Machine Learning Pipelines for Kubeflow
Go to file
Alexey Volkov 99c40a22cf Fix package version conflict (#1201)
* Fix package version conflict

* Fixing component_sdk requirements.txt
2019-04-22 17:52:06 -07:00
.vscode Updating OWNERS files. Adding per-subdirectory OWNER files. 2018-11-05 14:03:33 -08:00
backend Ensure API server does not crash if ml-metadata serialized format does (#1192) 2019-04-19 11:01:53 -07:00
component_sdk Fix package version conflict (#1201) 2019-04-22 17:52:06 -07:00
components Update arena component with git support (#1179) 2019-04-18 23:39:54 -07:00
contrib Updated vulnerable package (#1193) 2019-04-19 22:17:40 -07:00
experimental Update experimental/OWNERS (#185) 2018-11-09 17:48:29 -08:00
frontend Allow creating runs without experiments (#1175) 2019-04-22 11:59:45 -07:00
proxy add license file to proxy agent docker image (#1054) 2019-03-27 16:58:48 -07:00
samples Updated the "Kubeflow training and classification" sample (#1114) 2019-04-19 12:57:54 -07:00
sdk Fix package version conflict (#1201) 2019-04-22 17:52:06 -07:00
test Allow creating runs without experiments (#1175) 2019-04-22 11:59:45 -07:00
third_party Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
tools Updating OWNERS files. Adding per-subdirectory OWNER files. 2018-11-05 14:03:33 -08:00
.cloudbuild.yaml delete the resnet image items (#1165) 2019-04-15 12:31:07 -07:00
.dockerignore Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
.gitattributes Support filtering on storage state (#629) 2019-01-11 11:01:01 -08:00
.gitignore optimize UX for loading pipeline pages (#1085) 2019-04-05 14:56:28 -07:00
.release.cloudbuild.yaml add proxy image to cloud builder (#996) 2019-03-29 21:25:09 -07:00
.travis.yml Test loading all component.yaml definitions (#1045) 2019-04-02 12:25:18 -07:00
BUILD.bazel Record TFX output artifacts in Metadata store (#884) 2019-03-06 09:16:51 -08:00
CHANGELOG.md update changelog (#1184) 2019-04-18 12:59:26 -07:00
CONTRIBUTING.md Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
LICENSE Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
Makefile Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
OWNERS Update OWNERS 2019-04-11 16:49:58 -07:00
README.md Add article on Jupyter notebooks (#471) 2018-12-05 03:23:42 -08:00
ROADMAP.md ROADMAP.md cosmetic changes (#846) 2019-02-22 15:03:45 -08:00
WORKSPACE Record TFX output artifacts in Metadata store (#884) 2019-03-06 09:16:51 -08:00
developer_guide.md Update developer_guide.md (#989) 2019-03-25 18:43:15 -07:00
go.mod Record TFX output artifacts in Metadata store (#884) 2019-03-06 09:16:51 -08:00
go.sum Record TFX output artifacts in Metadata store (#884) 2019-03-06 09:16:51 -08:00

README.md

Build Status Coverage Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines documentation.

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.