pipelines/components/deprecated/tfx/StatisticsGen/with_URI_IO/component.yaml

150 lines
6.3 KiB
YAML

name: StatisticsGen
inputs:
- {name: examples_uri, type: ExamplesUri}
- {name: output_statistics_uri, type: ExampleStatisticsUri}
- {name: schema_uri, type: SchemaUri, optional: true}
- {name: stats_options_json, type: String, optional: true}
- {name: beam_pipeline_args, type: JsonArray, optional: true}
outputs:
- {name: statistics_uri, type: ExampleStatisticsUri}
implementation:
container:
image: tensorflow/tfx:0.21.4
command:
- python3
- -u
- -c
- |
def StatisticsGen(
examples_uri,
output_statistics_uri,
schema_uri = None,
stats_options_json = None,
beam_pipeline_args = None,
):
from tfx.components import StatisticsGen as component_class
#Generated code
import json
import os
import tempfile
import tensorflow
from google.protobuf import json_format, message
from tfx.types import channel_utils, artifact_utils
from tfx.components.base import base_executor
arguments = locals().copy()
component_class_args = {}
for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items():
argument_value = arguments.get(name, None)
if argument_value is None:
continue
parameter_type = execution_parameter.type
if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message):
argument_value_obj = parameter_type()
json_format.Parse(argument_value, argument_value_obj)
else:
argument_value_obj = argument_value
component_class_args[name] = argument_value_obj
for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items():
artifact_path = arguments.get(name + '_uri') or arguments.get(name + '_path')
if artifact_path:
artifact = channel_parameter.type()
artifact.uri = artifact_path.rstrip('/') + '/' # Some TFX components require that the artifact URIs end with a slash
if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES:
# Recovering splits
subdirs = tensorflow.io.gfile.listdir(artifact_path)
# Workaround for https://github.com/tensorflow/tensorflow/issues/39167
subdirs = [subdir.rstrip('/') for subdir in subdirs]
artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs))
component_class_args[name] = channel_utils.as_channel([artifact])
component_class_instance = component_class(**component_class_args)
input_dict = channel_utils.unwrap_channel_dict(component_class_instance.inputs.get_all())
output_dict = channel_utils.unwrap_channel_dict(component_class_instance.outputs.get_all())
exec_properties = component_class_instance.exec_properties
# Generating paths for output artifacts
for name, artifacts in output_dict.items():
base_artifact_path = arguments.get('output_' + name + '_uri') or arguments.get(name + '_path')
if base_artifact_path:
# Are there still cases where output channel has multiple artifacts?
for idx, artifact in enumerate(artifacts):
subdir = str(idx + 1) if idx > 0 else ''
artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/'
print('component instance: ' + str(component_class_instance))
# Workaround for a TFX+Beam bug to make DataflowRunner work.
# Remove after the next release that has https://github.com/tensorflow/tfx/commit/ddb01c02426d59e8bd541e3fd3cbaaf68779b2df
import tfx
tfx.version.__version__ += 'dev'
executor_context = base_executor.BaseExecutor.Context(
beam_pipeline_args=beam_pipeline_args,
tmp_dir=tempfile.gettempdir(),
unique_id='tfx_component',
)
executor = component_class_instance.executor_spec.executor_class(executor_context)
executor.Do(
input_dict=input_dict,
output_dict=output_dict,
exec_properties=exec_properties,
)
return (output_statistics_uri, )
import json
import argparse
_parser = argparse.ArgumentParser(prog='StatisticsGen', description='')
_parser.add_argument("--examples-uri", dest="examples_uri", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--output-statistics-uri", dest="output_statistics_uri", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--schema-uri", dest="schema_uri", type=str, required=False, default=argparse.SUPPRESS)
_parser.add_argument("--stats-options-json", dest="stats_options_json", type=str, required=False, default=argparse.SUPPRESS)
_parser.add_argument("--beam-pipeline-args", dest="beam_pipeline_args", type=json.loads, required=False, default=argparse.SUPPRESS)
_parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=1)
_parsed_args = vars(_parser.parse_args())
_output_files = _parsed_args.pop("_output_paths", [])
_outputs = StatisticsGen(**_parsed_args)
_output_serializers = [
str,
]
import os
for idx, output_file in enumerate(_output_files):
try:
os.makedirs(os.path.dirname(output_file))
except OSError:
pass
with open(output_file, 'w') as f:
f.write(_output_serializers[idx](_outputs[idx]))
args:
- --examples-uri
- {inputValue: examples_uri}
- --output-statistics-uri
- {inputValue: output_statistics_uri}
- if:
cond: {isPresent: schema_uri}
then:
- --schema-uri
- {inputValue: schema_uri}
- if:
cond: {isPresent: stats_options_json}
then:
- --stats-options-json
- {inputValue: stats_options_json}
- if:
cond: {isPresent: beam_pipeline_args}
then:
- --beam-pipeline-args
- {inputValue: beam_pipeline_args}
- '----output-paths'
- {outputPath: statistics_uri}