_name].component_input_parameter = ( compiler_utils.additional_input_name_for_pipeline_channel( loop_items_channel.loop_argument)) else: input_parameter_name = compiler_utils.additional_input_name_for_pipeline_channel( group.loop_argument) raw_values = group.loop_argument.items_or_pipeline_channel pipeline_task_spec.parameter_iterator.items.raw = json.dumps( raw_values, sort_keys=True) pipeline_task_spec.parameter_iterator.item_input = ( input_parameter_name) if (group.parallelism_limit > 0): pipeline_task_spec.iterator_policy.parallelism_limit = ( group.parallelism_limit) _pop_input_from_task_spec( task_spec=pipeline_task_spec, input_name=pipeline_task_spec.parameter_iterator.item_input) def _resolve_condition_operands( left_operand: Union[str, pipeline_channel.PipelineChannel], right_operand: Union[str, pipeline_channel.PipelineChannel], ) -> Tuple[str, str]: """Resolves values and PipelineChannels for condition operands. Args: left_operand: The left operand of a condition expression. right_operand: The right operand of a condition expression. Returns: A tuple of the resolved operands values: (left_operand_value, right_operand_value). """ # Pre-scan the operand to get the type of constant value if there's any. for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type in [ pipeline_spec_pb2.ParameterType.STRUCT, pipeline_spec_pb2.ParameterType.LIST, pipeline_spec_pb2.ParameterType .PARAMETER_TYPE_ENUM_UNSPECIFIED, ]: input_name = compiler_utils.additional_input_name_for_pipeline_channel( value_or_reference) raise ValueError( f'Conditional requires scalar parameter values for comparison. Found input "{input_name}" of type {value_or_reference.channel_type} in pipeline definition instead.' ) parameter_types = set() for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) else: parameter_type = type_utils.get_parameter_type( type(value_or_reference).__name__) parameter_types.add(parameter_type) if len(parameter_types) == 2: # Two different types being compared. The only possible types are # String, Boolean, Double and Integer. We'll promote the other type # using the following precedence: # String > Boolean > Double > Integer if pipeline_spec_pb2.ParameterType.STRING in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.STRING elif pipeline_spec_pb2.ParameterType.BOOLEAN in parameter_types: canonical_parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN else: # Must be a double and int, promote to double. assert pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE in parameter_types, \ f'Types: {parameter_types} [{left_operand} {right_operand}]' assert pipeline_spec_pb2.ParameterType.NUMBER_INTEGER in parameter_types, \ f'Types: {parameter_types} [{left_operand} {right_operand}]' canonical_parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE elif len(parameter_types) == 1: # Both operands are the same type. canonical_parameter_type = parameter_types.pop() else: # Probably shouldn't happen. raise ValueError( f'Unable to determine operand types for "{left_operand}" and "{right_operand}"' ) operand_values = [] for value_or_reference in [left_operand, right_operand]: if isinstance(value_or_reference, pipeline_channel.PipelineChannel): input_name = compiler_utils.additional_input_name_for_pipeline_channel( value_or_reference) operand_value = f"inputs.parameter_values['{input_name}']" parameter_type = type_utils.get_parameter_type( value_or_reference.channel_type) if parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER: operand_value = f'int({operand_value})' elif isinstance(value_or_reference, str): operand_value = f"'{value_or_reference}'" parameter_type = pipeline_spec_pb2.ParameterType.STRING elif isinstance(value_or_reference, bool): # Booleans need to be compared as 'true' or 'false' in CEL. operand_value = str(value_or_reference).lower() parameter_type = pipeline_spec_pb2.ParameterType.BOOLEAN elif isinstance(value_or_reference, int): operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_INTEGER else: assert isinstance(value_or_reference, float), value_or_reference operand_value = str(value_or_reference) parameter_type = pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE if parameter_type != canonical_parameter_type: # Type-cast to so CEL does not complain. if canonical_parameter_type == pipeline_spec_pb2.ParameterType.STRING: assert parameter_type in [ pipeline_spec_pb2.ParameterType.BOOLEAN, pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = f"'{operand_value}'" elif canonical_parameter_type == pipeline_spec_pb2.ParameterType.BOOLEAN: assert parameter_type in [ pipeline_spec_pb2.ParameterType.NUMBER_INTEGER, pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE, ] operand_value = 'true' if int(operand_value) == 0 else 'false' else: assert canonical_parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_DOUBLE assert parameter_type == pipeline_spec_pb2.ParameterType.NUMBER_INTEGER operand_value = f'double({operand_value})' operand_values.append(operand_value) return tuple(operand_values) def _update_task_spec_for_condition_group( group: tasks_group.Condition, pipeline_task_spec: pipeline_spec_pb2.PipelineTaskSpec, ) -> None: """Updates PipelineTaskSpec for condition group. Args: group: The condition group to update task