pipelines/components/PyTorch/pytorch-kfp-components
Jagadeesh J 49c3587591
chore(components/pytorch):kserve migration (#7615)
* chore(components/pytorch):kserve migration

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* fix: pytorch dist training

 - enable env vars in config.properties
 - upgrade pip in dockerfile

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* Bert - KServe v2 handler changes

Signed-off-by: Shrinath Suresh <shrinath@ideas2it.com>

* fix: bert notebook for kserve v2

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* fix: add protocol verion to bert gpu yaml

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* Adding utility to convert image to bytes - Cifar

Signed-off-by: Shrinath Suresh <shrinath@ideas2it.com>

* Cifar10 - captum update

Signed-off-by: Shrinath Suresh <shrinath@ideas2it.com>

* fix: cifar10 example

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* fix: predictor component for kserve v2

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* fix: pytorch dist training for kserve v2

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* fix: cifar10 hpo example

Signed-off-by: Jagadeesh J <jagadeeshj@ideas2it.com>

* Bumping pytorch-kfp-components version

Signed-off-by: Shrinath Suresh <shrinath@ideas2it.com>

Co-authored-by: Shrinath Suresh <shrinath@ideas2it.com>
2022-07-08 08:55:52 +00:00
..
pytorch_kfp_components chore(components/pytorch):kserve migration (#7615) 2022-07-08 08:55:52 +00:00
templates chore(components/pytorch):kserve migration (#7615) 2022-07-08 08:55:52 +00:00
tests chore(components/pytorch):kserve migration (#7615) 2022-07-08 08:55:52 +00:00
.gitignore
.pylintrc
LICENSE
OWNERS
README.md
pyproject.toml
setup.cfg
setup.py
tox.ini

README.md

PyTorch Kubeflow Pipeline Components

PyTorch Kubeflow Pipeline Components provides an SDK and a set of components that lets you build kubeflow pipelines using PyTorch. You can use the predefined components in this repository to build your pipeline using the Kubeflow Pipelines SDK.

Installation

Requirements

Python >= 3.6 Kubeflow cluster setuo (on-prem or in any of the Clouds)

Install latest release

Use the following command to install PyTorch Pipeline Components from PyPI.

pip install -U pytorch-kfp-components

Install from source

Use the following commands to install PyTorch Kubeflow Pipeline Components from GitHub.

git clone https://github.com/kubeflow/pipelines.git
pip install pipelines/components/PyTorch/pytorch_kfp_components/.

Running the tests

Run the following command

pip install tox
cd ./components/PyTorch/pytorch-kfp-components/
tox -rvve py38

Samples

For running the samples follow the instruction mentioned as below

Samples README.md