pipelines/samples/core/visualization/tensorboard_gcs.py

74 lines
2.5 KiB
Python

# Copyright 2021 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from kfp.deprecated import dsl, components
from kfp.deprecated.components import create_component_from_func
prepare_tensorboard = components.load_component_from_url(
'https://raw.githubusercontent.com/kubeflow/pipelines/1.5.0/components/tensorflow/tensorboard/prepare_tensorboard/component.yaml'
)
def train(log_dir: 'URI'):
# Reference: https://www.tensorflow.org/tensorboard/get_started
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=log_dir, histogram_freq=1
)
model.fit(
x=x_train,
y=y_train,
epochs=5,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback]
)
# Be careful when choosing a tensorboard image:
# * tensorflow/tensorflow may fail with image pull backoff, because of dockerhub rate limiting.
# * tensorboard in tensorflow 2.3+ does not work with KFP, refer to https://github.com/kubeflow/pipelines/issues/5521.
train_op = create_component_from_func(
train, base_image='gcr.io/deeplearning-platform-release/tf2-cpu.2-4'
)
@dsl.pipeline(name='pipeline-tensorboard-gcs')
def my_pipeline(
log_dir=f'gs://{{kfp-default-bucket}}/tensorboard/logs/{dsl.RUN_ID_PLACEHOLDER}'
):
prepare_tb_task = prepare_tensorboard(log_dir_uri=log_dir)
tensorboard_task = train_op(log_dir=log_dir).after(prepare_tb_task)