pipelines/sdk/python/kfp/compiler/compiler.py

905 lines
37 KiB
Python

# Copyright 2018-2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from collections import defaultdict
from deprecated import deprecated
import inspect
import tarfile
import zipfile
from typing import Callable, Set, List, Text, Dict, Tuple, Any, Union, Optional
import yaml
from kfp.dsl import _for_loop
from .. import dsl
from ._k8s_helper import K8sHelper
from ._op_to_template import _op_to_template
from ._default_transformers import add_pod_env
from ..components._structures import InputSpec
from ..dsl._metadata import _extract_pipeline_metadata
from ..dsl._ops_group import OpsGroup
class Compiler(object):
"""DSL Compiler.
It compiles DSL pipeline functions into workflow yaml. Example usage:
```python
@dsl.pipeline(
name='name',
description='description'
)
def my_pipeline(a: int = 1, b: str = "default value"):
...
Compiler().compile(my_pipeline, 'path/to/workflow.yaml')
```
"""
def _pipelineparam_full_name(self, param):
"""_pipelineparam_full_name converts the names of pipeline parameters
to unique names in the argo yaml
Args:
param(PipelineParam): pipeline parameter
"""
if param.op_name:
return param.op_name + '-' + param.name
return param.name
def _get_groups_for_ops(self, root_group):
"""Helper function to get belonging groups for each op.
Each pipeline has a root group. Each group has a list of operators (leaf) and groups.
This function traverse the tree and get all ancestor groups for all operators.
Returns:
A dict. Key is the operator's name. Value is a list of ancestor groups including the
op itself. The list of a given operator is sorted in a way that the farthest
group is the first and operator itself is the last.
"""
def _get_op_groups_helper(current_groups, ops_to_groups):
root_group = current_groups[-1]
for g in root_group.groups:
# Add recursive opsgroup in the ops_to_groups
# such that the i/o dependency can be propagated to the ancester opsgroups
if g.recursive_ref:
ops_to_groups[g.name] = [x.name for x in current_groups] + [g.name]
continue
current_groups.append(g)
_get_op_groups_helper(current_groups, ops_to_groups)
del current_groups[-1]
for op in root_group.ops:
ops_to_groups[op.name] = [x.name for x in current_groups] + [op.name]
ops_to_groups = {}
current_groups = [root_group]
_get_op_groups_helper(current_groups, ops_to_groups)
return ops_to_groups
#TODO: combine with the _get_groups_for_ops
def _get_groups_for_opsgroups(self, root_group):
"""Helper function to get belonging groups for each opsgroup.
Each pipeline has a root group. Each group has a list of operators (leaf) and groups.
This function traverse the tree and get all ancestor groups for all opsgroups.
Returns:
A dict. Key is the opsgroup's name. Value is a list of ancestor groups including the
opsgroup itself. The list of a given opsgroup is sorted in a way that the farthest
group is the first and opsgroup itself is the last.
"""
def _get_opsgroup_groups_helper(current_groups, opsgroups_to_groups):
root_group = current_groups[-1]
for g in root_group.groups:
# Add recursive opsgroup in the ops_to_groups
# such that the i/o dependency can be propagated to the ancester opsgroups
if g.recursive_ref:
continue
opsgroups_to_groups[g.name] = [x.name for x in current_groups] + [g.name]
current_groups.append(g)
_get_opsgroup_groups_helper(current_groups, opsgroups_to_groups)
del current_groups[-1]
opsgroups_to_groups = {}
current_groups = [root_group]
_get_opsgroup_groups_helper(current_groups, opsgroups_to_groups)
return opsgroups_to_groups
def _get_groups(self, root_group):
"""Helper function to get all groups (not including ops) in a pipeline."""
def _get_groups_helper(group):
groups = {group.name: group}
for g in group.groups:
# Skip the recursive opsgroup because no templates
# need to be generated for the recursive opsgroups.
if not g.recursive_ref:
groups.update(_get_groups_helper(g))
return groups
return _get_groups_helper(root_group)
def _get_uncommon_ancestors(self, op_groups, opsgroup_groups, op1, op2):
"""Helper function to get unique ancestors between two ops.
For example, op1's ancestor groups are [root, G1, G2, G3, op1], op2's ancestor groups are
[root, G1, G4, op2], then it returns a tuple ([G2, G3, op1], [G4, op2]).
