{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Name\n",
"\n",
"Batch prediction using Cloud Machine Learning Engine\n",
"\n",
"\n",
"# Label\n",
"\n",
"Cloud Storage, Cloud ML Engine, Kubeflow, Pipeline, Component\n",
"\n",
"\n",
"# Summary\n",
"\n",
"A Kubeflow Pipeline component to submit a batch prediction job against a deployed model on Cloud ML Engine.\n",
"\n",
"\n",
"# Details\n",
"\n",
"\n",
"## Intended use\n",
"\n",
"Use the component to run a batch prediction job against a deployed model on Cloud ML Engine. The prediction output is stored in a Cloud Storage bucket.\n",
"\n",
"\n",
"## Runtime arguments\n",
"\n",
"| Argument | Description | Optional | Data type | Accepted values | Default |\n",
"|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-----------------|---------|\n",
"| project_id | The ID of the Google Cloud Platform (GCP) project of the job. | No | GCPProjectID | | |\n",
"| model_path | The path to the model. It can be one of the following: