pipelines/samples/contrib/ibm-samples/ffdl-seldon/ffdl_pipeline.py

52 lines
2.0 KiB
Python

import kfp
from kfp import components
from kfp import dsl
import ai_pipeline_params as params
# generate default secret name
secret_name = 'kfp-creds'
configuration_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/commons/config/component.yaml')
train_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/train/component.yaml')
serve_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/serve/component.yaml')
# create pipeline
@dsl.pipeline(
name='FfDL pipeline',
description='A pipeline for machine learning workflow using Fabric for Deep Learning and Seldon.'
)
def ffdlPipeline(
GITHUB_TOKEN='',
CONFIG_FILE_URL='https://raw.githubusercontent.com/user/repository/branch/creds.ini',
model_def_file_path='gender-classification.zip',
manifest_file_path='manifest.yml',
model_deployment_name='gender-classifier',
model_class_name='ThreeLayerCNN',
model_class_file='gender_classification.py'
):
"""A pipeline for end to end machine learning workflow."""
create_secrets = configuration_op(
token = GITHUB_TOKEN,
url = CONFIG_FILE_URL,
name = secret_name
)
train = train_op(
model_def_file_path,
manifest_file_path
).apply(params.use_ai_pipeline_params(secret_name))
serve = serve_op(
train.output,
model_deployment_name,
model_class_name,
model_class_file
).apply(params.use_ai_pipeline_params(secret_name))
if __name__ == '__main__':
import kfp.compiler as compiler
compiler.Compiler().compile(ffdlPipeline, __file__ + '.tar.gz')