pipelines/components/contrib/CatBoost/_samples/sample_pipeline.py

77 lines
3.7 KiB
Python

import kfp
from kfp import components
chicago_taxi_dataset_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/e3337b8bdcd63636934954e592d4b32c95b49129/components/datasets/Chicago%20Taxi/component.yaml')
pandas_transform_csv_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/e69a6694/components/pandas/Transform_DataFrame/in_CSV_format/component.yaml')
catboost_train_classifier_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Train_classifier/from_CSV/component.yaml')
catboost_train_regression_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Train_regression/from_CSV/component.yaml')
catboost_predict_classes_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Predict_classes/from_CSV/component.yaml')
catboost_predict_values_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Predict_values/from_CSV/component.yaml')
catboost_predict_class_probabilities_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Predict_class_probabilities/from_CSV/component.yaml')
catboost_to_apple_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/convert_CatBoostModel_to_AppleCoreMLModel/component.yaml')
catboost_to_onnx_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/convert_CatBoostModel_to_ONNX/component.yaml')
def catboost_pipeline():
training_data_in_csv = chicago_taxi_dataset_op(
where='trip_start_timestamp >= "2019-01-01" AND trip_start_timestamp < "2019-02-01"',
select='tips,trip_seconds,trip_miles,pickup_community_area,dropoff_community_area,fare,tolls,extras,trip_total',
limit=10000,
).output
training_data_for_classification_in_csv = pandas_transform_csv_op(
table=training_data_in_csv,
transform_code='''df.insert(0, "was_tipped", df["tips"] > 0); del df["tips"]''',
).output
catboost_train_regression_task = catboost_train_regression_op(
training_data=training_data_in_csv,
loss_function='RMSE',
label_column=0,
num_iterations=200,
)
regression_model = catboost_train_regression_task.outputs['model']
catboost_train_classifier_task = catboost_train_classifier_op(
training_data=training_data_for_classification_in_csv,
label_column=0,
num_iterations=200,
)
classification_model = catboost_train_classifier_task.outputs['model']
evaluation_data_for_regression_in_csv = training_data_in_csv
evaluation_data_for_classification_in_csv = training_data_for_classification_in_csv
catboost_predict_values_op(
data=evaluation_data_for_regression_in_csv,
model=regression_model,
label_column=0,
)
catboost_predict_classes_op(
data=evaluation_data_for_classification_in_csv,
model=classification_model,
label_column=0,
)
catboost_predict_class_probabilities_op(
data=evaluation_data_for_classification_in_csv,
model=classification_model,
label_column=0,
)
catboost_to_apple_op(regression_model)
catboost_to_apple_op(classification_model)
catboost_to_onnx_op(regression_model)
catboost_to_onnx_op(classification_model)
if __name__ == '__main__':
kfp_endpoint=None
kfp.Client(host=kfp_endpoint).create_run_from_pipeline_func(catboost_pipeline, arguments={})