spec for. pipeline_task_spec: The pipeline task spec to update in place. """ left_operand_value, right_operand_value = _resolve_condition_operands( group.condition.left_operand, group.condition.right_operand) condition_string = ( f'{left_operand_value} {group.condition.operator} {right_operand_value}' ) pipeline_task_spec.trigger_policy.CopyFrom( pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy( condition=condition_string)) def build_task_spec_for_exit_task( task: pipeline_task.PipelineTask, dependent_task: str, pipeline_inputs: pipeline_spec_pb2.ComponentInputsSpec, ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds PipelineTaskSpec for an exit handler's exit task. Args: tasks: The exit handler's exit task to build task spec for. dependent_task: The dependent task name for the exit task, i.e. the name of the exit handler group. pipeline_inputs: The pipeline level input definitions. Returns: A PipelineTaskSpec object representing the exit task. """ pipeline_task_spec = build_task_spec_for_task( task=task, parent_component_inputs=pipeline_inputs, tasks_in_current_dag=[], # Does not matter for exit task ) pipeline_task_spec.dependent_tasks.extend([dependent_task]) pipeline_task_spec.trigger_policy.strategy = ( pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy.TriggerStrategy .ALL_UPSTREAM_TASKS_COMPLETED) for input_name, input_spec in (task.component_spec.inputs or {}).items(): if type_utils.is_task_final_status_type(input_spec.type): pipeline_task_spec.inputs.parameters[ input_name].task_final_status.producer_task = dependent_task return pipeline_task_spec def build_task_spec_for_group( group: tasks_group.TasksGroup, pipeline_channels: List[pipeline_channel.PipelineChannel], tasks_in_current_dag: List[str], is_parent_component_root: bool, ) -> pipeline_spec_pb2.PipelineTaskSpec: """Builds PipelineTaskSpec for a group. Args: group: The group to build PipelineTaskSpec for. pipeline_channels: The list of pipeline channels referenced by the group. tasks_in_current_dag: The list of tasks names for tasks in the same dag. is_parent_component_root: Whether the parent component is the pipeline's root dag. Returns: A PipelineTaskSpec object representing the group. """ pipeline_task_spec = pipeline_spec_pb2.PipelineTaskSpec() pipeline_task_spec.task_info.name = group.display_name or group.name pipeline_task_spec.component_ref.name = ( utils.sanitize_component_name(group.name)) for channel in pipeline_channels: channel_full_name = channel.full_name subvar_name = None if isinstance(channel, for_loop.LoopArgumentVariable): channel_full_name = channel.loop_argument.full_name subvar_name = channel.subvar_name input_name = compiler_utils.additional_input_name_for_pipeline_channel( channel) channel_name = channel.name if subvar_name: pipeline_task_spec.inputs.parameters[ input_name].parameter_expression_selector = ( f'parseJson(string_value)["{subvar_name}"]') if not channel.is_with_items_loop_argument: channel_name = channel.items_or_pipeline_channel.name if isinstance(channel, pipeline_channel.PipelineArtifactChannel): if channel.task_name and channel.task_name in tasks_in_current_dag: pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.producer_task = ( utils.sanitize_task_name(channel.task_name)) pipeline_task_spec.inputs.artifacts[ input_name].task_output_artifact.output_artifact_key = ( channel_name) else: pipeline_task_spec.inputs.artifacts[ input_name].component_input_artifact = ( channel_full_name if is_parent_component_root else input_name) elif channel.task_name and channel.task_name in tasks_in_current_dag: pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.producer_task = ( utils.sanitize_task_name(channel.task_name)) pipeline_task_spec.inputs.parameters[ input_name].task_output_parameter.output_parameter_key = ( channel_name) else: pipeline_task_spec.inputs.parameters[ input_name].component_input_parameter = ( channel_full_name if is_parent_component_root else compiler_utils.additional_input_name_for_pipeline_channel( channel_full_name)) if isinstance(group, tasks_group.ParallelFor): _update_task_spec_for_loop_group( group=group, pipeline_task_spec=pipeline_task_spec, ) elif isinstance(group, tasks_group.Condition): _update_task_spec_for_condition_group( group=group, pipeline_task_spec=pipeline_task_spec, ) return pipeline_task_spec def populate_metrics_in_dag_outputs( tasks: List[pipeline_task.PipelineTask], task_name_to_parent_groups: Mapping[str, List[compiler_utils.GroupOrTaskType]], task_name_to_component_spec: Mapping[str, pipeline_spec_pb2.ComponentSpec], pipeline_spec: pipeline_spec_pb2.PipelineSpec, ) -> None: """Populates metrics artifacts in DAG outputs. Args: tasks: The list of tasks that may produce metrics outputs. task_name_to_parent_groups: The dict of task name to parent groups. Key is the task's name. Value is a list of ancestor groups including the task itself. The list of a given op is sorted in a way that the farthest group is the first and the task itself is the last. task_name_to_component_spec: The dict of task name to ComponentSpec. pipeline_spec: The pipeline_spec to update in-place. """ for task in tasks: component_spec = task_name_to_component_spec[task.name] # Get the tuple of (component_name, task_name) of all