pipelines/samples/contrib/pytorch-samples/bert/news_dataset.py

80 lines
2.5 KiB
Python

# !/usr/bin/env/python3
# Copyright (c) Facebook, Inc. and its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=arguments-differ
# pylint: disable=unused-argument
# pylint: disable=abstract-method
"""News dataset script."""
import torch
from torch.utils.data import Dataset
class NewsDataset(Dataset):
"""Ag News Dataset
Args:
Dataset
"""
def __init__(self, reviews, targets, tokenizer, max_length):
"""Performs initialization of tokenizer.
Args:
reviews: AG news text
targets: labels
tokenizer: bert tokenizer
max_length: maximum length of the news text
"""
self.reviews = reviews
self.targets = targets
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
"""
Returns:
returns the number of datapoints in the dataframe
"""
return len(self.reviews)
def __getitem__(self, item):
"""Returns the review text and the targets of the specified item.
Args:
item: Index of sample review
Returns:
Returns the dictionary of review text,
input ids, attention mask, targets
"""
review = str(self.reviews[item])
target = self.targets[item]
encoding = self.tokenizer.encode_plus(
review,
add_special_tokens=True,
max_length=self.max_length,
return_token_type_ids=False,
padding="max_length",
return_attention_mask=True,
return_tensors="pt",
truncation=True,
)
return {
"review_text": review,
"input_ids": encoding["input_ids"].flatten(),
"attention_mask": encoding["attention_mask"].flatten(), # pylint: disable=not-callable
"targets": torch.tensor(target, dtype=torch.long), # pylint: disable=no-member,not-callable
}