Machine Learning Pipelines for Kubeflow
Go to file
Eterna2 af456bcc61 [front-end-server] Allow viewer:tensorboard podTemplateSpec to be customizable (#1906)
* Allow front-end server to provide custom viewer podTemplateSpec via path/configmap

* Fix JSON.parse input to string
2019-08-22 11:08:33 -07:00
.github/ISSUE_TEMPLATE add issue template (#1492) 2019-06-22 08:42:11 -07:00
backend Added support for environment specified kernel timeout (#1920) 2019-08-22 09:26:33 -07:00
components Release 151c5349f1 (#1916) 2019-08-21 16:06:31 -07:00
contrib Undefined name 'e' in openvino (#1876) 2019-08-20 19:15:19 -07:00
docs Set theme jekyll-theme-minimal 2019-05-31 14:14:31 -07:00
frontend [front-end-server] Allow viewer:tensorboard podTemplateSpec to be customizable (#1906) 2019-08-22 11:08:33 -07:00
manifests/kustomize Cleanup pipeline-lite deployment (#1921) 2019-08-22 10:03:28 -07:00
proxy Lint Python code for undefined names (#1721) 2019-08-21 15:04:31 -07:00
samples Release 151c5349f1 (#1916) 2019-08-21 16:06:31 -07:00
sdk Fix lint related issue (#1922) 2019-08-21 21:45:53 -07:00
test cleanup test dir (#1914) 2019-08-21 16:37:53 -07:00
third_party Remove yebrahim from approvers/reviewers (#1787) 2019-08-09 12:22:52 -07:00
.cloudbuild.yaml Build - Fix CloudBuild bug (#1816) 2019-08-14 11:16:25 -07:00
.dockerignore
.gitattributes
.gitignore optimize UX for loading pipeline pages (#1085) 2019-04-05 14:56:28 -07:00
.release.cloudbuild.yaml Remove copying of tfx data for cloudbuild release steps. (#1871) 2019-08-16 16:57:33 -07:00
.travis.yml Collecting coverage when running python tests (#898) 2019-08-21 17:16:33 -07:00
BUILD.bazel apiserver: Remove TFX output artifact recording to metadatastore (#1904) 2019-08-21 13:44:31 -07:00
CHANGELOG.md Update changelog for 0.1.26 (#1872) 2019-08-16 18:42:48 -07:00
CONTRIBUTING.md
LICENSE
Makefile
OWNERS Add myself as a approver/reviewer. (#1503) 2019-06-17 12:15:50 -07:00
README.md Updated links in READMEs. (#1544) 2019-06-24 16:32:07 -07:00
ROADMAP.md ROADMAP.md cosmetic changes (#846) 2019-02-22 15:03:45 -08:00
WORKSPACE apiserver: Remove TFX output artifact recording to metadatastore (#1904) 2019-08-21 13:44:31 -07:00
developer_guide.md switch third party images to gcr (#1622) 2019-07-16 12:03:21 -07:00
go.mod apiserver: Remove TFX output artifact recording to metadatastore (#1904) 2019-08-21 13:44:31 -07:00
go.sum apiserver: Remove TFX output artifact recording to metadatastore (#1904) 2019-08-21 13:44:31 -07:00

README.md

Build Status Coverage Status SDK: Documentation Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines overview.

See the various ways you can use the Kubeflow Pipelines SDK.

See the Kubeflow Pipelines API doc for API specification.

Consult the Python SDK reference docs when writing pipelines using the Python SDK.

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.