"""
#TODO: extract a function for the following two code module
if op1.name in op_groups:
op1_groups = op_groups[op1.name]
elif op1.name in opsgroup_groups:
op1_groups = opsgroup_groups[op1.name]
else:
raise ValueError(op1.name + ' does not exist.')
if op2.name in op_groups:
op2_groups = op_groups[op2.name]
elif op2.name in opsgroup_groups:
op2_groups = opsgroup_groups[op2.name]
else:
raise ValueError(op1.name + ' does not exist.')
both_groups = [op1_groups, op2_groups]
common_groups_len = sum(1 for x in zip(*both_groups) if x==(x[0],)*len(x))
group1 = op1_groups[common_groups_len:]
group2 = op2_groups[common_groups_len:]
return (group1, group2)
def _get_condition_params_for_ops(self, root_group):
"""Get parameters referenced in conditions of ops."""
conditions = defaultdict(set)
def _get_condition_params_for_ops_helper(group, current_conditions_params):
new_current_conditions_params = current_conditions_params
if group.type == 'condition':
new_current_conditions_params = list(current_conditions_params)
if isinstance(group.condition.operand1, dsl.PipelineParam):
new_current_conditions_params.append(group.condition.operand1)
if isinstance(group.condition.operand2, dsl.PipelineParam):
new_current_conditions_params.append(group.condition.operand2)
for op in group.ops:
for param in new_current_conditions_params:
conditions[op.name].add(param)
for g in group.groups:
# If the subgroup is a recursive opsgroup, propagate the pipelineparams
# in the condition expression, similar to the ops.
if g.recursive_ref:
for param in new_current_conditions_params:
conditions[g.name].add(param)
else:
_get_condition_params_for_ops_helper(g, new_current_conditions_params)
_get_condition_params_for_ops_helper(root_group, [])
return conditions
def _get_next_group_or_op(cls, to_visit: List, already_visited: Set):
"""Get next group or op to visit."""
if len(to_visit) == 0:
return None
next = to_visit.pop(0)
while next in already_visited:
next = to_visit.pop(0)
already_visited.add(next)
return next
def _get_for_loop_ops(self, new_root) -> Dict[Text, dsl.ParallelFor]:
to_visit = self._get_all_subgroups_and_ops(new_root)
op_name_to_op = {}
already_visited = set()
while len(to_visit):
next_op = self._get_next_group_or_op(to_visit, already_visited)
if next_op is None:
break
to_visit.extend(self._get_all_subgroups_and_ops(next_op))
if isinstance(next_op, dsl.ParallelFor):
op_name_to_op[next_op.name] = next_op
return op_name_to_op
def _get_all_subgroups_and_ops(self, op):
"""Get all ops and groups contained within this group."""
subgroups = []
if hasattr(op, 'ops'):
subgroups.extend(op.ops)
if hasattr(op, 'groups'):
subgroups.extend(op.groups)
return subgroups
def _get_inputs_outputs(
self,
pipeline,
root_group,
op_groups,
opsgroup_groups,
condition_params,
op_name_to_for_loop_op: Dict[Text, dsl.ParallelFor],
):
"""Get inputs and outputs of each group and op.
Returns:
A tuple (inputs, outputs).
inputs and outputs are dicts with key being the group/op names and values being list of
tuples (param_name, producing_op_name). producing_op_name is the name of the op that
produces the param. If the param is a pipeline param (no producer op), then
producing_op_name is None.
"""
inputs = defaultdict(set)
outputs = defaultdict(set)
for op in pipeline.ops.values():
# op's inputs and all params used in conditions for that op are both considered.
for param in op.inputs + list(condition_params[op.name]):
# if the value is already provided (immediate value), then no need to expose
# it as input for its parent groups.
if param.value:
continue
if param.op_name:
upstream_op = pipeline.ops[param.op_name]
upstream_groups, downstream_groups = \
self._get_uncommon_ancestors(op_groups, opsgroup_groups, upstream_op, op)
for i, group_name in enumerate(downstream_groups):
if i == 0:
# If it is the first uncommon downstream group, then the input comes from
# the first uncommon upstream group.
inputs[group_name].add((param.full_name, upstream_groups[0]))
else:
