pipelines/components/deprecated/tfx/Transform/with_URI_IO/component.py

102 lines
4.1 KiB
Python

# flake8: noqa
from typing import NamedTuple
def Transform(
examples_uri: 'ExamplesUri',
schema_uri: 'SchemaUri',
output_transform_graph_uri: 'TransformGraphUri',
output_transformed_examples_uri: 'ExamplesUri',
module_file: str = None,
preprocessing_fn: str = None,
custom_config: dict = None,
beam_pipeline_args: list = None,
) -> NamedTuple('Outputs', [
('transform_graph_uri', 'TransformGraphUri'),
('transformed_examples_uri', 'ExamplesUri'),
]):
from tfx.components import Transform as component_class
#Generated code
import json
import os
import tempfile
import tensorflow
from google.protobuf import json_format, message
from tfx.types import channel_utils, artifact_utils
from tfx.components.base import base_executor
arguments = locals().copy()
component_class_args = {}
for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items():
argument_value = arguments.get(name, None)
if argument_value is None:
continue
parameter_type = execution_parameter.type
if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message):
argument_value_obj = parameter_type()
json_format.Parse(argument_value, argument_value_obj)
else:
argument_value_obj = argument_value
component_class_args[name] = argument_value_obj
for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items():
artifact_path = arguments.get(name + '_uri') or arguments.get(name + '_path')
if artifact_path:
artifact = channel_parameter.type()
artifact.uri = artifact_path.rstrip('/') + '/' # Some TFX components require that the artifact URIs end with a slash
if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES:
# Recovering splits
subdirs = tensorflow.io.gfile.listdir(artifact_path)
# Workaround for https://github.com/tensorflow/tensorflow/issues/39167
subdirs = [subdir.rstrip('/') for subdir in subdirs]
artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs))
component_class_args[name] = channel_utils.as_channel([artifact])
component_class_instance = component_class(**component_class_args)
input_dict = channel_utils.unwrap_channel_dict(component_class_instance.inputs.get_all())
output_dict = channel_utils.unwrap_channel_dict(component_class_instance.outputs.get_all())
exec_properties = component_class_instance.exec_properties
# Generating paths for output artifacts
for name, artifacts in output_dict.items():
base_artifact_path = arguments.get('output_' + name + '_uri') or arguments.get(name + '_path')
if base_artifact_path:
# Are there still cases where output channel has multiple artifacts?
for idx, artifact in enumerate(artifacts):
subdir = str(idx + 1) if idx > 0 else ''
artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/'
print('component instance: ' + str(component_class_instance))
# Workaround for a TFX+Beam bug to make DataflowRunner work.
# Remove after the next release that has https://github.com/tensorflow/tfx/commit/ddb01c02426d59e8bd541e3fd3cbaaf68779b2df
import tfx
tfx.version.__version__ += 'dev'
executor_context = base_executor.BaseExecutor.Context(
beam_pipeline_args=beam_pipeline_args,
tmp_dir=tempfile.gettempdir(),
unique_id='tfx_component',
)
executor = component_class_instance.executor_spec.executor_class(executor_context)
executor.Do(
input_dict=input_dict,
output_dict=output_dict,
exec_properties=exec_properties,
)
return (output_transform_graph_uri, output_transformed_examples_uri, )
if __name__ == '__main__':
import kfp
kfp.components.create_component_from_func(
Transform,
base_image='tensorflow/tfx:0.21.4',
output_component_file='component.yaml'
)