pipelines/components/gcp/automl/create_model_for_tables/component.yaml

142 lines
5.2 KiB
YAML

implementation:
container:
args:
- --gcp-project-id
- inputValue: gcp_project_id
- --gcp-region
- inputValue: gcp_region
- --display-name
- inputValue: display_name
- --dataset-id
- inputValue: dataset_id
- if:
cond:
isPresent: target_column_path
then:
- --target-column-path
- inputValue: target_column_path
- if:
cond:
isPresent: input_feature_column_paths
then:
- --input-feature-column-paths
- inputValue: input_feature_column_paths
- if:
cond:
isPresent: optimization_objective
then:
- --optimization-objective
- inputValue: optimization_objective
- if:
cond:
isPresent: train_budget_milli_node_hours
then:
- --train-budget-milli-node-hours
- inputValue: train_budget_milli_node_hours
- '----output-paths'
- outputPath: model_path
- outputPath: model_id
command:
- python3
- -u
- -c
- |
from typing import NamedTuple
def automl_create_model_for_tables(
gcp_project_id: str,
gcp_region: str,
display_name: str,
dataset_id: str,
target_column_path: str = None,
input_feature_column_paths: list = None,
optimization_objective: str = 'MAXIMIZE_AU_PRC',
train_budget_milli_node_hours: int = 1000,
) -> NamedTuple('Outputs', [('model_path', str), ('model_id', str)]):
import sys
import subprocess
subprocess.run([sys.executable, '-m', 'pip', 'install', 'google-cloud-automl==0.4.0', '--quiet', '--no-warn-script-location'], env={'PIP_DISABLE_PIP_VERSION_CHECK': '1'}, check=True)
from google.cloud import automl
client = automl.AutoMlClient()
location_path = client.location_path(gcp_project_id, gcp_region)
model_dict = {
'display_name': display_name,
'dataset_id': dataset_id,
'tables_model_metadata': {
'target_column_spec': automl.types.ColumnSpec(name=target_column_path),
'input_feature_column_specs': [automl.types.ColumnSpec(name=path) for path in input_feature_column_paths] if input_feature_column_paths else None,
'optimization_objective': optimization_objective,
'train_budget_milli_node_hours': train_budget_milli_node_hours,
},
}
create_model_response = client.create_model(location_path, model_dict)
print('Create model operation: {}'.format(create_model_response.operation))
result = create_model_response.result()
print(result)
model_name = result.name
model_id = model_name.rsplit('/', 1)[-1]
return (model_name, model_id)
import json
import argparse
_missing_arg = object()
_parser = argparse.ArgumentParser(prog='Automl create model for tables', description='')
_parser.add_argument("--gcp-project-id", dest="gcp_project_id", type=str, required=True, default=_missing_arg)
_parser.add_argument("--gcp-region", dest="gcp_region", type=str, required=True, default=_missing_arg)
_parser.add_argument("--display-name", dest="display_name", type=str, required=True, default=_missing_arg)
_parser.add_argument("--dataset-id", dest="dataset_id", type=str, required=True, default=_missing_arg)
_parser.add_argument("--target-column-path", dest="target_column_path", type=str, required=False, default=_missing_arg)
_parser.add_argument("--input-feature-column-paths", dest="input_feature_column_paths", type=json.loads, required=False, default=_missing_arg)
_parser.add_argument("--optimization-objective", dest="optimization_objective", type=str, required=False, default=_missing_arg)
_parser.add_argument("--train-budget-milli-node-hours", dest="train_budget_milli_node_hours", type=int, required=False, default=_missing_arg)
_parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=2)
_parsed_args = {k: v for k, v in vars(_parser.parse_args()).items() if v is not _missing_arg}
_output_files = _parsed_args.pop("_output_paths", [])
_outputs = automl_create_model_for_tables(**_parsed_args)
if not hasattr(_outputs, '__getitem__') or isinstance(_outputs, str):
_outputs = [_outputs]
import os
for idx, output_file in enumerate(_output_files):
try:
os.makedirs(os.path.dirname(output_file))
except OSError:
pass
with open(output_file, 'w') as f:
f.write(str(_outputs[idx]))
image: python:3.7
inputs:
- name: gcp_project_id
type: String
- name: gcp_region
type: String
- name: display_name
type: String
- name: dataset_id
type: String
- name: target_column_path
optional: true
type: String
- name: input_feature_column_paths
optional: true
type: JsonArray
- default: MAXIMIZE_AU_PRC
name: optimization_objective
optional: true
type: String
- default: '1000'
name: train_budget_milli_node_hours
optional: true
type: Integer
name: Automl create model for tables
outputs:
- name: model_path
type: String
- name: model_id
type: String