# If not the first downstream group, then the input is passed down from
# its ancestor groups so the upstream group is None.
inputs[group_name].add((param.full_name, None))
for i, group_name in enumerate(upstream_groups):
if i == len(upstream_groups) - 1:
# If last upstream group, it is an operator and output comes from container.
outputs[group_name].add((param.full_name, None))
else:
# If not last upstream group, output value comes from one of its child.
outputs[group_name].add((param.full_name, upstream_groups[i+1]))
else:
if not op.is_exit_handler:
for group_name in op_groups[op.name][::-1]:
# if group is for loop group and param is that loop's param, then the param
# is created by that for loop ops_group and it shouldn't be an input to
# any of its parent groups.
inputs[group_name].add((param.full_name, None))
if group_name in op_name_to_for_loop_op:
# for example:
# loop_group.loop_args.name = 'loop-item-param-99ca152e'
# param.name = 'loop-item-param-99ca152e--a'
loop_group = op_name_to_for_loop_op[group_name]
if loop_group.loop_args.name in param.name:
break
# Generate the input/output for recursive opsgroups
# It propagates the recursive opsgroups IO to their ancester opsgroups
def _get_inputs_outputs_recursive_opsgroup(group):
#TODO: refactor the following codes with the above
if group.recursive_ref:
params = [(param, False) for param in group.inputs]
params.extend([(param, True) for param in list(condition_params[group.name])])
for param, is_condition_param in params:
if param.value:
continue
full_name = self._pipelineparam_full_name(param)
if param.op_name:
upstream_op = pipeline.ops[param.op_name]
upstream_groups, downstream_groups = \
self._get_uncommon_ancestors(op_groups, opsgroup_groups, upstream_op, group)
for i, g in enumerate(downstream_groups):
if i == 0:
inputs[g].add((full_name, upstream_groups[0]))
# There is no need to pass the condition param as argument to the downstream ops.
#TODO: this might also apply to ops. add a TODO here and think about it.
elif i == len(downstream_groups) - 1 and is_condition_param:
continue
else:
inputs[g].add((full_name, None))
for i, g in enumerate(upstream_groups):
if i == len(upstream_groups) - 1:
outputs[g].add((full_name, None))
else:
outputs[g].add((full_name, upstream_groups[i+1]))
elif not is_condition_param:
for g in op_groups[group.name]:
inputs[g].add((full_name, None))
for subgroup in group.groups:
_get_inputs_outputs_recursive_opsgroup(subgroup)
_get_inputs_outputs_recursive_opsgroup(root_group)
return inputs, outputs
def _get_dependencies(self, pipeline, root_group, op_groups, opsgroups_groups, opsgroups, condition_params):
"""Get dependent groups and ops for all ops and groups.
Returns:
A dict. Key is group/op name, value is a list of dependent groups/ops.
The dependencies are calculated in the following way: if op2 depends on op1,
and their ancestors are [root, G1, G2, op1] and [root, G1, G3, G4, op2],
then G3 is dependent on G2. Basically dependency only exists in the first uncommon
ancesters in their ancesters chain. Only sibling groups/ops can have dependencies.
"""
dependencies = defaultdict(set)
for op in pipeline.ops.values():
upstream_op_names = set()
for param in op.inputs + list(condition_params[op.name]):
if param.op_name:
upstream_op_names.add(param.op_name)
upstream_op_names |= set(op.dependent_names)
for upstream_op_name in upstream_op_names:
# the dependent op could be either a BaseOp or an opsgroup
if upstream_op_name in pipeline.ops:
upstream_op = pipeline.ops[upstream_op_name]
elif upstream_op_name in opsgroups:
upstream_op = opsgroups[upstream_op_name]
else:
raise ValueError('compiler cannot find the ' + upstream_op_name)
upstream_groups, downstream_groups = self._get_uncommon_ancestors(op_groups, opsgroups_groups, upstream_op, op)
dependencies[downstream_groups[0]].add(upstream_groups[0])
# Generate dependencies based on the recursive opsgroups
#TODO: refactor the following codes with the above
def _get_dependency_opsgroup(group, dependencies):
upstream_op_names = set([dependency.name for dependency in group.dependencies])
if group.recursive_ref:
for param in group.inputs + list(condition_params[group.name]):
if param.op_name:
upstream_op_names.add(param.op_name)
for op_name in upstream_op_names:
if op_name in pipeline.ops:
upstream_op = pipeline.ops[op_name]
elif op_name in opsgroups_groups:
upstream_op = opsgroups_groups[op_name]
else:
raise ValueError('compiler cannot find the ' + op_name)
upstream_groups, downstream_groups = \
self._get_uncommon_ancestors(op_groups, opsgroups_groups, upstream_op, group)
dependencies[downstream_groups[0]].add(upstream_groups[0])
for subgroup in group.groups:
_get_dependency_opsgroup(subgroup, dependencies)
_get_dependency_opsgroup(root_group, dependencies)
return dependencies
def _resolve_value_or_reference(self, value_or_reference, potential_references):
"""_resolve_value_or_reference resolves values and PipelineParams, which could be task parameters or input parameters.
Args:
value_or_reference: value or reference to be resolved. It could be basic python types or PipelineParam
potential_references(dict{str->str}): a dictionary of parameter names to task names
"""
if isinstance(value_or_reference, dsl.PipelineParam):
parameter_name = self._pipelineparam_full_name(value_or_reference)
task_names = [task_name for param_name, task_name in potential_references if param_name == parameter_name]
if task_names:
task_name = task_names[0]
# When the task_name is None, the parameter comes directly from ancient ancesters
# instead of parents. Thus, it is resolved as the input parameter in the current group.
if task_name is None:
return '{{inputs.parameters.%s}}' % parameter_name
else:
return '{{tasks.%s.outputs.parameters.%s}}' % (task_name, parameter_name)
else:
return '{{inputs.parameters.%s}}' % parameter_name
else:
return str(value_or_reference)
def _group_to_dag_template(self, group, inputs, outputs, dependencies):
"""Generate template given an OpsGroup.
inputs, outputs, dependencies are all helper dicts.
"""
template = {'name': group.name}
# Generate inputs section.
if inputs.get(group.name, None):
template_inputs = [{'name': x[0]} for x in inputs[group.name]]
template_inputs.sort(key=lambda x: x['name'])
template['inputs'] = {
'parameters': template_inputs
}
# Generate outputs section.
if outputs.get(group.name, None):
template_outputs = []
for param_name, dependent_name in outputs[group.name]:
template_outputs.append({
'name': param_name,
'valueFrom': {
'parameter': '{{tasks.%s.outputs.parameters.%s}}' % (dependent_name, param_name)
}
})
template_outputs.sort(key=lambda x: x['name'])
template['outputs'] = {'parameters': template_outputs}
# Generate tasks section.
tasks = []
for sub_group in group.groups + group.ops:
is_recursive_subgroup = (isinstance(sub_group, OpsGroup) and sub_group.recursive_ref)
# Special handling for recursive subgroup: use the existing opsgroup name
if is_recursive_subgroup:
task = {
'name': sub_group.recursive_ref.name,
'template': sub_group.recursive_ref.name,
}
else:
task = {
'name': sub_group.name,
'template': sub_group.name,
}
if isinstance(sub_group, dsl.OpsGroup) and sub_group.type == 'condition':
subgroup_inputs = inputs.get(sub_group.name, [])
condition = sub_group.condition
operand1_value = self._resolve_value_or_reference(condition.operand1, subgroup_inputs)
operand2_value = self._resolve_value_or_reference(condition.operand2, subgroup_inputs)
if condition.operator in ['==', '!=']:
operand1_value = '"' + operand1_value + '"'
operand2_value = '"' + operand2_value + '"'
task['when'] = '{} {} {}'.format(operand1_value, condition.operator, operand2_value)
# Generate dependencies section for this task.
if dependencies.get(sub_group.name, None):
group_dependencies = list(dependencies[sub_group.name])
group_dependencies.sort()
task['dependencies'] = group_dependencies
# Generate arguments section for this task.
if inputs.get(sub_group.name, None):
task['arguments'] = {'parameters': self.get_arguments_for_sub_group(sub_group, is_recursive_subgroup, inputs)}
# additional task modifications for withItems and withParam
if isinstance(sub_group, dsl.ParallelFor):
if sub_group.items_is_pipeline_param:
