43 lines
2.0 KiB
YAML
43 lines
2.0 KiB
YAML
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
name: 'Store Spark Model - Watson Machine Learning'
|
|
description: |
|
|
Store any trained Spark Model using IBM Watson Machine Learning Service
|
|
metadata:
|
|
annotations: {platform: 'IBM Watson Machine Learning Service'}
|
|
inputs:
|
|
- {name: bucket_name, description: 'Required. Object storage bucket name'}
|
|
- {name: aios_manifest_path, description: 'Required. Object storage file path for the aios manifest file'}
|
|
- {name: problem_type, description: 'Required. Model problem type'}
|
|
- {name: model_name, description: 'Required. Model name for the trained model'}
|
|
- {name: deployment_name, description: 'Required. Deployment name for the trained model'}
|
|
- {name: model_filepath, description: 'Required. Name of the trained model zip'}
|
|
- {name: train_data_filepath, description: 'Required. Name of the training data zip'}
|
|
outputs:
|
|
- {name: model_uid, description: 'Stored model UID'}
|
|
implementation:
|
|
container:
|
|
image: docker.io/aipipeline/store_spark_model:latest
|
|
command: ['python']
|
|
args: [
|
|
-u, store_spark_model.py,
|
|
--bucket_name, {inputValue: bucket_name},
|
|
--aios_manifest_path, {inputValue: aios_manifest_path},
|
|
--problem_type, {inputValue: problem_type},
|
|
--model_name, {inputValue: model_name},
|
|
--deployment_name, {inputValue: deployment_name},
|
|
--model_filepath, {inputValue: model_filepath},
|
|
--train_data_filepath, {inputValue: train_data_filepath},
|
|
--output_model_uid_path, {outputPath: model_uid}
|
|
]
|