pipelines/samples/contrib/aws-samples/simple_train_pipeline/training-pipeline.py

90 lines
2.6 KiB
Python

#!/usr/bin/env python3
# Uncomment the apply(use_aws_secret()) below if you are not using OIDC
# more info : https://github.com/kubeflow/pipelines/tree/master/samples/contrib/aws-samples/README.md
import kfp
import json
import os
import copy
from kfp import components
from kfp import dsl
from kfp.aws import use_aws_secret
cur_file_dir = os.path.dirname(__file__)
components_dir = os.path.join(cur_file_dir, "../../../../components/aws/sagemaker/")
sagemaker_train_op = components.load_component_from_file(
components_dir + "/train/component.yaml"
)
channelObjList = []
channelObj = {
"ChannelName": "",
"DataSource": {
"S3DataSource": {
"S3Uri": "",
"S3DataType": "S3Prefix",
"S3DataDistributionType": "FullyReplicated",
}
},
"CompressionType": "None",
"RecordWrapperType": "None",
"InputMode": "File",
}
channelObj["ChannelName"] = "train"
channelObj["DataSource"]["S3DataSource"][
"S3Uri"
] = "s3://kubeflow-pipeline-data/mnist_kmeans_example/train_data"
channelObjList.append(copy.deepcopy(channelObj))
@dsl.pipeline(name="Training pipeline", description="SageMaker training job test")
def training(
region="us-east-1",
endpoint_url="",
image="382416733822.dkr.ecr.us-east-1.amazonaws.com/kmeans:1",
training_input_mode="File",
hyperparameters={"k": "10", "feature_dim": "784"},
channels=channelObjList,
instance_type="ml.m5.2xlarge",
instance_count=1,
volume_size=50,
max_run_time=3600,
model_artifact_path="s3://kubeflow-pipeline-data/mnist_kmeans_example/output",
output_encryption_key="",
network_isolation=True,
traffic_encryption=False,
spot_instance=False,
max_wait_time=3600,
checkpoint_config={},
role="",
):
training = sagemaker_train_op(
region=region,
endpoint_url=endpoint_url,
image=image,
training_input_mode=training_input_mode,
hyperparameters=hyperparameters,
channels=channels,
instance_type=instance_type,
instance_count=instance_count,
volume_size=volume_size,
max_run_time=max_run_time,
model_artifact_path=model_artifact_path,
output_encryption_key=output_encryption_key,
network_isolation=network_isolation,
traffic_encryption=traffic_encryption,
spot_instance=spot_instance,
max_wait_time=max_wait_time,
checkpoint_config=checkpoint_config,
role=role,
) # .apply(use_aws_secret('aws-secret', 'AWS_ACCESS_KEY_ID', 'AWS_SECRET_ACCESS_KEY'))
if __name__ == "__main__":
kfp.compiler.Compiler().compile(training, __file__ + ".zip")