pipelines/sdk/python/test_data/components/preprocess.py

77 lines
2.8 KiB
Python

# Copyright 2022 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List
from kfp.dsl import component
from kfp.dsl import Dataset
from kfp.dsl import Output
from kfp.dsl import OutputPath
@component
def preprocess(
# An input parameter of type string.
message: str,
# An input parameter of type dict.
input_dict_parameter: Dict[str, int],
# An input parameter of type list.
input_list_parameter: List[str],
# Use Output[T] to get a metadata-rich handle to the output artifact
# of type `Dataset`.
output_dataset_one: Output[Dataset],
# A locally accessible filepath for another output artifact of type
# `Dataset`.
output_dataset_two_path: OutputPath('Dataset'),
# A locally accessible filepath for an output parameter of type string.
output_parameter_path: OutputPath(str),
# A locally accessible filepath for an output parameter of type bool.
output_bool_parameter_path: OutputPath(bool),
# A locally accessible filepath for an output parameter of type dict.
output_dict_parameter_path: OutputPath(Dict[str, int]),
# A locally accessible filepath for an output parameter of type list.
output_list_parameter_path: OutputPath(List[str]),
):
"""Dummy preprocessing step."""
# Use Dataset.path to access a local file path for writing.
# One can also use Dataset.uri to access the actual URI file path.
with open(output_dataset_one.path, 'w') as f:
f.write(message)
# OutputPath is used to just pass the local file path of the output artifact
# to the function.
with open(output_dataset_two_path, 'w') as f:
f.write(message)
with open(output_parameter_path, 'w') as f:
f.write(message)
with open(output_bool_parameter_path, 'w') as f:
f.write(
str(True)) # use either `str()` or `json.dumps()` for bool values.
import json
with open(output_dict_parameter_path, 'w') as f:
f.write(json.dumps(input_dict_parameter))
with open(output_list_parameter_path, 'w') as f:
f.write(json.dumps(input_list_parameter))
if __name__ == '__main__':
from kfp import compiler
compiler.Compiler().compile(
pipeline_func=preprocess, package_path=__file__.replace('.py', '.yaml'))