pipelines/components/google-cloud/Optimizer/Create_study/component.py

81 lines
3.1 KiB
Python

from typing import NamedTuple
from kfp.components import create_component_from_func
def create_study_in_gcp_ai_platform_optimizer(
study_id: str,
parameter_specs: list,
optimization_goal: str = 'MAXIMIZE',
metric_specs: list = None,
gcp_project_id: str = None,
gcp_region: str = "us-central1",
) -> NamedTuple('Outputs', [
("study_name", str),
]):
"""Creates a Google Cloud AI Plaform Optimizer study.
See https://cloud.google.com/ai-platform/optimizer/docs
Annotations:
author: Alexey Volkov <alexey.volkov@ark-kun.com>
Args:
study_id: Name of the study.
parameter_specs: List of parameter specs. See https://cloud.google.com/ai-platform/optimizer/docs/reference/rest/v1/projects.locations.studies#parameterspec
optimization_goal: Optimization goal when optimizing a single metric. Can be MAXIMIZE (default) or MINIMIZE. Ignored if metric_specs list is provided.
metric_specs: List of metric specs. See https://cloud.google.com/ai-platform/optimizer/docs/reference/rest/v1/projects.locations.studies#metricspec
"""
import logging
import google.auth
logging.getLogger().setLevel(logging.INFO)
# Validating and inferring the arguments
if not gcp_project_id:
_, gcp_project_id = google.auth.default()
# Building the API client.
# The main API does not work, so we need to build from the published discovery document.
def create_caip_optimizer_client(project_id):
from google.cloud import storage
from googleapiclient import discovery
_OPTIMIZER_API_DOCUMENT_BUCKET = 'caip-optimizer-public'
_OPTIMIZER_API_DOCUMENT_FILE = 'api/ml_public_google_rest_v1.json'
client = storage.Client(project_id)
bucket = client.get_bucket(_OPTIMIZER_API_DOCUMENT_BUCKET)
blob = bucket.get_blob(_OPTIMIZER_API_DOCUMENT_FILE)
discovery_document = blob.download_as_string()
return discovery.build_from_document(service=discovery_document)
ml_api = create_caip_optimizer_client(gcp_project_id)
if not metric_specs:
metric_specs=[{
'metric': 'metric',
'goal': optimization_goal,
}]
study_config = {
'algorithm': 'ALGORITHM_UNSPECIFIED', # Let the service choose the `default` algorithm.
'parameters': parameter_specs,
'metrics': metric_specs,
}
study = {'study_config': study_config}
create_study_request = ml_api.projects().locations().studies().create(
parent=f'projects/{gcp_project_id}/locations/{gcp_region}',
studyId=study_id,
body=study,
)
create_study_response = create_study_request.execute()
study_name = create_study_response['name']
return (study_name,)
if __name__ == '__main__':
create_study_in_gcp_ai_platform_optimizer_op = create_component_from_func(
create_study_in_gcp_ai_platform_optimizer,
base_image='python:3.8',
packages_to_install=['google-api-python-client==1.12.3', 'google-cloud-storage==1.31.2', 'google-auth==1.21.3'],
output_component_file='component.yaml',
)