# these loop args are a 'withParam' rather than 'withItems'.
# i.e., rather than a static list, they are either the output of another task or were input
# as global pipeline parameters
pipeline_param = sub_group.loop_args
if pipeline_param.op_name is None:
withparam_value = '{{workflow.parameters.%s}}' % pipeline_param.name
else:
param_name = '%s-%s' % (pipeline_param.op_name, pipeline_param.name)
withparam_value = '{{tasks.%s.outputs.parameters.%s}}' % (pipeline_param.op_name, param_name)
# these loop args are the output of another task
if 'dependencies' not in task or task['dependencies'] is None:
task['dependencies'] = []
if pipeline_param.op_name not in task['dependencies']:
task['dependencies'].append(pipeline_param.op_name)
task['withParam'] = withparam_value
else:
task['withItems'] = sub_group.loop_args.to_list_for_task_yaml()
tasks.append(task)
tasks.sort(key=lambda x: x['name'])
template['dag'] = {'tasks': tasks}
return template
def get_arguments_for_sub_group(
self,
sub_group: Union[OpsGroup, dsl._container_op.BaseOp],
is_recursive_subgroup: Optional[bool],
inputs: Dict[Text, Tuple[Text, Text]],
):
arguments = []
for param_name, dependent_name in inputs[sub_group.name]:
if is_recursive_subgroup:
for index, input in enumerate(sub_group.inputs):
if param_name == self._pipelineparam_full_name(input):
break
referenced_input = sub_group.recursive_ref.inputs[index]
argument_name = self._pipelineparam_full_name(referenced_input)
else:
argument_name = param_name
# default argument_value + special cases
argument_value = '{{inputs.parameters.%s}}' % param_name
if isinstance(sub_group, dsl.ParallelFor):
if sub_group.loop_args.name in param_name:
if _for_loop.LoopArgumentVariable.name_is_loop_arguments_variable(param_name):
subvar_name = _for_loop.LoopArgumentVariable.get_subvar_name(param_name)
argument_value = '{{item.%s}}' % subvar_name
elif _for_loop.LoopArguments.name_is_loop_arguments(param_name) or sub_group.items_is_pipeline_param:
argument_value = '{{item}}'
else:
raise ValueError("Failed to match loop args with parameter. param_name: {}, ".format(param_name))
elif dependent_name:
argument_value = '{{tasks.%s.outputs.parameters.%s}}' % (dependent_name, param_name)
arguments.append({
'name': argument_name,
'value': argument_value,
})
arguments.sort(key=lambda x: x['name'])
return arguments
def _create_dag_templates(self, pipeline, op_transformers=None, op_to_templates_handler=None):
"""Create all groups and ops templates in the pipeline.
Args:
pipeline: Pipeline context object to get all the pipeline data from.
op_transformers: A list of functions that are applied to all ContainerOp instances that are being processed.
op_to_templates_handler: Handler which converts a base op into a list of argo templates.
"""
op_to_templates_handler = op_to_templates_handler or (lambda op : [_op_to_template(op)])
root_group = pipeline.groups[0]
# Call the transformation functions before determining the inputs/outputs, otherwise
# the user would not be able to use pipeline parameters in the container definition
# (for example as pod labels) - the generated template is invalid.
for op in pipeline.ops.values():
for transformer in op_transformers or []:
transformer(op)
