pipelines/components/ml_metrics/Calculate_regression_metrics/from_CSV/component.py

67 lines
2.2 KiB
Python

from typing import NamedTuple
from kfp.components import InputPath, OutputPath, create_component_from_func
def calculate_regression_metrics_from_csv(
true_values_path: InputPath(),
predicted_values_path: InputPath(),
) -> NamedTuple('Outputs', [
('number_of_items', int),
('max_absolute_error', float),
('mean_absolute_error', float),
('mean_squared_error', float),
('root_mean_squared_error', float),
('metrics', dict),
]):
'''Calculates regression metrics.
Annotations:
author: Alexey Volkov <alexey.volkov@ark-kun.com>
'''
import math
import numpy
true_values = numpy.loadtxt(true_values_path, dtype=numpy.float64)
predicted_values = numpy.loadtxt(predicted_values_path, dtype=numpy.float64)
if len(predicted_values.shape) != 1:
raise NotImplemented('Only single prediction values are supported.')
if len(true_values.shape) != 1:
raise NotImplemented('Only single true values are supported.')
if predicted_values.shape != true_values.shape:
raise ValueError('Input shapes are different: {} != {}'.format(predicted_values.shape, true_values.shape))
number_of_items = true_values.size
errors = (true_values - predicted_values)
abs_errors = numpy.abs(errors)
squared_errors = errors ** 2
max_absolute_error = numpy.max(abs_errors)
mean_absolute_error = numpy.average(abs_errors)
mean_squared_error = numpy.average(squared_errors)
root_mean_squared_error = math.sqrt(mean_squared_error)
metrics = dict(
number_of_items=number_of_items,
max_absolute_error=max_absolute_error,
mean_absolute_error=mean_absolute_error,
mean_squared_error=mean_squared_error,
root_mean_squared_error=root_mean_squared_error,
)
return (
number_of_items,
max_absolute_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
metrics,
)
if __name__ == '__main__':
calculate_regression_metrics_from_csv_op = create_component_from_func(
calculate_regression_metrics_from_csv,
output_component_file='component.yaml',
base_image='python:3.7',
packages_to_install=['numpy==1.19.0']
)