177 lines
6.0 KiB
Python
177 lines
6.0 KiB
Python
# Copyright 2021 The Kubeflow Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from kfp.deprecated.dsl import artifact_utils
|
|
from typing import Any, List
|
|
|
|
|
|
class ComplexMetricsBase(object):
|
|
|
|
def get_schema(self):
|
|
"""Returns the set YAML schema for the metric class.
|
|
|
|
Returns:
|
|
YAML schema of the metrics type.
|
|
"""
|
|
return self._schema
|
|
|
|
def get_metrics(self):
|
|
"""Returns the stored metrics.
|
|
|
|
The metrics are type checked against the set schema.
|
|
|
|
Returns:
|
|
Dictionary of metrics data in the format of the set schema.
|
|
"""
|
|
artifact_utils.verify_schema_instance(self._schema, self._values)
|
|
return self._values
|
|
|
|
def __init__(self, schema_file: str):
|
|
self._schema = artifact_utils.read_schema_file(schema_file)
|
|
|
|
self._type_name, self._metric_fields = artifact_utils.parse_schema(
|
|
self._schema)
|
|
|
|
self._values = {}
|
|
|
|
|
|
class ConfidenceMetrics(ComplexMetricsBase):
|
|
"""Metrics class representing a Confidence Metrics."""
|
|
|
|
# Initialization flag to support setattr / getattr behavior.
|
|
_initialized = False
|
|
|
|
def __getattr__(self, name: str) -> Any:
|
|
"""Custom __getattr__ to allow access to metrics schema fields."""
|
|
|
|
if name not in self._metric_fields:
|
|
raise AttributeError('No field: {} in metrics.'.format(name))
|
|
|
|
return self._values[name]
|
|
|
|
def __setattr__(self, name: str, value: Any):
|
|
"""Custom __setattr__ to allow access to metrics schema fields."""
|
|
|
|
if not self._initialized:
|
|
object.__setattr__(self, name, value)
|
|
return
|
|
|
|
if name not in self._metric_fields:
|
|
raise RuntimeError(
|
|
'Field: {} not defined in metirc schema'.format(name))
|
|
|
|
self._values[name] = value
|
|
|
|
def __init__(self):
|
|
super().__init__('confidence_metrics.yaml')
|
|
self._initialized = True
|
|
|
|
|
|
class ConfusionMatrix(ComplexMetricsBase):
|
|
"""Metrics class representing a confusion matrix."""
|
|
|
|
def __init__(self):
|
|
super().__init__('confusion_matrix.yaml')
|
|
|
|
self._matrix = [[]]
|
|
self._categories = []
|
|
self._initialized = True
|
|
|
|
def set_categories(self, categories: List[str]):
|
|
"""Sets the categories for Confusion Matrix.
|
|
|
|
Args:
|
|
categories: List of strings specifying the categories.
|
|
"""
|
|
self._categories = []
|
|
annotation_specs = []
|
|
for category in categories:
|
|
annotation_spec = {'displayName': category}
|
|
self._categories.append(category)
|
|
annotation_specs.append(annotation_spec)
|
|
|
|
self._values['annotationSpecs'] = annotation_specs
|
|
self._matrix = [[0
|
|
for i in range(len(self._categories))]
|
|
for j in range(len(self._categories))]
|
|
self._values['row'] = self._matrix
|
|
|
|
def log_row(self, row_category: str, row: List[int]):
|
|
"""Logs a confusion matrix row.
|
|
|
|
Args:
|
|
row_category: Category to which the row belongs.
|
|
row: List of integers specifying the values for the row.
|
|
|
|
Raises:
|
|
ValueError: If row_category is not in the list of categories set in
|
|
set_categories or size of the row does not match the size of
|
|
categories.
|
|
"""
|
|
if row_category not in self._categories:
|
|
raise ValueError('Invalid category: {} passed. Expected one of: {}'.\
|
|
format(row_category, self._categories))
|
|
|
|
if len(row) != len(self._categories):
|
|
raise ValueError('Invalid row. Expected size: {} got: {}'.\
|
|
format(len(self._categories), len(row)))
|
|
|
|
self._matrix[self._categories.index(row_category)] = row
|
|
|
|
def log_cell(self, row_category: str, col_category: str, value: int):
|
|
"""Logs a cell in the confusion matrix.
|
|
|
|
Args:
|
|
row_category: String representing the name of the row category.
|
|
col_category: String representing the name of the column category.
|
|
value: Int value of the cell.
|
|
|
|
Raises:
|
|
ValueError: If row_category or col_category is not in the list of
|
|
categories set in set_categories.
|
|
"""
|
|
if row_category not in self._categories:
|
|
raise ValueError('Invalid category: {} passed. Expected one of: {}'.\
|
|
format(row_category, self._categories))
|
|
|
|
if col_category not in self._categories:
|
|
raise ValueError('Invalid category: {} passed. Expected one of: {}'.\
|
|
format(row_category, self._categories))
|
|
|
|
self._matrix[self._categories.index(row_category)][
|
|
self._categories.index(col_category)] = value
|
|
|
|
def load_matrix(self, categories: List[str], matrix: List[List[int]]):
|
|
"""Supports bulk loading the whole confusion matrix.
|
|
|
|
Args:
|
|
categories: List of the category names.
|
|
matrix: Complete confusion matrix.
|
|
|
|
Raises:
|
|
ValueError: Length of categories does not match number of rows or columns.
|
|
"""
|
|
self.set_categories(categories)
|
|
|
|
if len(matrix) != len(categories):
|
|
raise ValueError('Invalid matrix: {} passed for categories: {}'.\
|
|
format(matrix, categories))
|
|
|
|
for index in range(len(categories)):
|
|
if len(matrix[index]) != len(categories):
|
|
raise ValueError('Invalid matrix: {} passed for categories: {}'.\
|
|
format(matrix, categories))
|
|
|
|
self.log_row(categories[index], matrix[index])
|