# Generate core data structures to prepare for argo yaml generation
# op_name_to_parent_groups: op name -> list of ancestor groups including the current op
# opsgroups: a dictionary of ospgroup.name -> opsgroup
# inputs, outputs: group/op names -> list of tuples (full_param_name, producing_op_name)
# condition_params: recursive_group/op names -> list of pipelineparam
# dependencies: group/op name -> list of dependent groups/ops.
# Special Handling for the recursive opsgroup
# op_name_to_parent_groups also contains the recursive opsgroups
# condition_params from _get_condition_params_for_ops also contains the recursive opsgroups
# groups does not include the recursive opsgroups
opsgroups = self._get_groups(root_group)
op_name_to_parent_groups = self._get_groups_for_ops(root_group)
opgroup_name_to_parent_groups = self._get_groups_for_opsgroups(root_group)
condition_params = self._get_condition_params_for_ops(root_group)
op_name_to_for_loop_op = self._get_for_loop_ops(root_group)
inputs, outputs = self._get_inputs_outputs(
pipeline,
root_group,
op_name_to_parent_groups,
opgroup_name_to_parent_groups,
condition_params,
op_name_to_for_loop_op,
)
dependencies = self._get_dependencies(
pipeline,
root_group,
op_name_to_parent_groups,
opgroup_name_to_parent_groups,
opsgroups,
condition_params,
)
templates = []
for opsgroup in opsgroups.keys():
template = self._group_to_dag_template(opsgroups[opsgroup], inputs, outputs, dependencies)
templates.append(template)
for op in pipeline.ops.values():
templates.extend(op_to_templates_handler(op))
return templates
def _create_volumes(self, pipeline):
"""Create volumes required for the templates"""
volumes = []
volume_name_set = set()
for op in pipeline.ops.values():
if op.volumes:
for v in op.volumes:
# Remove volume duplicates which have the same name
#TODO: check for duplicity based on the serialized volumes instead of just name.
if v['name'] not in volume_name_set:
volume_name_set.add(v['name'])
volumes.append(v)
volumes.sort(key=lambda x: x['name'])
return volumes
def _create_pipeline_workflow(self, args, pipeline, op_transformers=None, pipeline_conf=None):
"""Create workflow for the pipeline."""
# Input Parameters
input_params = []
for arg in args:
param = {'name': arg.name}
if arg.value is not None:
if isinstance(arg.value, (list, tuple)):
param['value'] = json.dumps(arg.value, sort_keys=True)
else:
param['value'] = str(arg.value)
input_params.append(param)
# Templates
templates = self._create_dag_templates(pipeline, op_transformers)
templates.sort(key=lambda x: x['name'])
# Exit Handler
exit_handler = None
if pipeline.groups[0].groups:
first_group = pipeline.groups[0].groups[0]
if first_group.type == 'exit_handler':
exit_handler = first_group.exit_op
# Volumes
volumes = self._create_volumes(pipeline)
# The whole pipeline workflow
pipeline_name = pipeline.name or 'Pipeline'
workflow = {
'apiVersion': 'argoproj.io/v1alpha1',
'kind': 'Workflow',
'metadata': {'generateName': pipeline_name + '-'},
'spec': {
'entrypoint': pipeline_name,
'templates': templates,
'arguments': {'parameters': input_params},
'serviceAccountName': 'pipeline-runner'
}
}
# set ttl after workflow finishes
if pipeline_conf.ttl_seconds_after_finished >= 0:
workflow['spec']['ttlSecondsAfterFinished'] = pipeline_conf.ttl_seconds_after_finished
if len(pipeline_conf.image_pull_secrets) > 0:
image_pull_secrets = []
for image_pull_secret in pipeline_conf.image_pull_secrets:
image_pull_secrets.append(K8sHelper.convert_k8s_obj_to_json(image_pull_secret))
workflow['spec']['imagePullSecrets'] = image_pull_secrets
if pipeline_conf.timeout:
workflow['spec']['activeDeadlineSeconds'] = pipeline_conf.timeout
if exit_handler:
workflow['spec']['onExit'] = exit_handler.name
if volumes:
workflow['spec']['volumes'] = volumes
return workflow
def _validate_exit_handler(self, pipeline):
"""Makes sure there is only one global exit handler.
Note this is a temporary workaround until argo supports local exit handler.
"""
def _validate_exit_handler_helper(group, exiting_op_names, handler_exists):
if group.type == 'exit_handler':
if handler_exists or len(exiting_op_names) > 1:
raise ValueError('Only one global exit_handler is allowed and all ops need to be included.')
handler_exists = True
if group.ops:
exiting_op_names.extend([x.name for x in group.ops])
for g in group.groups:
_validate_exit_handler_helper(g, exiting_op_names, handler_exists)
return _validate_exit_handler_helper(pipeline.groups[0], [], False)
def _sanitize_and_inject_artifact(self, pipeline: dsl.Pipeline, pipeline_conf=None):
"""Sanitize operator/param names and inject pipeline artifact location."""
