pipelines/sdk/python/tests/compiler/testdata/artifact_passing_using_volu...

81 lines
2.6 KiB
Python

from pathlib import Path
import kfp.deprecated as kfp
from kfp.deprecated.components import load_component_from_file, create_component_from_func
from typing import NamedTuple
test_data_dir = Path(__file__).parent / 'test_data'
producer_op = load_component_from_file(
str(test_data_dir / 'produce_2.component.yaml'))
processor_op = load_component_from_file(
str(test_data_dir / 'process_2_2.component.yaml'))
consumer_op = load_component_from_file(
str(test_data_dir / 'consume_2.component.yaml'))
def metadata_and_metrics() -> NamedTuple(
"Outputs",
[("mlpipeline_ui_metadata", "UI_metadata"), ("mlpipeline_metrics", "Metrics"
)],
):
metadata = {
"outputs": [{
"storage": "inline",
"source": "*this should be bold*",
"type": "markdown"
}]
}
metrics = {
"metrics": [
{
"name": "train-accuracy",
"numberValue": 0.9,
},
{
"name": "test-accuracy",
"numberValue": 0.7,
},
]
}
from collections import namedtuple
import json
return namedtuple("output",
["mlpipeline_ui_metadata", "mlpipeline_metrics"])(
json.dumps(metadata), json.dumps(metrics))
@kfp.dsl.pipeline()
def artifact_passing_pipeline():
producer_task = producer_op()
processor_task = processor_op(producer_task.outputs['output_1'],
producer_task.outputs['output_2'])
consumer_task = consumer_op(processor_task.outputs['output_1'],
processor_task.outputs['output_2'])
markdown_task = create_component_from_func(func=metadata_and_metrics)()
# This line is only needed for compiling using dsl-compile to work
kfp.dsl.get_pipeline_conf(
).data_passing_method = volume_based_data_passing_method
from kubernetes.client.models import V1Volume, V1PersistentVolumeClaimVolumeSource
from kfp.deprecated.dsl import data_passing_methods
volume_based_data_passing_method = data_passing_methods.KubernetesVolume(
volume=V1Volume(
name='data',
persistent_volume_claim=V1PersistentVolumeClaimVolumeSource(
claim_name='data-volume',),
),
path_prefix='artifact_data/',
)
if __name__ == '__main__':
pipeline_conf = kfp.dsl.PipelineConf()
pipeline_conf.data_passing_method = volume_based_data_passing_method
kfp.compiler.Compiler().compile(
artifact_passing_pipeline,
__file__ + '.yaml',
pipeline_conf=pipeline_conf)