its parent groups. parent_components_and_tasks = [('_root', '')] # skip the op itself and the root group which cannot be retrived via name. for group_name in task_name_to_parent_groups[task.name][1:-1]: parent_components_and_tasks.append( (utils.sanitize_component_name(group_name), utils.sanitize_task_name(group_name))) # Reverse the order to make the farthest group in the end. parent_components_and_tasks.reverse() for output_name, artifact_spec in \ component_spec.output_definitions.artifacts.items(): if artifact_spec.artifact_type.WhichOneof( 'kind' ) == 'schema_title' and artifact_spec.artifact_type.schema_title in [ artifact_types.Metrics.schema_title, artifact_types.ClassificationMetrics.schema_title, ]: unique_output_name = f'{task.name}-{output_name}' sub_task_name = task.name sub_task_output = output_name for component_name, task_name in parent_components_and_tasks: group_component_spec = ( pipeline_spec.root if component_name == '_root' else pipeline_spec.components[component_name]) group_component_spec.output_definitions.artifacts[ unique_output_name].CopyFrom(artifact_spec) group_component_spec.dag.outputs.artifacts[ unique_output_name].artifact_selectors.append( pipeline_spec_pb2.DagOutputsSpec .ArtifactSelectorSpec( producer_subtask=sub_task_name, output_artifact_key=sub_task_output, )) sub_task_name = task_name sub_task_output = unique_output_name def modify_pipeline_spec_with_override( pipeline_spec: pipeline_spec_pb2.PipelineSpec, pipeline_name: Optional[str], pipeline_parameters: Optional[Mapping[str, Any]], ) -> pipeline_spec_pb2.PipelineSpec: """Modifies the PipelineSpec using arguments passed to the Compiler.compile method. Args: pipeline_spec (pipeline_spec_pb2.PipelineSpec): PipelineSpec to modify. pipeline_name (Optional[str]): Name of the pipeline. Overrides component name. pipeline_parameters (Optional[Mapping[str, Any]]): Pipeline parameters. Overrides component input default values. Returns: The modified PipelineSpec copy. Raises: ValueError: If a parameter is passed to the compiler that is not a component input. """ pipeline_spec_new = pipeline_spec_pb2.PipelineSpec() pipeline_spec_new.CopyFrom(pipeline_spec) pipeline_spec = pipeline_spec_new if pipeline_name is not None: pipeline_spec.pipeline_info.name = pipeline_name # Verify that pipeline_parameters contains only input names # that match the pipeline inputs definition. for input_name, input_value in (pipeline_parameters or {}).items(): if input_name in pipeline_spec.root.input_definitions.parameters: _fill_in_component_input_default_value(pipeline_spec.root, input_name, input_value) elif input_name in pipeline_spec.root.input_definitions.artifacts: raise NotImplementedError( 'Default value for artifact input is not supported.') else: raise ValueError( f'Pipeline parameter {input_name} does not match any known pipeline input.' ) return pipeline_spec def build_spec_by_group( pipeline_spec: pipeline_spec_pb2.PipelineSpec, deployment_config: pipeline_spec_pb2.PipelineDeploymentConfig, group: tasks_group.TasksGroup, inputs: Mapping[str, List[Tuple[pipeline_channel.PipelineChannel, str]]], outputs: DefaultDict[str, Dict[str, pipeline_channel.PipelineChannel]], dependencies: Dict[str, List[compiler_utils.GroupOrTaskType]], rootgroup_name: str, task_name_to_parent_groups: Mapping[str, List[compiler_utils.GroupOrTaskType]], group_name_to_parent_groups: Mapping[str, List[tasks_group.TasksGroup]], name_to_for_loop_group: Mapping[str, tasks_group.ParallelFor], platform_spec: pipeline_spec_pb2.PlatformSpec, is_compiled_component: bool, ) -> None: """Generates IR spec given a TasksGroup. Args: pipeline_spec: The pipeline_spec to update in place. deployment_config: The deployment_config to hold all executors. The spec is updated in place. group: The TasksGroup to generate spec for. inputs: The inputs dictionary. The keys are group/task names and the values are lists of tuples (channel, producing_task_name). dependencies: The group dependencies dictionary. The keys are group or task names, and the values are lists of dependent groups or tasks. rootgroup_name: The name of the group root. Used to determine whether the component spec for the current group should be the root dag. task_name_to_parent_groups: The dict of task name to parent groups. Key is task name. Value is a list of ancestor groups including the task itself. The list of a given task is sorted in a way that the farthest group is the first and the task itself is the last. group_name_to_parent_groups: The dict of group name to parent groups. Key is the group name. Value is a list of ancestor groups including the group itself. The list of a given group is sorted in a way that the farthest group is the first and the group itself is the last. name_to_for_loop_group: The dict of for loop group name to loop group. """ group_component_name = utils.sanitize_component_name(group.name) if group.name == rootgroup_name: group_component_spec = pipeline_spec.root else: group_component_spec = pipeline_spec.components[group_component_name] task_name_to_task_spec = {} task_name_to_component_spec = {} # Generate task specs and component specs for the dag. subgroups = group.groups + group.tasks for subgroup in subgroups: subgroup_input_channels = [ channel for channel, _ in inputs.get(subgroup.name, []) ] subgroup_output_channels = outputs.get(subgroup.name, {}) subgroup_component_name = (utils.sanitize_component_name(subgroup.name)) tasks_in_current_dag = [ utils.sanitize_task_name(subgroup.name) for subgroup in subgroups ] is_parent_component_root = (group_component_spec == pipeline_spec.root) if isinstance(subgroup, pipeline_task.PipelineTask): subgroup_task_spec = build_task_spec_for_task( task=subgroup, parent_component_inputs=group_component_spec.input_definitions, tasks_in_current_dag=tasks_in_current_dag, ) task_name_to_task_spec[subgroup.name] = subgroup_task_spec subgroup_component_spec = build_component_spec_for_task( task=subgroup, is_compiled_component=is_compiled_component, ) task_name_to_component_spec[subgroup.name] = subgroup_component_spec if subgroup_component_spec.executor_label: executor_label = utils.make_name_unique_by_adding_index( name=subgroup_component_spec.executor_label, collection=list(deployment_config.executors.keys()), delimiter='-') subgroup_component_spec.executor_label = executor_label if subgroup.container_spec is not None: subgroup_container_spec = build_container_spec_for_task( task=subgroup) deployment_config.executors[executor_label].container.CopyFrom( subgroup_container_spec) single_task_platform_spec = platform_config_to_platform_spec( subgroup.platform_config, executor_label, ) merge_platform_specs( platform_spec, single_task_platform_spec, ) elif subgroup.importer_spec is not None: subgroup_importer_spec = build_importer_spec_for_task( task=subgroup) deployment_config.executors[executor_label].importer.CopyFrom( subgroup_importer_spec) elif subgroup.pipeline_spec is not None: if subgroup.platform_config: raise ValueError( 'Platform-specific features can only be set on primitive components. Found platform-specific feature set on a pipeline.' ) sub_pipeline_spec, platform_spec = merge_deployment_spec_and_component_spec( main_pipeline_spec=pipeline_spec, main_deployment_config=deployment_config, sub_pipeline_spec=subgroup.pipeline_spec, main_platform_spec=platform_spec, sub_platform_spec=subgroup.platform_spec, ) subgroup_component_spec = sub_pipeline_spec.root else: raise RuntimeError elif isinstance(subgroup, tasks_group.ParallelFor): # "Punch the hole", adding additional inputs (other than loop # arguments which will be handled separately) needed by its # subgroups or tasks. loop_subgroup_channels = [] for channel in subgroup_input_channels: # Skip 'withItems' loop arguments if it's from an inner loop. if isinstance( channel, (for_loop.LoopArgument, for_loop.LoopArgumentVariable )) and channel.is_with_items_loop_argument: withitems_loop_arg_found_in_self_or_upstream = False for group_name in group_name_to_parent_groups[ subgroup.name][::-1]: if group_name in name_to_for_loop_group: loop_group = name_to_for_loop_group[group_name] if channel.name in loop_group.loop_argument.name: withitems_loop_arg_found_in_self_or_upstream = True break if not withitems_loop_arg_found_in_self_or_upstream: continue loop_subgroup_channels.append(channel) if subgroup.items_is_pipeline_channel: # This loop_argument is based on a pipeline channel, i.e., # rather than a static list, it is either the output of # another task or an input as global pipeline parameters. loop_subgroup_channels.append( subgroup.loop_argument.items_or_pipeline_channel) loop_subgroup_channels.append(subgroup.loop_argument) subgroup_component_spec = build_component_spec_for_group( input_pipeline_channels=loop_subgroup_channels, output_pipeline_channels=subgroup_output_channels, ) subgroup_task_spec = build_task_spec_for_group( group=subgroup, pipeline_channels=loop_subgroup_channels, tasks_in_current_dag=tasks_in_current_dag, is_parent_component_root=is_parent_component_root, ) _build_dag_outputs(subgroup_component_spec, subgroup_output_channels) elif isinstance(subgroup, tasks_group.Condition): # "Punch the hole", adding inputs needed by its subgroups or # tasks. condition_subgroup_channels = list(subgroup_input_channels) for operand in [ subgroup.condition.left_operand, subgroup.condition.right_operand, ]: if isinstance(operand, pipeline_channel.PipelineChannel): condition_subgroup_channels.append(operand) subgroup_component_spec = build_component_spec_for_group( input_pipeline_channels=condition_subgroup_channels, output_pipeline_channels=subgroup_output_channels, ) subgroup_task_spec = build_task_spec_for_group( group=subgroup, pipeline_channels=condition_subgroup_channels, tasks_in_current_dag=tasks_in_current_dag, is_parent_component_root=is_parent_component_root, ) _build_dag_outputs(subgroup_component_spec, subgroup_output_channels) elif isinstance(subgroup, tasks_group.ExitHandler): subgroup_component_spec = build_component_spec_for_group( input_pipeline_channels=subgroup_input_channels, output_pipeline_channels={}, ) subgroup_task_spec = build_task_spec_for_group( group=subgroup, pipeline_channels=subgroup_input_channels, tasks_in_current_dag=tasks_in_current_dag, is_parent_component_root=is_parent_component_root, ) else: raise RuntimeError( f'Unexpected task/group type: Got {subgroup} of type ' f'{type(subgroup)}.') # Generate dependencies section for this task. if dependencies.get(subgroup.name, None): group_dependencies = list(dependencies[subgroup.name]) group_dependencies.sort() subgroup_task_spec.dependent_tasks.extend( [utils.sanitize_task_name(dep) for dep in group_dependencies]) # Add component spec subgroup_component_name = utils.make_name_unique_by_adding_index( name=subgroup_component_name, collection=list(pipeline_spec.components.keys()), delimiter='-') subgroup_task_spec.component_ref.name = subgroup_component_name pipeline_spec.components[subgroup_component_name].CopyFrom( subgroup_component_spec) # Add task spec group_component_spec.dag.tasks[subgroup.name].CopyFrom( subgroup_task_spec) pipeline_spec.deployment_spec.update( json_format.MessageToDict(deployment_config)) # Surface metrics outputs to the top. populate_metrics_in_dag_outputs( tasks=group.tasks, task_name_to_parent_groups=task_name_to_parent_groups, task_name_to_component_spec=task_name_to_component_spec, pipeline_spec=pipeline_spec, ) def platform_config_to_platform_spec( platform_config: dict, executor_label: str, ) -> pipeline_spec_pb2.PlatformSpec: """Converts a single task's pipeline_task.platform_config dictionary to a PlatformSpec message using the executor_label for the task.""" platform_spec_msg = pipeline_spec_pb2.PlatformSpec() json_format.ParseDict( { 'platforms': { platform_key: { 'deployment_spec': { 'executors': { executor_label: config } } } for platform_key, config in platform_config.items() } }, platform_spec_msg) return platform_spec_msg def merge_platform_specs( main_msg: pipeline_spec_pb2.PlatformSpec, sub_msg: pipeline_spec_pb2.PlatformSpec, ) -> None: """Merges a sub_msg PlatformSpec into the main_msg PlatformSpec, leaving the sub_msg unchanged.""" for platform_key, single_platform_spec in sub_msg.platforms.items(): merge_platform_deployment_config( main_msg.platforms[platform_key].deployment_spec, single_platform_spec.deployment_spec, ) def merge_platform_deployment_config( main_msg: pipeline_spec_pb2.PlatformDeploymentConfig, sub_msg: pipeline_spec_pb2.PlatformDeploymentConfig, ) -> None: """Merges a sub_msg PlatformDeploymentConfig into the main_msg PlatformDeploymentConfig, leaving the sub_msg unchanged.""" for executor_label, addtl_body in sub_msg.executors.items(): body = main_msg.executors.get(executor_label, struct_pb2.Struct()) body.update(addtl_body) main_msg.executors[executor_label].CopyFrom(body) def build_exit_handler_groups_recursively( parent_group: tasks_group.TasksGroup, pipeline_spec: pipeline_spec_pb2.PipelineSpec, deployment_config: pipeline_spec_pb2.PipelineDeploymentConfig, platform_spec: pipeline_spec_pb2.PlatformSpec, ) -> None: if not parent_group.groups: return for group in parent_group.groups: if isinstance(group, tasks_group.ExitHandler): # remove this if block to support nested exit handlers if not parent_group.is_root: raise ValueError( f'{tasks_group.ExitHandler.__name__} can only be used within the outermost scope of a pipeline function definition. Using an {tasks_group.ExitHandler.__name__} within {group_type_to_dsl_class[parent_group.group_type].__name__} {parent_group.name} is not allowed.' ) exit_task = group.exit_task exit_task_name = utils.sanitize_task_name(exit_task.name) exit_handler_group_task_name = utils.sanitize_task_name(group.name) exit_task_task_spec = build_task_spec_for_exit_task( task=exit_task, dependent_task=exit_handler_group_task_name, pipeline_inputs=pipeline_spec.root.input_definitions, ) exit_task_component_spec = build_component_spec_for_exit_task( task=exit_task) # Add exit task container spec if applicable. if exit_task.container_spec is not None: exit_task_container_spec = build_container_spec_for_task( task=exit_task) executor_label = utils.make_name_unique_by_adding_index( name=exit_task_component_spec.executor_label, collection=list(deployment_config.executors.keys()), delimiter='-') exit_task_component_spec.executor_label = executor_label deployment_config.executors[executor_label].container.CopyFrom( exit_task_container_spec) single_task_platform_spec = platform_config_to_platform_spec( exit_task.platform_config, executor_label, ) merge_platform_specs( platform_spec, single_task_platform_spec, ) elif exit_task.pipeline_spec is not None: exit_task_pipeline_spec, updated_platform_spec = merge_deployment_spec_and_component_spec( main_pipeline_spec=pipeline_spec, main_deployment_config=deployment_config, sub_pipeline_spec=exit_task.pipeline_spec, main_platform_spec=platform_spec, sub_platform_spec=exit_task.platform_spec) exit_task_component_spec = exit_task_pipeline_spec.root # assign the new PlatformSpec data to the existing main PlatformSpec object platform_spec.CopyFrom(updated_platform_spec) else: raise RuntimeError( f'Exit task {exit_task_name} is missing both container spec and pipeline spec.' ) # Add exit task component spec. component_name = utils.make_name_unique_by_adding_index( name=exit_task_task_spec.component_ref.name, collection=list(pipeline_spec.components.keys()), delimiter='-') exit_task_task_spec.component_ref.name = component_name pipeline_spec.components[component_name].CopyFrom( exit_task_component_spec) # Add exit task task spec. parent_dag = pipeline_spec.root.dag parent_dag.tasks[exit_task_name].CopyFrom(exit_task_task_spec) pipeline_spec.deployment_spec.update( json_format.MessageToDict(deployment_config)) build_exit_handler_groups_recursively( parent_group=group, pipeline_spec=pipeline_spec, deployment_config=deployment_config, platform_spec=platform_spec, ) def merge_deployment_spec_and_component_spec( main_pipeline_spec: pipeline_spec_pb2.PipelineSpec, main_deployment_config: pipeline_spec_pb2.PipelineDeploymentConfig, sub_pipeline_spec: pipeline_spec_pb2.PipelineSpec, main_platform_spec: pipeline_spec_pb2.PlatformSpec, sub_platform_spec: pipeline_spec_pb2.PlatformSpec, ) -> Tuple[pipeline_spec_pb2.PipelineSpec, pipeline_spec_pb2.PlatformSpec]: """Merges deployment spec and component spec from a sub pipeline spec into the main spec. Also merges sub_platform_spec into main_platform_spec, with updated executor labels. We need to make sure that we keep the original sub PipelineSpec and PlatformSpec unchanged--in case the pipeline is reused (instantiated) multiple times, the "template" should not carry any "signs of usage". Args: main_pipeline_spec: The main PipelineSpec to merge into. main_deployment_config: The main PipelineDeploymentConfig to merge into. sub_pipeline_spec: The PipelineSpec of an inner pipeline whose deployment specs and component specs need to be copied into the main specs. main_platform_spec: The PlatformSpec corresponding to main_pipeline_spec. sub_platform_spec: The PlatformSpec corresponding to sub_pipeline_spec. Returns: The possibly modified version of sub_pipeline_spec and the possibly modified version of the the main_platform_spec. The sub_pipeline_spec is "folded" into the outer pipeline, whereas the main_platform_spec is updated to contain the sub_pipeline_spec's configuration. """ # Make a copy of the messages of the inner pipeline so that the "template" remains # unchanged and works even the pipeline is reused multiple times. sub_pipeline_spec_copy = pipeline_spec_pb2.PipelineSpec() sub_pipeline_spec_copy.CopyFrom(sub_pipeline_spec) sub_platform_spec_copy = pipeline_spec_pb2.PlatformSpec() sub_platform_spec_copy.CopyFrom(sub_platform_spec) _merge_deployment_spec( main_deployment_config=main_deployment_config, sub_pipeline_spec=sub_pipeline_spec_copy, main_platform_spec=main_platform_spec, sub_platform_spec=sub_platform_spec_copy, ) _merge_component_spec( main_pipeline_spec=main_pipeline_spec, sub_pipeline_spec=sub_pipeline_spec_copy, ) return sub_pipeline_spec_copy, main_platform_spec def _merge_deployment_spec( main_deployment_config: pipeline_spec_pb2.PipelineDeploymentConfig, sub_pipeline_spec: pipeline_spec_pb2.PipelineSpec, main_platform_spec: pipeline_spec_pb2.PlatformSpec, sub_platform_spec: pipeline_spec_pb2.PlatformSpec, ) -> None: """Merges deployment config from a sub pipeline spec into the main config. During the merge we need to ensure all executor specs have unique executor labels, that means we might need to update the `executor_label` referenced from component specs in sub_pipeline_spec. Args: main_deployment_config: The main deployment config to merge into. sub_pipeline_spec: The pipeline spec of an inner pipeline whose deployment configs need to be merged into the main config. """ def _rename_executor_labels( pipeline_spec: pipeline_spec_pb2.PipelineSpec, old_executor_label: str, new_executor_label: str, ) -> None: """Renames the old executor_label to the new one in component spec.""" for _, component_spec in pipeline_spec.components.items(): if component_spec.executor_label == old_executor_label: component_spec.executor_label = new_executor_label def _rename_platform_config_executor_labels( sub_platform_spec: pipeline_spec_pb2.PlatformSpec, old_executor_label: str, new_executor_label: str, ) -> None: # make a copy so that map size doesn't change during iteration sub_platform_spec_copy = copy.deepcopy(sub_platform_spec) for platform_key, platform_config in sub_platform_spec_copy.platforms.items( ): for cur_exec_label, task_config in platform_config.deployment_spec.executors.items( ): if cur_exec_label == old_executor_label: del sub_platform_spec.platforms[ platform_key].deployment_spec.executors[ old_executor_label] sub_platform_spec.platforms[ platform_key].deployment_spec.executors[ new_executor_label].CopyFrom(task_config) sub_deployment_config = pipeline_spec_pb2.PipelineDeploymentConfig() json_format.ParseDict( json_format.MessageToDict(sub_pipeline_spec.deployment_spec), sub_deployment_config) for executor_label, executor_spec in sub_deployment_config.executors.items( ): old_executor_label = executor_label executor_label = utils.make_name_unique_by_adding_index( name=executor_label, collection=list(main_deployment_config.executors.keys()), delimiter='-') if executor_label != old_executor_label: _rename_executor_labels( pipeline_spec=sub_pipeline_spec, old_executor_label=old_executor_label, new_executor_label=executor_label) _rename_platform_config_executor_labels( sub_platform_spec, old_executor_label=old_executor_label, new_executor_label=executor_label) main_deployment_config.executors[executor_label].CopyFrom(executor_spec) merge_platform_specs( main_msg=main_platform_spec, sub_msg=sub_platform_spec) def _merge_component_spec( main_pipeline_spec: pipeline_spec_pb2.PipelineSpec, sub_pipeline_spec: pipeline_spec_pb2.PipelineSpec, ) -> None: """Merges component spec