# Sanitize operator names and param names
sanitized_ops = {}
# pipeline level artifact location
artifact_location = pipeline_conf.artifact_location
for op in pipeline.ops.values():
# inject pipeline level artifact location into if the op does not have
# an artifact location config already.
if hasattr(op, "artifact_location"):
if artifact_location and not op.artifact_location:
op.artifact_location = artifact_location
sanitized_name = K8sHelper.sanitize_k8s_name(op.name)
op.name = sanitized_name
for param in op.outputs.values():
param.name = K8sHelper.sanitize_k8s_name(param.name)
if param.op_name:
param.op_name = K8sHelper.sanitize_k8s_name(param.op_name)
if op.output is not None:
op.output.name = K8sHelper.sanitize_k8s_name(op.output.name)
op.output.op_name = K8sHelper.sanitize_k8s_name(op.output.op_name)
if op.dependent_names:
op.dependent_names = [K8sHelper.sanitize_k8s_name(name) for name in op.dependent_names]
if isinstance(op, dsl.ContainerOp) and op.file_outputs is not None:
sanitized_file_outputs = {}
for key in op.file_outputs.keys():
sanitized_file_outputs[K8sHelper.sanitize_k8s_name(key)] = op.file_outputs[key]
op.file_outputs = sanitized_file_outputs
elif isinstance(op, dsl.ResourceOp) and op.attribute_outputs is not None:
sanitized_attribute_outputs = {}
for key in op.attribute_outputs.keys():
sanitized_attribute_outputs[K8sHelper.sanitize_k8s_name(key)] = \
op.attribute_outputs[key]
op.attribute_outputs = sanitized_attribute_outputs
sanitized_ops[sanitized_name] = op
pipeline.ops = sanitized_ops
def _create_workflow(self,
pipeline_func: Callable,
pipeline_name: Text=None,
pipeline_description: Text=None,
params_list: List[dsl.PipelineParam]=None,
pipeline_conf: dsl.PipelineConf = None,
) -> Dict[Text, Any]:
""" Internal implementation of create_workflow."""
params_list = params_list or []
argspec = inspect.getfullargspec(pipeline_func)
# Create the arg list with no default values and call pipeline function.
# Assign type information to the PipelineParam
pipeline_meta = _extract_pipeline_metadata(pipeline_func)
pipeline_meta.name = pipeline_name or pipeline_meta.name
pipeline_meta.description = pipeline_description or pipeline_meta.description
pipeline_name = K8sHelper.sanitize_k8s_name(pipeline_meta.name)
# Need to first clear the default value of dsl.PipelineParams. Otherwise, it
# will be resolved immediately in place when being to each component.
default_param_values = {}
for param in params_list:
default_param_values[param.name] = param.value
param.value = None
# Currently only allow specifying pipeline params at one place.
if params_list and pipeline_meta.inputs:
raise ValueError('Either specify pipeline params in the pipeline function, or in "params_list", but not both.')
args_list = []
for arg_name in argspec.args:
arg_type = None
for input in pipeline_meta.inputs or []:
if arg_name == input.name:
arg_type = input.type
break
args_list.append(dsl.PipelineParam(K8sHelper.sanitize_k8s_name(arg_name), param_type=arg_type))
with dsl.Pipeline(pipeline_name) as dsl_pipeline:
pipeline_func(*args_list)
pipeline_conf = pipeline_conf or dsl_pipeline.conf # Configuration passed to the compiler is overriding. Unfortunately, it's not trivial to detect whether the dsl_pipeline.conf was ever modified.
self._validate_exit_handler(dsl_pipeline)
self._sanitize_and_inject_artifact(dsl_pipeline, pipeline_conf)
# Fill in the default values.
args_list_with_defaults = []
if pipeline_meta.inputs:
args_list_with_defaults = [dsl.PipelineParam(K8sHelper.sanitize_k8s_name(arg_name))
for arg_name in argspec.args]
if argspec.defaults:
for arg, default in zip(reversed(args_list_with_defaults), reversed(argspec.defaults)):
arg.value = default.value if isinstance(default, dsl.PipelineParam) else default
elif params_list:
