pipelines/sdk/python/kfp/containers/_component_builder.py

329 lines
14 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import tempfile
import logging
import shutil
from collections import OrderedDict
from typing import Callable, List, Optional
from deprecated.sphinx import deprecated
from ..components._components import _create_task_factory_from_component_spec
from ..components._python_op import _func_to_component_spec
from ._container_builder import ContainerBuilder
from kfp.components import _structures
V2_COMPONENT_ANNOTATION = 'pipelines.kubeflow.org/component_v2'
class VersionedDependency(object):
""" DependencyVersion specifies the versions """
def __init__(self, name, version=None, min_version=None, max_version=None):
""" if version is specified, no need for min_version or max_version;
if both are specified, version is adopted """
self._name = name
if version is not None:
self._min_version = version
self._max_version = version
else:
self._min_version = min_version
self._max_version = max_version
@property
def name(self):
return self._name
@property
def min_version(self):
return self._min_version
@min_version.setter
def min_version(self, min_version):
self._min_version = min_version
def has_min_version(self):
return self._min_version != None
@property
def max_version(self):
return self._max_version
@max_version.setter
def max_version(self, max_version):
self._max_version = max_version
def has_max_version(self):
return self._max_version != None
def has_versions(self):
return (self.has_min_version()) or (self.has_max_version())
class DependencyHelper(object):
""" DependencyHelper manages software dependency information """
def __init__(self):
self._PYTHON_PACKAGE = 'PYTHON_PACKAGE'
self._dependency = {self._PYTHON_PACKAGE:OrderedDict()}
@property
def python_packages(self):
return self._dependency[self._PYTHON_PACKAGE]
def add_python_package(self, dependency, override=True):
""" add_single_python_package adds a dependency for the python package
Args:
name: package name
version: it could be a specific version(1.10.0), or a range(>=1.0,<=2.0)
if not specified, the default is resolved automatically by the pip system.
override: whether to override the version if already existing in the dependency.
"""
if dependency.name in self.python_packages and not override:
return
self.python_packages[dependency.name] = dependency
def generate_pip_requirements(self, target_file):
""" write the python packages to a requirement file
the generated file follows the order of which the packages are added """
with open(target_file, 'w') as f:
for name, version in self.python_packages.items():
version = self.python_packages[name]
version_str = ''
if version.has_min_version():
version_str += ' >= ' + version.min_version + ','
if version.has_max_version():
version_str += ' <= ' + version.max_version + ','
f.write(name + version_str.rstrip(',') + '\n')
def _dependency_to_requirements(dependency=[], filename='requirements.txt'):
"""
Generates a requirement file based on the dependency
Args:
dependency (list): a list of VersionedDependency, which includes the package name and versions
filename (str): requirement file name, default as requirements.txt
"""
dependency_helper = DependencyHelper()
for version in dependency:
dependency_helper.add_python_package(version)
dependency_helper.generate_pip_requirements(filename)
def _generate_dockerfile(filename, base_image, python_version, requirement_filename=None, add_files=None):
"""
generates dockerfiles
Args:
filename (str): target file name for the dockerfile.
base_image (str): the base image name.
python_version (str): choose python2 or python3
requirement_filename (str): requirement file name
add_files (Dict[str, str]): Map containing the files thats should be added to the container. add_files maps the build context relative source paths to the container destination paths.
"""
if python_version not in ['python2', 'python3']:
raise ValueError('python_version has to be either python2 or python3')
with open(filename, 'w') as f:
f.write('FROM ' + base_image + '\n')
if python_version == 'python3':
f.write('RUN apt-get update -y && apt-get install --no-install-recommends -y -q python3 python3-pip python3-setuptools\n')
else:
f.write('RUN apt-get update -y && apt-get install --no-install-recommends -y -q python python-pip python-setuptools\n')
if requirement_filename is not None:
f.write('ADD ' + requirement_filename + ' /ml/requirements.txt\n')
if python_version == 'python3':
f.write('RUN python3 -m pip install -r /ml/requirements.txt\n')
else:
f.write('RUN python -m pip install -r /ml/requirements.txt\n')
for src_path, dst_path in (add_files or {}).items():
f.write('ADD ' + src_path + ' ' + dst_path + '\n')
def _configure_logger(logger):
""" _configure_logger configures the logger such that the info level logs
go to the stdout and the error(or above) level logs go to the stderr.
It is important for the Jupyter notebook log rendering """
if hasattr(_configure_logger, 'configured'):
# Skip the logger configuration the second time this function
# is called to avoid multiple streamhandlers bound to the logger.
return
setattr(_configure_logger, 'configured', 'true')
logger.setLevel(logging.INFO)
info_handler = logging.StreamHandler(stream=sys.stdout)
info_handler.addFilter(lambda record: record.levelno <= logging.INFO)
info_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S'))
error_handler = logging.StreamHandler(sys.stderr)
error_handler.addFilter(lambda record: record.levelno > logging.INFO)
error_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S'))
logger.addHandler(info_handler)
logger.addHandler(error_handler)
def build_python_component(
component_func: Callable,
target_image: str,
base_image: Optional[str] = None,
dependency: List[str] = [],
staging_gcs_path: Optional[str] = None,
timeout: int = 600,
namespace: Optional[str] = None,
target_component_file: Optional[str] = None,
python_version: str = 'python3',
is_v2: bool = False
):
"""build_component automatically builds a container image for the
component_func based on the base_image and pushes to the target_image.
