pipelines/tools/benchmarks/run_service_api.ipynb

198 lines
8.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This benchmark measures the performance of run related operations in Kubeflow pipelines, including run durations and latencies of creating/getting/deleting runs.\n",
"\n",
"import random\n",
"import kfp\n",
"import kfp_server_api\n",
"import os\n",
"import string\n",
"import time\n",
"from google.cloud import storage\n",
"from kfp.components import create_component_from_func\n",
"from datetime import datetime, timezone, timedelta\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from scipy import stats\n",
"\n",
"# CHANGE necessary paramters here\n",
"# host is your KFP endpoint\n",
"host = 'http://127.0.0.1:3001'\n",
"# Use the pipeline you prefer\n",
"pipeline_file_url = 'https://storage.googleapis.com/jingzhangjz-project-pipelines/benchmarks/taxi.yaml'\n",
"# number of runs you want to create\n",
"num_runs = 5\n",
"# Periodically check whether the runs have been finished.\n",
"run_status_polling_interval_sec = 60\n",
"\n",
"\n",
"def random_suffix() -> string:\n",
" return ''.join(random.choices(string.ascii_lowercase + string.digits, k=10))\n",
"\n",
"def run_finished(run_status: string) -> bool:\n",
" return run_status in {'Succeeded', 'Failed', 'Error', 'Skipped', 'Terminated'}\n",
"\n",
"def run_succeeded(run_status: string) -> bool:\n",
" return run_status in {'Succeeded'}\n",
"\n",
"\n",
"if __name__ == '__main__':\n",
" client = kfp.Client(host)\n",
" \n",
" # Create a pipeline and we'll use its default version to create runs.\n",
" api_url = kfp_server_api.models.ApiUrl(pipeline_file_url)\n",
" api_pipeline = kfp_server_api.models.ApiPipeline(\n",
" name='pipeline-' + random_suffix(),\n",
" url=api_url)\n",
" pipeline = client.pipelines.create_pipeline(body=api_pipeline)\n",
" default_version_id = pipeline.default_version.id\n",
"\n",
" # Create an experiment.\n",
" experiment_name = 'experiment-' + random_suffix()\n",
" experiment = client.experiments.create_experiment(body={'name' : experiment_name})\n",
" experiment_id = experiment.id\n",
" \n",
" # Measure create run latency. Note this time is the roundrip latency of CreateRun method. The actual run is \n",
" # not finished when client side gets the CreateRun response. Run duration will be measured below when run is \n",
" # actually finished.\n",
" created_runs = []\n",
" create_run_latencies = []\n",
" for i in range(num_runs):\n",
" resource_references = []\n",
" key = kfp_server_api.models.ApiResourceKey(id=experiment_id, type=kfp_server_api.models.ApiResourceType.EXPERIMENT)\n",
" reference = kfp_server_api.models.ApiResourceReference(key=key, relationship=kfp_server_api.models.ApiRelationship.OWNER)\n",
" resource_references.append(reference)\n",
" key = kfp_server_api.models.ApiResourceKey(id=default_version_id, type=kfp_server_api.models.ApiResourceType.PIPELINE_VERSION)\n",
" reference = kfp_server_api.models.ApiResourceReference(key=key, relationship=kfp_server_api.models.ApiRelationship.CREATOR)\n",
" resource_references.append(reference)\n",
" # If the pipeline you choose needs to specify parameters to create a run, specify it here.\n",
" parameters = []\n",
" parameter = kfp_server_api.ApiParameter(name='pipeline-root', value='gs://jingzhangjz-project-outputs/tfx_taxi_simple/{{workflow.uid}}')\n",
" parameters.append(parameter)\n",
" parameter = kfp_server_api.ApiParameter(name='data-root', value='gs://ml-pipeline-playground/tfx_taxi_simple/data')\n",
" parameters.append(parameter)\n",
" parameter = kfp_server_api.ApiParameter(name='module-file', value='gs://ml-pipeline-playground/tfx_taxi_simple/modules/taxi_utils.py')\n",
" parameters.append(parameter) \n",
" pipeline_spec = kfp_server_api.ApiPipelineSpec(parameters=parameters)\n",
"\n",
" start = time.perf_counter()\n",
" run_name = 'run-' + random_suffix()\n",
" run = client.runs.create_run(body={'name':run_name, 'resource_references': resource_references, 'pipeline_spec': pipeline_spec}) \n",
" dur = time.perf_counter() - start\n",
" create_run_latencies.append(dur) \n",
" created_runs.append(run.run.id)\n",
" \n",
" # Wait for the runs to finish. \n",
" # TODO(jingzhang36): We can add a timeout for this polling. For now we rely on the timeout of runs in KFP. \n",
" while True:\n",
" all_finished = True\n",
" for i in created_runs:\n",
" run = client.runs.get_run(i) \n",
" if not run_finished(run.run.status):\n",
" all_finished = False\n",
" break\n",
" if all_finished: \n",
" break\n",
" else:\n",
" time.sleep(run_status_polling_interval_sec)\n",
"\n",
" # When all runs are finished, measure run durations and get run latencies.\n",
" get_run_latencies = []\n",
" succeeded_run_durations = []\n",
" run_results = []\n",
" for i in created_runs:\n",
" start = time.perf_counter()\n",
" run = client.runs.get_run(i) \n",
" dur = time.perf_counter() - start\n",
" get_run_latencies.append(dur) \n",
" if run_succeeded(run.run.status):\n",
" run_results.append('succeeded')\n",
" succeeded_run_durations.append((run.run.finished_at - run.run.created_at).total_seconds())\n",
" else:\n",
" run_results.append('not_succeeded')\n",
"\n",
" # Measure delete run latency.\n",
" delete_run_latencies = []\n",
" for i in created_runs:\n",
" start = time.perf_counter()\n",
" run = client.runs.delete_run(i) \n",
" dur = time.perf_counter() - start\n",
" delete_run_latencies.append(dur) \n",
" \n",
" # Cleanup\n",
" client.pipelines.delete_pipeline(pipeline.id)\n",
" client.experiments.delete_experiment(experiment.id)\n",
" \n",
" # Plots\n",
" fig, axs = plt.subplots(nrows=4, figsize=(10,20))\n",
" \n",
" axs[0].set(title='Create Run Latency', xlabel='Time (Second)', ylabel='Create')\n",
" sns.distplot(a=create_run_latencies, ax=axs[0], hist=True, kde=False, rug=True)\n",
" \n",
" axs[1].set(title='Run Durations', xlabel='Time (Second)', ylabel='Run')\n",
" sns.distplot(a=succeeded_run_durations, ax=axs[1], hist=True, kde=False, rug=True) \n",
" \n",
" axs[2].set(title='Get Run Latency', xlabel='Time (Second)', ylabel='Get')\n",
" sns.distplot(a=get_run_latencies, ax=axs[2], hist=True, kde=False, rug=True) \n",
" \n",
" axs[3].set(title='Delete Run Latency', xlabel='Time (Second)', ylabel='Delete')\n",
" sns.distplot(a=delete_run_latencies, ax=axs[3], hist=True, kde=False, rug=True)\n",
"\n",
" loaded_run_results = pd.DataFrame(np.array(run_results), columns=['result'])\n",
" sns.catplot(x='result', kind=\"count\", data=loaded_run_results)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"file_extension": ".py",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
},
"mimetype": "text/x-python",
"name": "python",
"npconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": 3
},
"nbformat": 4,
"nbformat_minor": 2
}