99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
# Copyright 2021 The Kubeflow Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Base class for KFP components."""
|
|
|
|
import abc
|
|
|
|
from kfp.v2.components.experimental import component_spec as cspec
|
|
from kfp.v2.components.experimental import pipeline_task
|
|
|
|
|
|
class BaseComponent(metaclass=abc.ABCMeta):
|
|
"""Base class for a component.
|
|
|
|
Attributes:
|
|
name: The name of the component.
|
|
component_spec: The component definition.
|
|
"""
|
|
|
|
def __init__(self, component_spec: cspec.ComponentSpec):
|
|
"""Init function for BaseComponent.
|
|
|
|
Args:
|
|
component_spec: The component definition.
|
|
"""
|
|
self.component_spec = component_spec
|
|
self.name = component_spec.name
|
|
|
|
self._component_inputs = set(self.component_spec.inputs.keys())
|
|
|
|
def __call__(self, *args, **kwargs) -> pipeline_task.PipelineTask:
|
|
"""Creates a PipelineTask object.
|
|
|
|
The arguments are generated on the fly based on component input
|
|
definitions.
|
|
"""
|
|
task_inputs = {}
|
|
|
|
if len(args) > 0:
|
|
raise TypeError(
|
|
'Components must be instantiated using keyword arguments. Positional '
|
|
f'parameters are not allowed (found {len(args)} such parameters for '
|
|
f'component "{self.name}").')
|
|
|
|
for k, v in kwargs.items():
|
|
if k not in self._component_inputs:
|
|
raise TypeError(
|
|
f'{self.name}() got an unexpected keyword argument "{k}".')
|
|
|
|
if k in task_inputs:
|
|
raise TypeError(
|
|
f'{self.name}() got multiple values for argument "{k}".')
|
|
task_inputs[k] = v
|
|
|
|
# Fill in default value if there was no user provided value
|
|
for name, input_spec in self.component_spec.inputs.items():
|
|
if input_spec.default is not None and name not in task_inputs:
|
|
task_inputs[name] = input_spec.default
|
|
|
|
missing_arguments = [
|
|
name for name in self.component_spec.inputs
|
|
if name not in task_inputs
|
|
]
|
|
if missing_arguments:
|
|
argument_or_arguments = 'argument' if len(
|
|
missing_arguments) == 1 else 'arguments'
|
|
arguments = ','.join(missing_arguments)
|
|
|
|
raise TypeError(
|
|
f'{self.name}() missing {len(missing_arguments)} required positional '
|
|
f'{argument_or_arguments}: {arguments}.')
|
|
|
|
return pipeline_task.create_pipeline_task(
|
|
component_spec=self.component_spec,
|
|
arguments=task_inputs,
|
|
)
|
|
|
|
@abc.abstractmethod
|
|
def execute(self, *args, **kwargs):
|
|
"""Executes the component given the required inputs.
|
|
|
|
Subclasses of BaseComponent must override this abstract method
|
|
in order to be instantiated. For Python function-based
|
|
component, the implementation of this method could be calling
|
|
the function. For "Bring your own container" component, the
|
|
implementation of this method could be `docker run`.
|
|
"""
|
|
pass
|