pipelines/samples/test/metrics_visualization_v2_te...

214 lines
8.2 KiB
Python

# Copyright 2021 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
import unittest.mock as mock
import kfp.deprecated as kfp
import kfp_server_api
from .metrics_visualization_v2 import metrics_visualization_pipeline
from kfp.samples.test.utils import KfpTask, run_pipeline_func, TestCase
from ml_metadata.proto import Execution
def verify(t: unittest.TestCase, run: kfp_server_api.ApiRun,
tasks: dict[str, KfpTask], **kwargs):
t.assertEqual(run.status, 'Succeeded')
task_names = [*tasks.keys()]
t.assertCountEqual(task_names, [
'wine-classification', 'iris-sgdclassifier', 'digit-classification',
'html-visualization', 'markdown-visualization'
], 'task names')
wine_classification = tasks['wine-classification']
iris_sgdclassifier = tasks['iris-sgdclassifier']
digit_classification = tasks['digit-classification']
html_visualization = tasks['html-visualization']
markdown_visualization = tasks['markdown-visualization']
t.assertEqual(
{
'name': 'wine-classification',
'inputs': {},
'outputs': {
'artifacts': [{
'metadata': {
'display_name': 'metrics',
'confidenceMetrics': {
'list': [{
'confidenceThreshold': 2.0,
'falsePositiveRate': 0.0,
'recall': 0.0
}, {
'confidenceThreshold': 1.0,
'falsePositiveRate': 0.0,
'recall': 0.33962264150943394
}, {
'confidenceThreshold': 0.9,
'falsePositiveRate': 0.0,
'recall': 0.6037735849056604
}, {
'confidenceThreshold': 0.8,
'falsePositiveRate': 0.0,
'recall': 0.8490566037735849
}, {
'confidenceThreshold': 0.6,
'falsePositiveRate': 0.0,
'recall': 0.8867924528301887
}, {
'confidenceThreshold': 0.5,
'falsePositiveRate': 0.0125,
'recall': 0.9245283018867925
}, {
'confidenceThreshold': 0.4,
'falsePositiveRate': 0.075,
'recall': 0.9622641509433962
}, {
'confidenceThreshold': 0.3,
'falsePositiveRate': 0.0875,
'recall': 1.0
}, {
'confidenceThreshold': 0.2,
'falsePositiveRate': 0.2375,
'recall': 1.0
}, {
'confidenceThreshold': 0.1,
'falsePositiveRate': 0.475,
'recall': 1.0
}, {
'confidenceThreshold': 0.0,
'falsePositiveRate': 1.0,
'recall': 1.0
}]
}
},
'name': 'metrics',
'type': 'system.ClassificationMetrics'
}],
},
'type': 'system.ContainerExecution',
'state': Execution.State.COMPLETE,
}, wine_classification.get_dict())
t.assertEqual(
{
'inputs': {
'parameters': {
'test_samples_fraction': 0.3
}
},
'name': 'iris-sgdclassifier',
'outputs': {
'artifacts': [{
'metadata': {
'display_name': 'metrics',
'confusionMatrix': {
'struct': {
'annotationSpecs': [{
'displayName': 'Setosa'
}, {
'displayName': 'Versicolour'
}, {
'displayName': 'Virginica'
}],
'rows': [
{ # these numbers can be random during execution
'row': [mock.ANY, mock.ANY, mock.ANY]
},
{
'row': [mock.ANY, mock.ANY, mock.ANY]
},
{
'row': [mock.ANY, mock.ANY, mock.ANY]
}
]
}
}
},
'name': 'metrics',
'type': 'system.ClassificationMetrics'
}],
},
'type': 'system.ContainerExecution',
'state': Execution.State.COMPLETE,
},
iris_sgdclassifier.get_dict())
rows = iris_sgdclassifier.get_dict()['outputs']['artifacts'][0]['metadata'][
'confusionMatrix']['struct']['rows']
for i, row in enumerate(rows):
for j, item in enumerate(row['row']):
t.assertIsInstance(
item, float,
f'value of confusion matrix row {i}, col {j} is not a number')
t.assertEqual(
{
'name': 'digit-classification',
'inputs': {},
'outputs': {
'artifacts': [{
'metadata': {
'display_name': 'metrics',
'accuracy': 92.0,
},
'name': 'metrics',
'type': 'system.Metrics'
}],
},
'type': 'system.ContainerExecution',
'state': Execution.State.COMPLETE,
}, digit_classification.get_dict())
t.assertEqual(
{
'name': 'html-visualization',
'inputs': {},
'outputs': {
'artifacts': [{
'metadata': {
'display_name': 'html_artifact'
},
'name': 'html_artifact',
'type': 'system.HTML'
}],
},
'state': Execution.State.COMPLETE,
'type': 'system.ContainerExecution'
}, html_visualization.get_dict())
t.assertEqual(
{
'name': 'markdown-visualization',
'inputs': {},
'outputs': {
'artifacts': [{
'metadata': {
'display_name': 'markdown_artifact'
},
'name': 'markdown_artifact',
'type': 'system.Markdown'
}],
},
'state': Execution.State.COMPLETE,
'type': 'system.ContainerExecution'
}, markdown_visualization.get_dict())
run_pipeline_func([
TestCase(
pipeline_func=metrics_visualization_pipeline,
verify_func=verify,
mode=kfp.dsl.PipelineExecutionMode.V2_ENGINE),
])