pipelines/samples/contrib/azure-samples/databricks-pipelines/databricks_job_pipeline.py

58 lines
1.7 KiB
Python

"""Submit a Job with implicit cluster creation to Databricks. Then submit a Run for that Job."""
import kfp.dsl as dsl
import kfp.compiler as compiler
import databricks
def create_job(job_name):
return databricks.CreateJobOp(
name="createjob",
job_name=job_name,
new_cluster={
"spark_version":"5.3.x-scala2.11",
"node_type_id": "Standard_D3_v2",
"num_workers": 2
},
libraries=[{"jar": "dbfs:/docs/sparkpi.jar"}],
spark_jar_task={
"main_class_name": "org.apache.spark.examples.SparkPi"
}
)
def submit_run(run_name, job_name, parameter):
return databricks.SubmitRunOp(
name="submitrun",
run_name=run_name,
job_name=job_name,
jar_params=[parameter]
)
def delete_run(run_name):
return databricks.DeleteRunOp(
name="deleterun",
run_name=run_name
)
def delete_job(job_name):
return databricks.DeleteJobOp(
name="deletejob",
job_name=job_name
)
@dsl.pipeline(
name="DatabricksJob",
description="A toy pipeline that computes an approximation to pi with Azure Databricks."
)
def calc_pipeline(job_name="test-job", run_name="test-job-run", parameter="10"):
create_job_task = create_job(job_name)
submit_run_task = submit_run(run_name, job_name, parameter)
submit_run_task.after(create_job_task)
delete_run_task = delete_run(run_name)
delete_run_task.after(submit_run_task)
delete_job_task = delete_job(job_name)
delete_job_task.after(delete_run_task)
if __name__ == "__main__":
compiler.Compiler()._create_and_write_workflow(
pipeline_func=calc_pipeline,
package_path=__file__ + ".tar.gz")