pipelines/samples/contrib/seldon/mnist_tf_volume.py

180 lines
4.5 KiB
Python

# Copyright 2019 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from kubernetes import client as k8s_client
import kfp.dsl as dsl
import json
from string import Template
@dsl.pipeline(
name="Seldon MNIST TF",
description="Example of training and serving seldon MNIST TF model. Like kubeflow/example-seldon but using existing images."
)
def mnist_tf_volume(docker_repo_training='seldonio/deepmnistclassifier_trainer',
docker_tag_training='0.3',
docker_repo_serving='seldonio/deepmnistclassifier_runtime',
docker_tag_serving='0.3'):
#use volume for storing model
#here model is saved and mounted into pre-defined image for serving
#alternatively model can be baked into image - for that see mabdeploy-seldon.py
#requires seldon v0.3.0 or higher
modelvolop = dsl.VolumeOp(
name="modelpvc",
resource_name="modelpvc",
size="50Mi",
modes=dsl.VOLUME_MODE_RWO
)
tfjobjson_template = Template("""
{
"apiVersion": "kubeflow.org/v1beta1",
"kind": "TFJob",
"metadata": {
"name": "mnist-train-{{workflow.uid}}",
"ownerReferences": [
{
"apiVersion": "argoproj.io/v1alpha1",
"kind": "Workflow",
"controller": true,
"name": "{{workflow.name}}",
"uid": "{{workflow.uid}}"
}
]
},
"spec": {
"tfReplicaSpecs": {
"Worker": {
"replicas": 1,
"template": {
"spec": {
"containers": [
{
"image": "$dockerrepotraining:$dockertagtraining",
"name": "tensorflow",
"volumeMounts": [
{
"mountPath": "/data",
"name": "persistent-storage"
}
]
}
],
"restartPolicy": "OnFailure",
"volumes": [
{
"name": "persistent-storage",
"persistentVolumeClaim": {
"claimName": "$modelpvc"
}
}
]
}
}
}
}
}
}
""")
tfjobjson = tfjobjson_template.substitute({ 'dockerrepotraining': str(docker_repo_training),'dockertagtraining': str(docker_tag_training),'modelpvc': modelvolop.outputs["name"]})
tfjob = json.loads(tfjobjson)
train = dsl.ResourceOp(
name="train",
k8s_resource=tfjob,
success_condition='status.replicaStatuses.Worker.succeeded == 1'
)
seldon_serving_json_template = Template("""
{
"apiVersion": "machinelearning.seldon.io/v1alpha2",
"kind": "SeldonDeployment",
"metadata": {
"labels": {
"app": "seldon"
},
"name": "mnist-classifier"
},
"spec": {
"annotations": {
"deployment_version": "v1",
"project_name": "MNIST Example"
},
"name": "mnist-classifier",
"predictors": [
{
"annotations": {
"predictor_version": "v1"
},
"componentSpecs": [
{
"spec": {
"containers": [
{
"image": "$dockerreposerving:$dockertagserving",
"imagePullPolicy": "Always",
"name": "mnist-classifier",
"volumeMounts": [
{
"mountPath": "/data",
"name": "persistent-storage"
}
]
}
],
"terminationGracePeriodSeconds": 1,
"volumes": [
{
"name": "persistent-storage",
"persistentVolumeClaim": {
"claimName": "$modelpvc"
}
}
]
}
}
],
"graph": {
"children": [],
"endpoint": {
"type": "REST"
},
"name": "mnist-classifier",
"type": "MODEL"
},
"name": "mnist-classifier",
"replicas": 1
}
]
}
}
""")
seldon_serving_json = seldon_serving_json_template.substitute({ 'dockerreposerving': str(docker_repo_serving),'dockertagserving': str(docker_tag_serving),'modelpvc': modelvolop.outputs["name"]})
seldon_deployment = json.loads(seldon_serving_json)
serve = dsl.ResourceOp(
name='serve',
k8s_resource=seldon_deployment,
success_condition='status.state == Available'
).after(train)
if __name__ == "__main__":
import kfp.compiler as compiler
compiler.Compiler().compile(mnist_tf_volume, __file__ + ".tar.gz")