Machine Learning Pipelines for Kubeflow
Go to file
hongye-sun 88bca8223d set dataset_location as the default location. (#1399) 2019-05-31 19:58:19 -07:00
backend update the API doc description (#1410) 2019-05-31 13:31:33 -07:00
component_sdk set dataset_location as the default location. (#1399) 2019-05-31 19:58:19 -07:00
components Add HyperParameters back to SageMaker training job (#1377) 2019-05-30 19:24:21 -07:00
contrib Updated vulnerable package (#1193) 2019-04-19 22:17:40 -07:00
docs Set theme jekyll-theme-minimal 2019-05-31 14:14:31 -07:00
frontend Only render JSON objects and arrays, not primitives (#1366) 2019-05-22 13:18:27 -07:00
manifests expose configuration for setting the max number of tensorboard (#1393) 2019-05-28 13:18:58 -07:00
proxy Add proxy agent as optional kustomize component (#1325) 2019-05-14 15:24:21 -07:00
samples typo (#1385) 2019-05-28 12:16:27 -07:00
sdk update DSL client documentation (#1403) 2019-05-30 21:40:26 -07:00
test rename sample_test to component_test and sample_test_v2 to sample_test (#1341) 2019-05-16 11:38:29 -07:00
third_party Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
.cloudbuild.yaml update proxy image build path (#1336) 2019-05-16 01:01:49 -07:00
.dockerignore Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
.gitattributes Support filtering on storage state (#629) 2019-01-11 11:01:01 -08:00
.gitignore optimize UX for loading pipeline pages (#1085) 2019-04-05 14:56:28 -07:00
.release.cloudbuild.yaml add proxy image to cloud builder (#996) 2019-03-29 21:25:09 -07:00
.travis.yml Tests/Travis - Simplified the Python SDK package installation (#1275) 2019-05-08 18:08:48 -07:00
BUILD.bazel Record TFX output artifacts in Metadata store (#884) 2019-03-06 09:16:51 -08:00
CHANGELOG.md Update CHANGELOG.md (#1358) 2019-05-20 15:21:30 -07:00
CONTRIBUTING.md Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
LICENSE Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
Makefile Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
OWNERS Update OWNERS 2019-04-11 16:49:58 -07:00
README.md Update README.md 2019-05-31 13:34:23 -07:00
ROADMAP.md ROADMAP.md cosmetic changes (#846) 2019-02-22 15:03:45 -08:00
WORKSPACE Fix API package names and regenerate checked-in proto files. (#1404) 2019-05-30 11:26:28 -07:00
_config.yml Set theme jekyll-theme-minimal 2019-05-31 14:15:32 -07:00
developer_guide.md Update developer_guide.md (#989) 2019-03-25 18:43:15 -07:00
go.mod Backend - Marking auto-added artifacts as optional (#1289) 2019-05-09 14:31:59 -07:00
go.sum Backend - Marking auto-added artifacts as optional (#1289) 2019-05-09 14:31:59 -07:00

README.md

Build Status Coverage Status SDK: Documentation Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines documentation.

See the Kubeflow Pipelines API doc for API specification.

Consult the Python SDK reference docs when writing pipelines using the python SDK.

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.