Machine Learning Pipelines for Kubeflow
Go to file
Alexey Volkov c676b838ef SDK - Lightweight - Added package installation support to func_to_container_op (#2245)
* SDK - Refactoring - Passing the parameters explicitly in python_op.
This helps avoid problems when new parameters are added.

* SDK - Components - Added package installation support to func_to_container_op

Example:
```python
op = func_to_container_op(my_func, packages_to_install=['pandas==0.24'])
```

* Make pip quieter

* Added the test_packages_to_install_feature test
2019-09-30 19:13:32 -07:00
.github/ISSUE_TEMPLATE add issue template (#1492) 2019-06-22 08:42:11 -07:00
backend Use Remote Build Execution for Bazel builds. (#1031) 2019-09-30 10:41:38 -07:00
components Components - Added AutoML Tables components and tests (#2174) 2019-09-25 13:42:06 -07:00
contrib Make wget quieter (#2069) 2019-09-09 14:32:54 -07:00
docs Docs - Added kfp.containers module (#2182) 2019-09-24 13:43:59 -07:00
frontend Updated README Swagger CodeGen version (#2228) 2019-09-24 22:49:59 -07:00
manifests Fix pipeline lite README (#2217) 2019-09-24 10:27:29 -07:00
proxy Lint Python code for undefined names (#1721) 2019-08-21 15:04:31 -07:00
samples Components - Added AutoML Tables components and tests (#2174) 2019-09-25 13:42:06 -07:00
sdk SDK - Lightweight - Added package installation support to func_to_container_op (#2245) 2019-09-30 19:13:32 -07:00
test Use Remote Build Execution for Bazel builds. (#1031) 2019-09-30 10:41:38 -07:00
third_party third_party/metadata_envoy: Modify license file (#2224) 2019-09-26 17:21:36 -07:00
tools/bazel_builder Use Remote Build Execution for Bazel builds. (#1031) 2019-09-30 10:41:38 -07:00
.cloudbuild.yaml Remove dataflow components (#2161) 2019-09-23 11:12:27 -07:00
.dockerignore Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
.gitattributes Support filtering on storage state (#629) 2019-01-11 11:01:01 -08:00
.gitignore Added generated Python SDK documentation to .gitignore (#2181) 2019-09-22 20:37:22 -07:00
.release.cloudbuild.yaml fix (#2231) 2019-09-25 12:44:12 +08:00
.travis.yml Make wget quieter (#2069) 2019-09-09 14:32:54 -07:00
BUILD.bazel apiserver: Remove TFX output artifact recording to metadatastore (#1904) 2019-08-21 13:44:31 -07:00
CHANGELOG.md Update changelog for release 0.1.31. (And also for 0.1.30 and 0.1.29, whose are not added before) (#2232) 2019-09-25 07:24:00 -07:00
CONTRIBUTING.md Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
LICENSE Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
Makefile Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
OWNERS clean up owner file (#1928) 2019-08-22 15:29:19 -07:00
README.md Updated links in READMEs. (#1544) 2019-06-24 16:32:07 -07:00
ROADMAP.md ROADMAP.md cosmetic changes (#846) 2019-02-22 15:03:45 -08:00
WORKSPACE Use Remote Build Execution for Bazel builds. (#1031) 2019-09-30 10:41:38 -07:00
developer_guide.md Added README.md for Python based visualizations (#1853) 2019-08-30 11:06:57 -07:00
go.mod move pipeline runner service account to backend (#1988) 2019-08-29 16:03:14 -07:00
go.sum move pipeline runner service account to backend (#1988) 2019-08-29 16:03:14 -07:00

README.md

Build Status Coverage Status SDK: Documentation Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines overview.

See the various ways you can use the Kubeflow Pipelines SDK.

See the Kubeflow Pipelines API doc for API specification.

Consult the Python SDK reference docs when writing pipelines using the Python SDK.

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.