pipelines/samples/contrib/pytorch-samples/cifar10/cifar10_datamodule.py

152 lines
5.5 KiB
Python

# !/usr/bin/env/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cifar10 data module."""
import os
import pytorch_lightning as pl
import webdataset as wds
from torch.utils.data import DataLoader
from torchvision import transforms
class CIFAR10DataModule(pl.LightningDataModule): # pylint: disable=too-many-instance-attributes
"""Data module class."""
def __init__(self, **kwargs):
"""Initialization of inherited lightning data module."""
super(CIFAR10DataModule, self).__init__() # pylint: disable=super-with-arguments
self.train_dataset = None
self.valid_dataset = None
self.test_dataset = None
self.train_data_loader = None
self.val_data_loader = None
self.test_data_loader = None
self.normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
self.valid_transform = transforms.Compose([
transforms.ToTensor(),
self.normalize,
])
self.train_transform = transforms.Compose([
transforms.RandomResizedCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
self.normalize,
])
self.args = kwargs
def prepare_data(self):
"""Implementation of abstract class."""
@staticmethod
def get_num_files(input_path):
"""Gets num files.
Args:
input_path : path to input
"""
return len(os.listdir(input_path)) - 1
def setup(self, stage=None):
"""Downloads the data, parse it and split the data into train, test,
validation data.
Args:
stage: Stage - training or testing
"""
data_path = self.args.get("train_glob", "/pvc/output/processing")
train_base_url = data_path + "/train"
val_base_url = data_path + "/val"
test_base_url = data_path + "/test"
train_count = self.get_num_files(train_base_url)
val_count = self.get_num_files(val_base_url)
test_count = self.get_num_files(test_base_url)
train_url = "{}/{}-{}".format(train_base_url, "train",
"{0.." + str(train_count) + "}.tar")
valid_url = "{}/{}-{}".format(val_base_url, "val",
"{0.." + str(val_count) + "}.tar")
test_url = "{}/{}-{}".format(test_base_url, "test",
"{0.." + str(test_count) + "}.tar")
self.train_dataset = (wds.WebDataset(
train_url,
handler=wds.warn_and_continue,
nodesplitter=wds.shardlists.split_by_node).shuffle(100).decode("pil").rename(
image="ppm;jpg;jpeg;png",
info="cls").map_dict(image=self.train_transform).to_tuple(
"image", "info").batched(40))
self.valid_dataset = (wds.WebDataset(
valid_url,
handler=wds.warn_and_continue,
nodesplitter=wds.shardlists.split_by_node).shuffle(100).decode("pil").rename(
image="ppm",
info="cls").map_dict(image=self.valid_transform).to_tuple(
"image", "info").batched(20))
self.test_dataset = (wds.WebDataset(
test_url,
handler=wds.warn_and_continue,
nodesplitter=wds.shardlists.split_by_node).shuffle(100).decode("pil").rename(
image="ppm",
info="cls").map_dict(image=self.valid_transform).to_tuple(
"image", "info").batched(20))
def create_data_loader(self, dataset, batch_size, num_workers): # pylint: disable=no-self-use
"""Creates data loader."""
return DataLoader(dataset,
batch_size=batch_size,
num_workers=num_workers)
def train_dataloader(self):
"""Train Data loader.
Returns:
output - Train data loader for the given input
"""
self.train_data_loader = self.create_data_loader(
self.train_dataset,
self.args.get("train_batch_size", None),
self.args.get("train_num_workers", 4),
)
return self.train_data_loader
def val_dataloader(self):
"""Validation Data Loader.
Returns:
output - Validation data loader for the given input
"""
self.val_data_loader = self.create_data_loader(
self.valid_dataset,
self.args.get("val_batch_size", None),
self.args.get("val_num_workers", 4),
)
return self.val_data_loader
def test_dataloader(self):
"""Test Data Loader.
Returns:
output - Test data loader for the given input
"""
self.test_data_loader = self.create_data_loader(
self.test_dataset,
self.args.get("val_batch_size", None),
self.args.get("val_num_workers", 4),
)
return self.test_data_loader