Machine Learning Pipelines for Kubeflow
Go to file
Eterna2 d821e79622 [kfp sdk] Added examples for ArtifactLocation, ResourceOp, VolumeOp, and Sidecar. (#1338)
* Added examples for ArtifactLocation, ResourceOp, VolumeOp, and Sidecar.

* remove resourceop and volumeop examples

* Sample for pipeline level artifact location only
2019-05-16 18:29:29 -07:00
backend expose namespace config for scheduled workflow (#1309) 2019-05-10 14:08:12 -07:00
component_sdk bump kfp version in component sdk (#1329) 2019-05-14 16:16:22 -07:00
components check if data and env format (#1337) 2019-05-15 13:20:23 -07:00
contrib Updated vulnerable package (#1193) 2019-04-19 22:17:40 -07:00
frontend Adds metrics table to Compare page, creates Metric component (#1284) 2019-05-16 15:46:15 -07:00
manifests Update README.md 2019-05-14 23:48:49 -07:00
proxy Add proxy agent as optional kustomize component (#1325) 2019-05-14 15:24:21 -07:00
samples [kfp sdk] Added examples for ArtifactLocation, ResourceOp, VolumeOp, and Sidecar. (#1338) 2019-05-16 18:29:29 -07:00
sdk SDK/Compiler: Fix Ops after() method to handle multiple arguments (#1346) 2019-05-16 16:50:27 -07:00
test rename sample_test to component_test and sample_test_v2 to sample_test (#1341) 2019-05-16 11:38:29 -07:00
third_party Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
.cloudbuild.yaml update proxy image build path (#1336) 2019-05-16 01:01:49 -07:00
.dockerignore Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
.gitattributes Support filtering on storage state (#629) 2019-01-11 11:01:01 -08:00
.gitignore optimize UX for loading pipeline pages (#1085) 2019-04-05 14:56:28 -07:00
.release.cloudbuild.yaml add proxy image to cloud builder (#996) 2019-03-29 21:25:09 -07:00
.travis.yml Tests/Travis - Simplified the Python SDK package installation (#1275) 2019-05-08 18:08:48 -07:00
BUILD.bazel Record TFX output artifacts in Metadata store (#884) 2019-03-06 09:16:51 -08:00
CHANGELOG.md changelog for v0.1.19 (#1296) 2019-05-08 09:40:39 -07:00
CONTRIBUTING.md Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
LICENSE Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
Makefile Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
OWNERS Update OWNERS 2019-04-11 16:49:58 -07:00
README.md Add article on Jupyter notebooks (#471) 2018-12-05 03:23:42 -08:00
ROADMAP.md ROADMAP.md cosmetic changes (#846) 2019-02-22 15:03:45 -08:00
WORKSPACE Backend - Marking auto-added artifacts as optional (#1289) 2019-05-09 14:31:59 -07:00
developer_guide.md Update developer_guide.md (#989) 2019-03-25 18:43:15 -07:00
go.mod Backend - Marking auto-added artifacts as optional (#1289) 2019-05-09 14:31:59 -07:00
go.sum Backend - Marking auto-added artifacts as optional (#1289) 2019-05-09 14:31:59 -07:00

README.md

Build Status Coverage Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines documentation.

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.