pipelines/components/gcp/automl/create_model_for_tables/component.yaml

139 lines
5.8 KiB
YAML

name: Automl create model for tables
inputs:
- {name: gcp_project_id, type: String}
- {name: gcp_region, type: String}
- {name: display_name, type: String}
- {name: dataset_id, type: String}
- {name: target_column_path, type: String, optional: true}
- {name: input_feature_column_paths, type: JsonArray, optional: true}
- {name: optimization_objective, type: String, default: MAXIMIZE_AU_PRC, optional: true}
- {name: train_budget_milli_node_hours, type: Integer, default: '1000', optional: true}
outputs:
- {name: model_path, type: String}
- {name: model_id, type: String}
- {name: model_page_url, type: URI}
implementation:
container:
image: python:3.7
command:
- sh
- -c
- (PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location
'google-cloud-automl==0.4.0' || PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip
install --quiet --no-warn-script-location 'google-cloud-automl==0.4.0' --user)
&& "$0" "$@"
- python3
- -u
- -c
- |
def automl_create_model_for_tables(
gcp_project_id ,
gcp_region ,
display_name ,
dataset_id ,
target_column_path = None,
input_feature_column_paths = None,
optimization_objective = 'MAXIMIZE_AU_PRC',
train_budget_milli_node_hours = 1000,
) :
from google.cloud import automl
client = automl.AutoMlClient()
location_path = client.location_path(gcp_project_id, gcp_region)
model_dict = {
'display_name': display_name,
'dataset_id': dataset_id,
'tables_model_metadata': {
'target_column_spec': automl.types.ColumnSpec(name=target_column_path),
'input_feature_column_specs': [automl.types.ColumnSpec(name=path) for path in input_feature_column_paths] if input_feature_column_paths else None,
'optimization_objective': optimization_objective,
'train_budget_milli_node_hours': train_budget_milli_node_hours,
},
}
create_model_response = client.create_model(location_path, model_dict)
print('Create model operation: {}'.format(create_model_response.operation))
result = create_model_response.result()
print(result)
model_name = result.name
model_id = model_name.rsplit('/', 1)[-1]
model_url = 'https://console.cloud.google.com/automl-tables/locations/{region}/datasets/{dataset_id};modelId={model_id};task=basic/train?project={project_id}'.format(
project_id=gcp_project_id,
region=gcp_region,
dataset_id=dataset_id,
model_id=model_id,
)
return (model_name, model_id, model_url)
def _serialize_str(str_value: str) -> str:
if not isinstance(str_value, str):
raise TypeError('Value "{}" has type "{}" instead of str.'.format(str(str_value), str(type(str_value))))
return str_value
import json
import argparse
_parser = argparse.ArgumentParser(prog='Automl create model for tables', description='')
_parser.add_argument("--gcp-project-id", dest="gcp_project_id", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--gcp-region", dest="gcp_region", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--display-name", dest="display_name", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--dataset-id", dest="dataset_id", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--target-column-path", dest="target_column_path", type=str, required=False, default=argparse.SUPPRESS)
_parser.add_argument("--input-feature-column-paths", dest="input_feature_column_paths", type=json.loads, required=False, default=argparse.SUPPRESS)
_parser.add_argument("--optimization-objective", dest="optimization_objective", type=str, required=False, default=argparse.SUPPRESS)
_parser.add_argument("--train-budget-milli-node-hours", dest="train_budget_milli_node_hours", type=int, required=False, default=argparse.SUPPRESS)
_parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=3)
_parsed_args = vars(_parser.parse_args())
_output_files = _parsed_args.pop("_output_paths", [])
_outputs = automl_create_model_for_tables(**_parsed_args)
_output_serializers = [
_serialize_str,
_serialize_str,
str,
]
import os
for idx, output_file in enumerate(_output_files):
try:
os.makedirs(os.path.dirname(output_file))
except OSError:
pass
with open(output_file, 'w') as f:
f.write(_output_serializers[idx](_outputs[idx]))
args:
- --gcp-project-id
- {inputValue: gcp_project_id}
- --gcp-region
- {inputValue: gcp_region}
- --display-name
- {inputValue: display_name}
- --dataset-id
- {inputValue: dataset_id}
- if:
cond: {isPresent: target_column_path}
then:
- --target-column-path
- {inputValue: target_column_path}
- if:
cond: {isPresent: input_feature_column_paths}
then:
- --input-feature-column-paths
- {inputValue: input_feature_column_paths}
- if:
cond: {isPresent: optimization_objective}
then:
- --optimization-objective
- {inputValue: optimization_objective}
- if:
cond: {isPresent: train_budget_milli_node_hours}
then:
- --train-budget-milli-node-hours
- {inputValue: train_budget_milli_node_hours}
- '----output-paths'
- {outputPath: model_path}
- {outputPath: model_id}
- {outputPath: model_page_url}