# Or, if args are provided by params_list, fill in pipeline_meta.
for param in params_list:
param.value = default_param_values[param.name]
args_list_with_defaults = params_list
pipeline_meta.inputs = [
InputSpec(
name=param.name,
type=param.param_type,
default=param.value) for param in params_list]
op_transformers = [add_pod_env]
op_transformers.extend(pipeline_conf.op_transformers)
workflow = self._create_pipeline_workflow(
args_list_with_defaults,
dsl_pipeline,
op_transformers,
pipeline_conf,
)
from ._data_passing_rewriter import fix_big_data_passing
workflow = fix_big_data_passing(workflow)
import json
workflow.setdefault('metadata', {}).setdefault('annotations', {})['pipelines.kubeflow.org/pipeline_spec'] = json.dumps(pipeline_meta.to_dict(), sort_keys=True)
return workflow
@deprecated(
version='0.1.32',
reason='Workflow spec is not intended to be handled by user, please '
'switch to _create_workflow')
def create_workflow(self,
pipeline_func: Callable,
pipeline_name: Text=None,
pipeline_description: Text=None,
params_list: List[dsl.PipelineParam]=None,
pipeline_conf: dsl.PipelineConf = None) -> Dict[Text, Any]:
""" Create workflow spec from pipeline function and specified pipeline
params/metadata. Currently, the pipeline params are either specified in
the signature of the pipeline function or by passing a list of
dsl.PipelineParam. Conflict will cause ValueError.
:param pipeline_func: pipeline function where ContainerOps are invoked.
:param pipeline_name:
:param pipeline_description:
:param params_list: list of pipeline params to append to the pipeline.
:param pipeline_conf: PipelineConf instance. Can specify op transforms, image pull secrets and other pipeline-level configuration options. Overrides any configuration that may be set by the pipeline.
:return: workflow dict.
"""
return self._create_workflow(pipeline_func, pipeline_name, pipeline_description, params_list, pipeline_conf)
def _compile(self, pipeline_func, pipeline_conf: dsl.PipelineConf = None):
"""Compile the given pipeline function into workflow."""
return self.create_workflow(pipeline_func=pipeline_func, pipeline_conf=pipeline_conf)
def compile(self, pipeline_func, package_path, type_check=True, pipeline_conf: dsl.PipelineConf = None):
"""Compile the given pipeline function into workflow yaml.
Args:
pipeline_func: pipeline functions with @dsl.pipeline decorator.
package_path: the output workflow tar.gz file path. for example, "~/a.tar.gz"
type_check: whether to enable the type check or not, default: False.
pipeline_conf: PipelineConf instance. Can specify op transforms, image pull secrets and other pipeline-level configuration options. Overrides any configuration that may be set by the pipeline.
"""
import kfp
type_check_old_value = kfp.TYPE_CHECK
try:
kfp.TYPE_CHECK = type_check
workflow = self._compile(pipeline_func, pipeline_conf)
self._write_workflow(workflow, package_path)
finally:
kfp.TYPE_CHECK = type_check_old_value
@staticmethod
def _write_workflow(workflow: Dict[Text, Any], package_path: Text = None):
"""Dump pipeline workflow into yaml spec and write out in the format specified by the user.
Args:
workflow: Workflow spec of the pipline, dict.
package_path: file path to be written. If not specified, a yaml_text string
will be returned.
"""
yaml.Dumper.ignore_aliases = lambda *args : True
yaml_text = yaml.dump(workflow, default_flow_style=False)
if '{{pipelineparam' in yaml_text:
raise RuntimeError(
'Internal compiler error: Found unresolved PipelineParam. '
'Please create a new issue at https://github.com/kubeflow/pipelines/issues '
'attaching the pipeline code and the pipeline package.' )
if package_path is None:
return yaml_text
if package_path.endswith('.tar.gz') or package_path.endswith('.tgz'):
from contextlib import closing
from io import BytesIO
with tarfile.open(package_path, "w:gz") as tar:
with closing(BytesIO(yaml_text.encode())) as yaml_file:
tarinfo = tarfile.TarInfo('pipeline.yaml')
tarinfo.size = len(yaml_file.getvalue())
tar.addfile(tarinfo, fileobj=yaml_file)
elif package_path.endswith('.zip'):
with zipfile.ZipFile(package_path, "w") as zip:
zipinfo = zipfile.ZipInfo('pipeline.yaml')
zipinfo.compress_type = zipfile.ZIP_DEFLATED
zip.writestr(zipinfo, yaml_text)
elif package_path.endswith('.yaml') or package_path.endswith('.yml'):
with open(package_path, 'w') as yaml_file:
yaml_file.write(yaml_text)
else:
raise ValueError(
'The output path '+ package_path +
' should ends with one of the following formats: '
'[.tar.gz, .tgz, .zip, .yaml, .yml]')