Machine Learning Pipelines for Kubeflow
Go to file
Nicholas Thomson f2a860b84c
[AWS SageMaker] Integration tests automation (#3768)
* # This is a combination of 5 commits.
# This is the 1st commit message:

Add initial scripts

# This is the commit message #2:

Add working pytest script

# This is the commit message #3:

Add initial scripts

# This is the commit message #4:

Add environment variable files

# This is the commit message #5:

Remove old cluster script

* Add initial scripts

Add working pytest script

Add initial scripts

Add environment variable files

Remove old cluster script

Update pipeline credentials to OIDC

Add initial scripts

Add working pytest script

Add initial scripts

Add working pytest script

* Remove debugging mark

* Update example EKS cluster name

* Remove quiet from Docker build

* Manually pass env

* Update env list vars as string

* Update use array directly

* Update variable array to export

* Update to using read for splitting

* Move to helper script

* Update export from CodeBuild

* Add wait for minio

* Update kubectl wait timeout

* Update minor changes for PR

* Update integration test buildspec to quiet build

* Add region to delete EKS

* Add wait for pods

* Updated README

* Add fixed interval wait

* Fix CodeBuild step order

* Add file lock for experiment ID

* Fix missing pytest parameter

* Update run create only once

* Add filelock to conda env

* Update experiment name ensuring creation each time

* Add try/catch with create experiment

* Remove caching from KFP deployment

* Remove disable KFP caching

* Move .gitignore changes to inside component

* Add blank line to default .gitignore
2020-05-20 14:18:19 -07:00
.github/ISSUE_TEMPLATE Update BUG_REPORT.md 2020-02-24 11:43:15 +08:00
backend Infer artifact store endpoint in metadata writer (#3530) 2020-05-20 01:38:17 -07:00
components [AWS SageMaker] Integration tests automation (#3768) 2020-05-20 14:18:19 -07:00
contrib Make wget quieter (#2069) 2019-09-09 14:32:54 -07:00
docs Client - Added documentation for the generated members (#3787) 2020-05-20 13:20:20 -07:00
frontend Add probes to metadata grpc service (#3765) 2020-05-14 13:50:59 -07:00
manifests [ScheduledWorkflow] Fix events permission missing (#3785) 2020-05-19 21:10:18 -07:00
proxy done (#3665) 2020-04-30 04:32:17 -07:00
release Post-submit test for Hosted/MKP (mpdev verify) (#3193) 2020-03-23 17:20:47 -07:00
samples Add more approvers in AWS sagemaker components (#3740) 2020-05-15 11:27:36 -07:00
sdk Allow PipelineParams in dict keys too. (#3565) 2020-05-19 17:54:19 -07:00
test [Manifest] Use kustomize native image transformer to override image (#3776) 2020-05-18 21:23:36 -07:00
third_party Upgraded Argo to v2.7.5 (#3537) 2020-05-11 23:52:21 -07:00
tools MetadataStore: Upgrade tool (#3295) 2020-05-12 10:10:21 -07:00
.cloudbuild.yaml Show version tag in UI (#3743) 2020-05-12 11:02:21 -07:00
.dockerignore Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
.gitattributes Support filtering on storage state (#629) 2019-01-11 11:01:01 -08:00
.gitignore Fix confusing .gitignore config 2020-04-17 17:09:33 +08:00
.pylintrc [Request for comments] Add config for yapf and pylintrc (#2446) 2019-10-21 12:34:22 -07:00
.release.cloudbuild.yaml Upgraded Argo to v2.7.5 (#3537) 2020-05-11 23:52:21 -07:00
.style.yapf [Request for comments] Add config for yapf and pylintrc (#2446) 2019-10-21 12:34:22 -07:00
.travis.yml Travis - Use latest pip version (#3732) 2020-05-11 18:00:21 -07:00
BUILD.bazel apiserver: Remove TFX output artifact recording to metadatastore (#1904) 2019-08-21 13:44:31 -07:00
CHANGELOG.md 0.5.1 changelog (#3706) 2020-05-07 01:05:09 -07:00
CONTRIBUTING.md fix link validation complaint. (#2727) 2019-12-18 21:49:56 -08:00
LICENSE Initial commit of the kubeflow/pipeline project. 2018-11-02 14:02:31 -07:00
Makefile Fix Makefile to add licenses using Go modules. (#674) 2019-01-14 15:25:27 -08:00
OWNERS clean up owner file (#1928) 2019-08-22 15:29:19 -07:00
README.md add community meeting/slack onto README (#2613) 2019-11-18 13:57:41 -08:00
ROADMAP.md ROADMAP.md cosmetic changes (#846) 2019-02-22 15:03:45 -08:00
VERSION update version (#3694) 2020-05-06 19:37:09 -07:00
WORKSPACE Upadate backend BUILD files (#3455) 2020-04-10 14:45:48 -07:00
developer_guide.md fix doc link (#2681) 2019-12-03 22:44:57 -08:00
go.mod [Backend]Cache - Max cache staleness support (#3411) 2020-04-04 15:57:46 -07:00
go.sum Refactor the legacy way of using pipeline id to create run in KFP backend (#3437) 2020-04-08 00:08:49 +08:00

README.md

Build Status Coverage Status SDK: Documentation Status

Overview of the Kubeflow pipelines service

Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow pipelines are reusable end-to-end ML workflows built using the Kubeflow Pipelines SDK.

The Kubeflow pipelines service has the following goals:

  • End to end orchestration: enabling and simplifying the orchestration of end to end machine learning pipelines
  • Easy experimentation: making it easy for you to try numerous ideas and techniques, and manage your various trials/experiments.
  • Easy re-use: enabling you to re-use components and pipelines to quickly cobble together end to end solutions, without having to re-build each time.

Documentation

Get started with your first pipeline and read further information in the Kubeflow Pipelines overview.

See the various ways you can use the Kubeflow Pipelines SDK.

See the Kubeflow Pipelines API doc for API specification.

Consult the Python SDK reference docs when writing pipelines using the Python SDK.

Kubeflow Pipelines Community Meeting

The meeting is happening every other Wed 10-11AM (PST) Calendar Invite or Join Meeting Directly

Meeting notes

Kubeflow Pipelines Slack Channel

#kubeflow-pipelines

Blog posts

Acknowledgments

Kubeflow pipelines uses Argo under the hood to orchestrate Kubernetes resources. The Argo community has been very supportive and we are very grateful.