pipelines/samples/v2/two_step_pipeline_container...

83 lines
2.8 KiB
Python

# Copyright 2022 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pipeline container no input v2 engine pipeline."""
from __future__ import annotations
import unittest
from kfp.samples.test.utils import KfpTask
from kfp.samples.test.utils import run_pipeline_func
from kfp.samples.test.utils import TestCase
import kfp_server_api
from ml_metadata.proto import Execution
from .two_step_pipeline_containerized import two_step_pipeline_containerized
def verify(t: unittest.TestCase, run: kfp_server_api.ApiRun,
tasks: dict[str, KfpTask], **kwargs):
t.assertEqual(run.status, 'Succeeded')
component1_dict = tasks['component1'].get_dict()
component2_dict = tasks['component2'].get_dict()
for artifact in component1_dict.get('outputs').get('artifacts'):
# pop metadata here because the artifact which got re-imported may have metadata with uncertain data
if artifact.get('metadata') is not None:
artifact.pop('metadata')
for artifact in component2_dict.get('inputs').get('artifacts'):
# pop metadata here because the artifact which got re-imported may have metadata with uncertain data
if artifact.get('metadata') is not None:
artifact.pop('metadata')
t.assertEqual(
{
'name': 'component1',
'inputs': {
'parameters': {
'text': 'hi'
}
},
'outputs': {
'artifacts': [{
'name': 'output_gcs',
'type': 'system.Dataset'
}],
},
'type': 'system.ContainerExecution',
'state': Execution.State.COMPLETE,
}, component1_dict)
t.assertEqual(
{
'name': 'component2',
'inputs': {
'artifacts': [{
'name': 'input_gcs',
'type': 'system.Dataset'
}],
},
'outputs': {},
'type': 'system.ContainerExecution',
'state': Execution.State.COMPLETE,
}, component2_dict)
if __name__ == '__main__':
run_pipeline_func([
TestCase(
pipeline_func=two_step_pipeline_containerized,
verify_func=verify,
),
])