161 lines
5.5 KiB
Python
161 lines
5.5 KiB
Python
# Copyright 2023 The Kubeflow Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Utilities for constructing the ExecutorInput message."""
|
|
import datetime
|
|
import os
|
|
from typing import Any, Dict
|
|
|
|
from google.protobuf import json_format
|
|
from kfp.compiler import pipeline_spec_builder
|
|
from kfp.dsl import utils
|
|
from kfp.pipeline_spec import pipeline_spec_pb2
|
|
|
|
_EXECUTOR_OUTPUT_FILE = 'executor_output.json'
|
|
|
|
|
|
def construct_executor_input(
|
|
component_spec: pipeline_spec_pb2.ComponentSpec,
|
|
arguments: Dict[str, Any],
|
|
task_root: str,
|
|
) -> pipeline_spec_pb2.ExecutorInput:
|
|
"""Constructs the executor input message for a task execution."""
|
|
input_parameter_keys = list(
|
|
component_spec.input_definitions.parameters.keys())
|
|
input_artifact_keys = list(
|
|
component_spec.input_definitions.artifacts.keys())
|
|
if input_artifact_keys:
|
|
raise ValueError(
|
|
'Input artifacts are not yet supported for local execution.')
|
|
|
|
output_parameter_keys = list(
|
|
component_spec.output_definitions.parameters.keys())
|
|
output_artifact_specs_dict = component_spec.output_definitions.artifacts
|
|
|
|
inputs = pipeline_spec_pb2.ExecutorInput.Inputs(
|
|
parameter_values={
|
|
param_name:
|
|
pipeline_spec_builder.to_protobuf_value(arguments[param_name])
|
|
if param_name in arguments else component_spec.input_definitions
|
|
.parameters[param_name].default_value
|
|
for param_name in input_parameter_keys
|
|
},
|
|
# input artifact constants are not supported yet
|
|
artifacts={},
|
|
)
|
|
outputs = pipeline_spec_pb2.ExecutorInput.Outputs(
|
|
parameters={
|
|
param_name: pipeline_spec_pb2.ExecutorInput.OutputParameter(
|
|
output_file=os.path.join(task_root, param_name))
|
|
for param_name in output_parameter_keys
|
|
},
|
|
artifacts={
|
|
artifact_name: make_artifact_list(
|
|
name=artifact_name,
|
|
artifact_type=artifact_spec.artifact_type,
|
|
task_root=task_root,
|
|
) for artifact_name, artifact_spec in
|
|
output_artifact_specs_dict.items()
|
|
},
|
|
output_file=os.path.join(task_root, _EXECUTOR_OUTPUT_FILE),
|
|
)
|
|
return pipeline_spec_pb2.ExecutorInput(
|
|
inputs=inputs,
|
|
outputs=outputs,
|
|
)
|
|
|
|
|
|
def get_local_pipeline_resource_name(pipeline_name: str) -> str:
|
|
"""Gets the local pipeline resource name from the pipeline name in
|
|
PipelineSpec.
|
|
|
|
Args:
|
|
pipeline_name: The pipeline name provided by PipelineSpec.pipelineInfo.name.
|
|
|
|
Returns:
|
|
The local pipeline resource name. Includes timestamp.
|
|
"""
|
|
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S-%f')
|
|
return f'{pipeline_name}-{timestamp}'
|
|
|
|
|
|
def get_local_task_resource_name(component_name: str) -> str:
|
|
"""Gets the local task resource name from the component name in
|
|
PipelineSpec.
|
|
|
|
Args:
|
|
component_name: The component name provided as the key for the component's ComponentSpec
|
|
message. Takes the form comp-*.
|
|
|
|
Returns:
|
|
The local task resource name.
|
|
"""
|
|
return component_name[len(utils.COMPONENT_NAME_PREFIX):]
|
|
|
|
|
|
def construct_local_task_root(
|
|
pipeline_root: str,
|
|
pipeline_resource_name: str,
|
|
task_resource_name: str,
|
|
) -> str:
|
|
"""Constructs the local task root directory for a task."""
|
|
return os.path.join(
|
|
pipeline_root,
|
|
pipeline_resource_name,
|
|
task_resource_name,
|
|
)
|
|
|
|
|
|
def make_artifact_list(
|
|
name: str,
|
|
artifact_type: pipeline_spec_pb2.ArtifactTypeSchema,
|
|
task_root: str,
|
|
) -> pipeline_spec_pb2.ArtifactList:
|
|
"""Constructs an ArtifactList instance for an artifact in ExecutorInput."""
|
|
return pipeline_spec_pb2.ArtifactList(artifacts=[
|
|
pipeline_spec_pb2.RuntimeArtifact(
|
|
name=name,
|
|
type=artifact_type,
|
|
uri=os.path.join(task_root, name),
|
|
# metadata always starts empty for output artifacts
|
|
metadata={},
|
|
)
|
|
])
|
|
|
|
|
|
def executor_input_to_dict(
|
|
executor_input: pipeline_spec_pb2.ExecutorInput,
|
|
component_spec: pipeline_spec_pb2.ComponentSpec,
|
|
) -> Dict[str, Any]:
|
|
"""Converts the executor input to a dictionary.
|
|
|
|
Since protobuf value represents ints and floats the same way, we
|
|
cast ints to their correct type. This should be called before
|
|
replacing placeholders with values.
|
|
|
|
This is consistent with the remote backend behavior.
|
|
"""
|
|
executor_input_dict = json_format.MessageToDict(executor_input)
|
|
inputs_typed_int = [
|
|
in_param_name for in_param_name, parameter_spec in
|
|
component_spec.input_definitions.parameters.items()
|
|
if parameter_spec.parameter_type ==
|
|
pipeline_spec_pb2.ParameterType.ParameterTypeEnum.NUMBER_INTEGER
|
|
]
|
|
for param_name, param_value in executor_input_dict.get('inputs', {}).get(
|
|
'parameterValues', {}).items():
|
|
if param_name in inputs_typed_int:
|
|
executor_input_dict['inputs']['parameterValues'][param_name] = int(
|
|
param_value)
|
|
return executor_input_dict
|