pipelines/components/ml_metrics/Calculate_regression_metrics/from_CSV/component.yaml

143 lines
5.4 KiB
YAML

name: Calculate regression metrics from csv
description: |-
Calculates regression metrics.
Annotations:
author: Alexey Volkov <alexey.volkov@ark-kun.com>
inputs:
- {name: true_values}
- {name: predicted_values}
outputs:
- {name: number_of_items, type: Integer}
- {name: max_absolute_error, type: Float}
- {name: mean_absolute_error, type: Float}
- {name: mean_squared_error, type: Float}
- {name: root_mean_squared_error, type: Float}
- {name: metrics, type: JsonObject}
implementation:
container:
image: python:3.7
command:
- sh
- -c
- (PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet --no-warn-script-location
'numpy==1.19.0' || PIP_DISABLE_PIP_VERSION_CHECK=1 python3 -m pip install --quiet
--no-warn-script-location 'numpy==1.19.0' --user) && "$0" "$@"
- python3
- -u
- -c
- |
def calculate_regression_metrics_from_csv(
true_values_path,
predicted_values_path,
):
'''Calculates regression metrics.
Annotations:
author: Alexey Volkov <alexey.volkov@ark-kun.com>
'''
import math
import numpy
true_values = numpy.loadtxt(true_values_path, dtype=numpy.float64)
predicted_values = numpy.loadtxt(predicted_values_path, dtype=numpy.float64)
if len(predicted_values.shape) != 1:
raise NotImplemented('Only single prediction values are supported.')
if len(true_values.shape) != 1:
raise NotImplemented('Only single true values are supported.')
if predicted_values.shape != true_values.shape:
raise ValueError('Input shapes are different: {} != {}'.format(predicted_values.shape, true_values.shape))
number_of_items = true_values.size
errors = (true_values - predicted_values)
abs_errors = numpy.abs(errors)
squared_errors = errors ** 2
max_absolute_error = numpy.max(abs_errors)
mean_absolute_error = numpy.average(abs_errors)
mean_squared_error = numpy.average(squared_errors)
root_mean_squared_error = math.sqrt(mean_squared_error)
metrics = dict(
number_of_items=number_of_items,
max_absolute_error=max_absolute_error,
mean_absolute_error=mean_absolute_error,
mean_squared_error=mean_squared_error,
root_mean_squared_error=root_mean_squared_error,
)
return (
number_of_items,
max_absolute_error,
mean_absolute_error,
mean_squared_error,
root_mean_squared_error,
metrics,
)
def _serialize_json(obj) -> str:
if isinstance(obj, str):
return obj
import json
def default_serializer(obj):
if hasattr(obj, 'to_struct'):
return obj.to_struct()
else:
raise TypeError("Object of type '%s' is not JSON serializable and does not have .to_struct() method." % obj.__class__.__name__)
return json.dumps(obj, default=default_serializer, sort_keys=True)
def _serialize_float(float_value: float) -> str:
if isinstance(float_value, str):
return float_value
if not isinstance(float_value, (float, int)):
raise TypeError('Value "{}" has type "{}" instead of float.'.format(str(float_value), str(type(float_value))))
return str(float_value)
def _serialize_int(int_value: int) -> str:
if isinstance(int_value, str):
return int_value
if not isinstance(int_value, int):
raise TypeError('Value "{}" has type "{}" instead of int.'.format(str(int_value), str(type(int_value))))
return str(int_value)
import argparse
_parser = argparse.ArgumentParser(prog='Calculate regression metrics from csv', description='Calculates regression metrics.\n\n Annotations:\n author: Alexey Volkov <alexey.volkov@ark-kun.com>')
_parser.add_argument("--true-values", dest="true_values_path", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--predicted-values", dest="predicted_values_path", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=6)
_parsed_args = vars(_parser.parse_args())
_output_files = _parsed_args.pop("_output_paths", [])
_outputs = calculate_regression_metrics_from_csv(**_parsed_args)
_output_serializers = [
_serialize_int,
_serialize_float,
_serialize_float,
_serialize_float,
_serialize_float,
_serialize_json,
]
import os
for idx, output_file in enumerate(_output_files):
try:
os.makedirs(os.path.dirname(output_file))
except OSError:
pass
with open(output_file, 'w') as f:
f.write(_output_serializers[idx](_outputs[idx]))
args:
- --true-values
- {inputPath: true_values}
- --predicted-values
- {inputPath: predicted_values}
- '----output-paths'
- {outputPath: number_of_items}
- {outputPath: max_absolute_error}
- {outputPath: mean_absolute_error}
- {outputPath: mean_squared_error}
- {outputPath: root_mean_squared_error}
- {outputPath: metrics}