80 lines
2.5 KiB
Python
80 lines
2.5 KiB
Python
# !/usr/bin/env/python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# pylint: disable=arguments-differ
|
|
# pylint: disable=unused-argument
|
|
# pylint: disable=abstract-method
|
|
"""News dataset script."""
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
|
|
class NewsDataset(Dataset):
|
|
"""Ag News Dataset
|
|
Args:
|
|
Dataset
|
|
"""
|
|
|
|
def __init__(self, reviews, targets, tokenizer, max_length):
|
|
"""Performs initialization of tokenizer.
|
|
|
|
Args:
|
|
reviews: AG news text
|
|
targets: labels
|
|
tokenizer: bert tokenizer
|
|
max_length: maximum length of the news text
|
|
"""
|
|
self.reviews = reviews
|
|
self.targets = targets
|
|
self.tokenizer = tokenizer
|
|
self.max_length = max_length
|
|
|
|
def __len__(self):
|
|
"""
|
|
Returns:
|
|
returns the number of datapoints in the dataframe
|
|
|
|
"""
|
|
return len(self.reviews)
|
|
|
|
def __getitem__(self, item):
|
|
"""Returns the review text and the targets of the specified item.
|
|
|
|
Args:
|
|
item: Index of sample review
|
|
|
|
Returns:
|
|
Returns the dictionary of review text,
|
|
input ids, attention mask, targets
|
|
"""
|
|
review = str(self.reviews[item])
|
|
target = self.targets[item]
|
|
|
|
encoding = self.tokenizer.encode_plus(
|
|
review,
|
|
add_special_tokens=True,
|
|
max_length=self.max_length,
|
|
return_token_type_ids=False,
|
|
padding="max_length",
|
|
return_attention_mask=True,
|
|
return_tensors="pt",
|
|
truncation=True,
|
|
)
|
|
|
|
return {
|
|
"review_text": review,
|
|
"input_ids": encoding["input_ids"].flatten(),
|
|
"attention_mask": encoding["attention_mask"].flatten(), # pylint: disable=not-callable
|
|
"targets": torch.tensor(target, dtype=torch.long), # pylint: disable=no-member,not-callable
|
|
}
|