Args:
component_func (python function): The python function to build components
upon.
base_image (str): Docker image to use as a base image.
target_image (str): Full URI to push the target image.
staging_gcs_path (str): GCS blob that can store temporary build files.
target_image (str): The target image path.
timeout (int): The timeout for the image build(in secs), default is 600
seconds.
namespace (str): The namespace within which to run the kubernetes Kaniko
job. If the job is running on GKE and value is None the underlying
functions will use the default namespace from GKE.
dependency (list): The list of VersionedDependency, which includes the
package name and versions, default is empty.
target_component_file (str): The path to save the generated component YAML
spec.
python_version (str): Choose python2 or python3, default is python3
is_v2: Whether or not generating a v2 KFP component, default
is false.
Raises:
ValueError: The function is not decorated with python_component decorator or
the python_version is neither python2 nor python3
"""
_configure_logger(logging.getLogger())
if component_func is None:
raise ValueError('component_func must not be None')
if target_image is None:
raise ValueError('target_image must not be None')
if python_version not in ['python2', 'python3']:
raise ValueError('python_version has to be either python2 or python3')
if staging_gcs_path is None:
raise ValueError('staging_gcs_path must not be None')
if base_image is None:
base_image = getattr(component_func, '_component_base_image', None)
if base_image is None:
from ..components._python_op import default_base_image_or_builder
base_image = default_base_image_or_builder
if isinstance(base_image, Callable):
base_image = base_image()
logging.info('Build an image that is based on ' +
base_image +
' and push the image to ' +
target_image)
component_spec = _func_to_component_spec(
component_func, base_image=base_image)
if is_v2:
# Annotate the component to be a V2 one.
if not component_spec.metadata:
component_spec.metadata = _structures.MetadataSpec()
if not component_spec.metadata.annotations:
component_spec.metadata.annotations = {}
component_spec.metadata.annotations[V2_COMPONENT_ANNOTATION] = 'true'
command_line_args = component_spec.implementation.container.command
program_launcher_index = command_line_args.index('program_path=$(mktemp)\nprintf "%s" "$0" > "$program_path"\npython3 -u "$program_path" "$@"\n')
assert program_launcher_index in [2, 3]
program_code_index = program_launcher_index + 1
program_code = command_line_args[program_code_index]
program_rel_path = 'ml/main.py'
program_container_path = '/' + program_rel_path
# Replacing the inline code with calling a local program
# Before: sh -ec '... && python3 -u ...' 'import sys ...' --param1 ...
# After: python3 -u main.py --param1 ...
command_line_args[program_code_index] = program_container_path
command_line_args.pop(program_launcher_index)
command_line_args[program_launcher_index - 1] = '-u' # -ec => -u
command_line_args[program_launcher_index - 2] = python_version # sh => python3
if python_version == 'python2':
import warnings
warnings.warn('Python2 is not longer supported')
arc_docker_filename = 'Dockerfile'
arc_requirement_filename = 'requirements.txt'
with tempfile.TemporaryDirectory() as local_build_dir:
# Write the program code to a file in the context directory
local_python_filepath = os.path.join(local_build_dir, program_rel_path)
os.makedirs(os.path.dirname(local_python_filepath), exist_ok=True)
with open(local_python_filepath, 'w') as f:
f.write(program_code)
# Generate the python package requirements file in the context directory
local_requirement_filepath = os.path.join(local_build_dir, arc_requirement_filename)
_dependency_to_requirements(dependency, local_requirement_filepath)
# Generate Dockerfile in the context directory
local_docker_filepath = os.path.join(local_build_dir, arc_docker_filename)
_generate_dockerfile(local_docker_filepath, base_image, python_version, arc_requirement_filename, add_files={program_rel_path: program_container_path})
logging.info('Building and pushing container image.')
container_builder = ContainerBuilder(staging_gcs_path, target_image, namespace)
image_name_with_digest = container_builder.build(local_build_dir, arc_docker_filename, target_image, timeout)
component_spec.implementation.container.image = image_name_with_digest
# Optionally writing the component definition to a local file for sharing
target_component_file = target_component_file or getattr(component_func, '_component_target_component_file', None)
if target_component_file:
component_spec.save(target_component_file)
task_factory_function = _create_task_factory_from_component_spec(component_spec)
return task_factory_function
@deprecated(version='0.1.32', reason='`build_docker_image` is deprecated. Use `kfp.containers.build_image_from_working_dir` instead.')
def build_docker_image(staging_gcs_path, target_image, dockerfile_path, timeout=600, namespace=None):
"""build_docker_image automatically builds a container image based on the specification in the dockerfile and
pushes to the target_image.
Args:
staging_gcs_path (str): GCS blob that can store temporary build files
target_image (str): gcr path to push the final image
dockerfile_path (str): local path to the dockerfile
timeout (int): the timeout for the image build(in secs), default is 600 seconds
namespace (str): the namespace within which to run the kubernetes kaniko job. Default is None. If the
job is running on GKE and value is None the underlying functions will use the default namespace from GKE.
"""
_configure_logger(logging.getLogger())
with tempfile.TemporaryDirectory() as local_build_dir:
dockerfile_rel_path = 'Dockerfile'
dst_dockerfile_path = os.path.join(local_build_dir, dockerfile_rel_path)
shutil.copyfile(dockerfile_path, dst_dockerfile_path)
container_builder = ContainerBuilder(staging_gcs_path, target_image, namespace=namespace)
image_name_with_digest = container_builder.build(local_build_dir, dockerfile_rel_path, target_image, timeout)
logging.info('Build image complete.')
return image_name_with_digest