Machine Learning Pipelines for Kubeflow
Go to file
Kartik Kalamadi b3d8e04e1e
[AWS SageMaker] Print SageMaker job logs in kfp UI (#3954)
* Print logs for AWS SM Componenets on KFP UI

* address comments

* update version number to 0.5.0

* update yaml to version 0.5.0

* update changelog
2020-06-19 00:33:58 -07:00
.github chore: recommend cherrypick-approved label in PR template (#4029) 2020-06-18 23:35:58 -07:00
backend Metadata-Writer: Updates metadata writer to use mlmd 0.22.0 (#4027) 2020-06-18 18:29:11 -07:00
components [AWS SageMaker] Print SageMaker job logs in kfp UI (#3954) 2020-06-19 00:33:58 -07:00
contrib Make wget quieter (#2069) 2019-09-09 14:32:54 -07:00
docs Docs - Show inherited members in the kfp.dsl docs (#4025) 2020-06-18 19:25:58 -07:00
frontend enable pagination when expanding experiment in both the home page and the archive page (#4008) 2020-06-17 04:38:39 -07:00
hack [Format] Format yaml files that will be automated (#3958) 2020-06-10 20:28:58 -07:00
manifests chore(marketplace): fix version in release note (#4015) 2020-06-18 17:23:10 -07:00
proxy revert the fix in proxy-agent (#3845) 2020-05-27 02:10:50 -07:00
release Post-submit test for Hosted/MKP (mpdev verify) (#3193) 2020-03-23 17:20:47 -07:00
samples [AWS Sagemaker] aws-samples kmeans-hpo pipeline test (#3905) 2020-06-16 10:26:04 -07:00
sdk feat: allow to use pipeline version (#3930) 2020-06-18 13:45:11 -07:00
test Metadatastore: Updating metadata grpc server image to 0.22.1 (#3982) 2020-06-17 20:34:06 -07:00
third_party Upgraded Argo to v2.7.5 (#3537) 2020-05-11 23:52:21 -07:00
tools Add labels to plots (#3811) 2020-05-27 13:04:37 +08:00
.cloudbuild.yaml Metadatastore: Updating metadata grpc server image to 0.22.1 (#3982) 2020-06-17 20:34:06 -07:00
.dockerignore
.gitattributes
.gitignore [Release] Automate release script for all the changes (#3777) 2020-06-03 08:44:18 -07:00
.pylintrc [Request for comments] Add config for yapf and pylintrc (#2446) 2019-10-21 12:34:22 -07:00
.release.cloudbuild.yaml Metadatastore: Updating metadata grpc server image to 0.22.1 (#3982) 2020-06-17 20:34:06 -07:00
.style.yapf Simplified the style config (#4002) 2020-06-17 00:28:48 -07:00
.travis.yml Testing - Fixed SDK Travis tests (#3838) 2020-05-28 21:07:14 -07:00
BUILD.bazel
CHANGELOG.md 0.5.1 changelog (#3706) 2020-05-07 01:05:09 -07:00
CONTRIBUTING.md fix link validation complaint. (#2727) 2019-12-18 21:49:56 -08:00
LICENSE
Makefile
OWNERS Add Bobgy to OWNERS (#3926) 2020-06-08 20:03:17 -07:00
README.md Update travis CI status badge to use .com version instead of outdated .org version (#3968) 2020-06-17 19:12:05 -07:00
RELEASE.md chore(release): instructions for updating version in kubeflow.org (#4014) 2020-06-18 22:27:58 -07:00
ROADMAP.md
VERSION [Python Client] Clean up generated python client template to facilitate version bump (#3937) 2020-06-09 18:20:04 -07:00
WORKSPACE Upadate backend BUILD files (#3455) 2020-04-10 14:45:48 -07:00
developer_guide.md fix doc link (#2681) 2019-12-03 22:44:57 -08:00
go.mod [API] Add license header to python api client files (#3897) 2020-06-04 10:23:24 +08:00
go.sum [API] Add license header to python api client files (#3897) 2020-06-04 10:23:24 +08:00

README.md

Build Status Coverage Status SDK: Documentation Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines overview.

See the various ways you can use the Kubeflow Pipelines SDK.

See the Kubeflow Pipelines API doc for API specification.

Consult the Python SDK reference docs when writing pipelines using the Python SDK.

Kubeflow Pipelines Community Meeting

The meeting is happening every other Wed 10-11AM (PST) Calendar Invite or Join Meeting Directly

Meeting notes

Kubeflow Pipelines Slack Channel

#kubeflow-pipelines

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.