# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # generate default secret name import os import kfp from kfp import components from kfp import dsl import ai_pipeline_params as params secret_name = 'kfp-creds' configuration_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/commons/config/component.yaml') train_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/watson/train/component.yaml') store_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/watson/store/component.yaml') deploy_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/watson/deploy/component.yaml') # create pipelines @dsl.pipeline( name='KFP on WML training', description='Kubeflow pipelines running on WML performing tensorflow image recognition.' ) def kfp_wml_pipeline( GITHUB_TOKEN='', CONFIG_FILE_URL='https://raw.githubusercontent.com/user/repository/branch/creds.ini', train_code='tf-model.zip', execution_command='\'python3 convolutional_network.py --trainImagesFile ${DATA_DIR}/train-images-idx3-ubyte.gz --trainLabelsFile ${DATA_DIR}/train-labels-idx1-ubyte.gz --testImagesFile ${DATA_DIR}/t10k-images-idx3-ubyte.gz --testLabelsFile ${DATA_DIR}/t10k-labels-idx1-ubyte.gz --learningRate 0.001 --trainingIters 20000\'', framework= 'tensorflow', framework_version = '1.5', runtime = 'python', runtime_version = '3.5', run_definition = 'wml-tensorflow-definition', run_name = 'wml-tensorflow-run', model_name='wml-tensorflow-mnist', scoring_payload='tf-mnist-test-payload.json' ): # op1 - this operation will create the credentials as secrets to be used by other operations get_configuration = configuration_op( token=GITHUB_TOKEN, url=CONFIG_FILE_URL, name=secret_name ) # op2 - this operation trains the model with the model codes and data saved in the cloud object store wml_train = train_op( config=get_configuration.output, train_code=train_code, execution_command=execution_command, framework=framework, framework_version=framework_version, runtime=runtime, runtime_version=runtime_version, run_definition=run_definition, run_name=run_name ).apply(params.use_ai_pipeline_params(secret_name)) # op3 - this operation stores the model trained above wml_store = store_op( wml_train.outputs['run_uid'], model_name ).apply(params.use_ai_pipeline_params(secret_name)) # op4 - this operation deploys the model to a web service and run scoring with the payload in the cloud object store wml_deploy = deploy_op( wml_store.output, model_name, scoring_payload ).apply(params.use_ai_pipeline_params(secret_name)) if __name__ == '__main__': # compile the pipeline import kfp.compiler as compiler pipeline_filename = kfp_wml_pipeline.__name__ + '.zip' compiler.Compiler().compile(kfp_wml_pipeline, pipeline_filename)