from a sub pipeline spec into the main config. During the merge we need to ensure all component specs have unique component name, that means we might need to update the `component_ref` referenced from task specs in sub_pipeline_spec. Args: main_pipeline_spec: The main pipeline spec to merge into. sub_pipeline_spec: The pipeline spec of an inner pipeline whose component specs need to be merged into the global config. """ def _rename_component_refs( pipeline_spec: pipeline_spec_pb2.PipelineSpec, old_component_ref: str, new_component_ref: str, ) -> None: """Renames the old component_ref to the new one in task spec.""" for _, component_spec in pipeline_spec.components.items(): if not component_spec.dag: continue for _, task_spec in component_spec.dag.tasks.items(): if task_spec.component_ref.name == old_component_ref: task_spec.component_ref.name = new_component_ref for _, task_spec in pipeline_spec.root.dag.tasks.items(): if task_spec.component_ref.name == old_component_ref: task_spec.component_ref.name = new_component_ref # Do all the renaming in place, then do the acutal merge of component specs # in a second pass. This would ensure all component specs are in the final # state at the time of merging. old_name_to_new_name = {} for component_name, component_spec in sub_pipeline_spec.components.items(): old_component_name = component_name new_component_name = utils.make_name_unique_by_adding_index( name=component_name, collection=list(main_pipeline_spec.components.keys()), delimiter='-') old_name_to_new_name[old_component_name] = new_component_name if new_component_name != old_component_name: _rename_component_refs( pipeline_spec=sub_pipeline_spec, old_component_ref=old_component_name, new_component_ref=new_component_name) for old_component_name, component_spec in sub_pipeline_spec.components.items( ): main_pipeline_spec.components[ old_name_to_new_name[old_component_name]].CopyFrom(component_spec) def create_pipeline_spec( pipeline: pipeline_context.Pipeline, component_spec: structures.ComponentSpec, pipeline_outputs: Optional[Any] = None, ) -> Tuple[pipeline_spec_pb2.PipelineSpec, pipeline_spec_pb2.PlatformSpec]: """Creates a pipeline spec object. Args: pipeline: The instantiated pipeline object. component_spec: The component spec structures. pipeline_outputs: The pipeline outputs via return. Returns: A PipelineSpec proto representing the compiled pipeline. Raises: ValueError if the argument is of unsupported types. """ utils.validate_pipeline_name(pipeline.name) deployment_config = pipeline_spec_pb2.PipelineDeploymentConfig() pipeline_spec = pipeline_spec_pb2.PipelineSpec() pipeline_spec.pipeline_info.name = pipeline.name pipeline_spec.sdk_version = f'kfp-{kfp.__version__}' # Schema version 2.1.0 is required for kfp-pipeline-spec>0.1.13 pipeline_spec.schema_version = '2.1.0' pipeline_spec.root.CopyFrom( _build_component_spec_from_component_spec_structure(component_spec)) # TODO: add validation of returned outputs -- it's possible to return # an output from a task in a condition group, for example, which isn't # caught until submission time using Vertex SDK client pipeline_outputs_dict = convert_pipeline_outputs_to_dict(pipeline_outputs) root_group = pipeline.groups[0] all_groups = compiler_utils.get_all_groups(root_group) group_name_to_group = {group.name: group for group in all_groups} task_name_to_parent_groups, group_name_to_parent_groups = ( compiler_utils.get_parent_groups(root_group)) condition_channels = compiler_utils.get_condition_channels_for_tasks( root_group) name_to_for_loop_group = { group_name: group for group_name, group in group_name_to_group.items() if isinstance(group, tasks_group.ParallelFor) } inputs = compiler_utils.get_inputs_for_all_groups( pipeline=pipeline, task_name_to_parent_groups=task_name_to_parent_groups, group_name_to_parent_groups=group_name_to_parent_groups, condition_channels=condition_channels, name_to_for_loop_group=name_to_for_loop_group, ) outputs, modified_pipeline_outputs_dict = compiler_utils.get_outputs_for_all_groups( pipeline=pipeline, task_name_to_parent_groups=task_name_to_parent_groups, group_name_to_parent_groups=group_name_to_parent_groups, all_groups=all_groups, pipeline_outputs_dict=pipeline_outputs_dict) dependencies = compiler_utils.get_dependencies( pipeline=pipeline, task_name_to_parent_groups=task_name_to_parent_groups, group_name_to_parent_groups=group_name_to_parent_groups, group_name_to_group=group_name_to_group, condition_channels=condition_channels, ) platform_spec = pipeline_spec_pb2.PlatformSpec() for group in all_groups: build_spec_by_group( pipeline_spec=pipeline_spec, deployment_config=deployment_config, group=group, inputs=inputs, outputs=outputs, dependencies=dependencies, rootgroup_name=root_group.name, task_name_to_parent_groups=task_name_to_parent_groups, group_name_to_parent_groups=group_name_to_parent_groups, name_to_for_loop_group=name_to_for_loop_group, platform_spec=platform_spec, is_compiled_component=False, ) build_exit_handler_groups_recursively( parent_group=root_group, pipeline_spec=pipeline_spec, deployment_config=deployment_config, platform_spec=platform_spec, ) _build_dag_outputs( component_spec=pipeline_spec.root, dag_outputs=modified_pipeline_outputs_dict, ) # call _build_dag_outputs first to verify the presence of an output annotation # at all, then validate that the annotation is correct with _validate_dag_output_types _validate_dag_output_types( dag_outputs=modified_pipeline_outputs_dict, structures_component_spec=component_spec) return pipeline_spec, platform_spec def _validate_dag_output_types( dag_outputs: Dict[str, pipeline_channel.PipelineChannel], structures_component_spec: structures.ComponentSpec) -> None: for output_name, output_channel in dag_outputs.items(): output_spec = structures_component_spec.outputs[output_name] output_name = '' if len(dag_outputs) == 1 else f'{output_name!r} ' error_message_prefix = f'Incompatible return type provided for output {output_name}of pipeline {structures_component_spec.name!r}. ' type_utils.verify_type_compatibility( output_channel, output_spec, error_message_prefix, checks_input=False, ) def convert_pipeline_outputs_to_dict( pipeline_outputs: Union[pipeline_channel.PipelineChannel, typing.NamedTuple, None] ) -> Dict[str, pipeline_channel.PipelineChannel]: """Converts the outputs from a pipeline function into a dictionary of output name to PipelineChannel.""" if pipeline_outputs is None: return {} elif isinstance(pipeline_outputs, pipeline_channel.PipelineChannel): return {_SINGLE_OUTPUT_NAME: pipeline_outputs} elif isinstance(pipeline_outputs, tuple) and hasattr( pipeline_outputs, '_asdict'): return dict(pipeline_outputs._asdict()) else: raise ValueError(f'Got unknown pipeline output: {pipeline_outputs}') def write_pipeline_spec_to_file( pipeline_spec: pipeline_spec_pb2.PipelineSpec, pipeline_description: str, platform_spec: pipeline_spec_pb2.PlatformSpec, package_path: str, ) -> None: """Writes PipelineSpec into a YAML or JSON (deprecated) file. Args: pipeline_spec: The PipelineSpec. pipeline_description: Description from pipeline docstring. package_path: The path to which to write the PipelineSpec. platform_spec: The PlatformSpec. """ pipeline_spec_dict = json_format.MessageToDict(pipeline_spec) yaml_comments = extract_comments_from_pipeline_spec(pipeline_spec_dict, pipeline_description) has_platform_specific_features = len(platform_spec.platforms) > 0 if package_path.endswith('.json'): warnings.warn( ('Compiling to JSON is deprecated and will be ' 'removed in a future version. Please compile to a YAML file by ' 'providing a file path with a .yaml extension instead.'), category=DeprecationWarning, stacklevel=2, ) with open(package_path, 'w') as json_file: if has_platform_specific_features: raise ValueError( f'Platform-specific features are only supported when serializing to YAML. Argument for {"package_path"!r} has file extension {".json"!r}.' ) json.dump(pipeline_spec_dict, json_file, indent=2, sort_keys=True) elif package_path.endswith(('.yaml', '.yml')): with open(package_path, 'w') as yaml_file: yaml_file.write(yaml_comments) documents = [pipeline_spec_dict] if has_platform_specific_features: documents.append(json_format.MessageToDict(platform_spec)) yaml.dump_all(documents, yaml_file, sort_keys=True) else: raise ValueError( f'The output path {package_path} should end with ".yaml".') def extract_comments_from_pipeline_spec(pipeline_spec: dict, pipeline_description: str) -> str: map_headings = { 'inputDefinitions': '# Inputs:', 'outputDefinitions': '# Outputs:' } def collect_pipeline_signatures(root_dict: dict, signature_type: str) -> List[str]: comment_strings = [] if signature_type in root_dict: signature = root_dict[signature_type] comment_strings.append(map_headings[signature_type]) # Collect data array_of_signatures = [] for parameter_name, parameter_body in signature.get( 'parameters', {}).items(): data = {} data['name'] = parameter_name data[ 'parameterType'] = type_utils.IR_TYPE_TO_COMMENT_TYPE_STRING[ parameter_body['parameterType']] if 'defaultValue' in signature['parameters'][parameter_name]: data['defaultValue'] = signature['parameters'][ parameter_name]['defaultValue'] if isinstance(data['defaultValue'], str): data['defaultValue'] = "'" + data['defaultValue'] + "'" array_of_signatures.append(data) for artifact_name, artifact_body in signature.get('artifacts', {}).items(): data = { 'name': artifact_name, 'parameterType': artifact_body['artifactType']['schemaTitle'] } array_of_signatures.append(data) array_of_signatures = sorted( array_of_signatures, key=lambda d: d.get('name')) # Present data for signature in array_of_signatures: string = '# ' + signature['name'] + ': ' + signature[ 'parameterType'] if 'defaultValue' in signature: string += ' [Default: ' + str( signature['defaultValue']) + ']' comment_strings.append(string) return comment_strings multi_line_description_prefix = '# ' comment_sections = [] comment_sections.append('# PIPELINE DEFINITION') comment_sections.append('# Name: ' + pipeline_spec['pipelineInfo']['name']) if pipeline_description: pipeline_description = f'\n{multi_line_description_prefix}'.join( pipeline_description.splitlines()) comment_sections.append('# Description: ' + pipeline_description) comment_sections.extend( collect_pipeline_signatures(pipeline_spec['root'], 'inputDefinitions')) comment_sections.extend( collect_pipeline_signatures(pipeline_spec['root'], 'outputDefinitions')) comment = '\n'.join(comment_sections) + '\n' return comment