pipelines/samples/contrib/seldon/iris_storagebucket.py

68 lines
1.8 KiB
Python

# Copyright 2019 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import kfp.dsl as dsl
from string import Template
@dsl.pipeline(
name="Deploy example SKLearn Iris",
description="SKLearn Iris simple deployment example"
)
def iris_storagebucket(bucket='gs://seldon-models/sklearn/iris'):
#simple serving of an iris sklearn model based on https://docs.seldon.io/projects/seldon-core/en/latest/servers/overview.html
#requires seldon 0.3.2 or higher
sklearnjson_template = Template("""
{
"apiVersion": "machinelearning.seldon.io/v1alpha2",
"kind": "SeldonDeployment",
"metadata": {
"name": "sklearn"
},
"spec": {
"name": "iris",
"predictors": [
{
"graph": {
"children": [],
"implementation": "SKLEARN_SERVER",
"modelUri": "$bucket",
"name": "classifier"
},
"name": "default",
"replicas": 1
}
]
}
}
""")
sklearnjson = sklearnjson_template.substitute({ 'bucket': str(bucket)})
sklearndeployment = json.loads(sklearnjson)
deploy = dsl.ResourceOp(
name="deploy",
k8s_resource=sklearndeployment,
action="apply",
success_condition='status.state == Available'
)
if __name__ == "__main__":
import kfp.compiler as compiler
compiler.Compiler().compile(iris_storagebucket, __file__ + ".tar.gz")