/* Copyright 2024 The Kubeflow Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package core import ( "context" "fmt" "testing" "github.com/google/go-cmp/cmp" "github.com/google/go-cmp/cmp/cmpopts" corev1 "k8s.io/api/core/v1" "k8s.io/apimachinery/pkg/api/resource" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/runtime" "k8s.io/apimachinery/pkg/util/intstr" schedulerpluginsv1alpha1 "sigs.k8s.io/scheduler-plugins/apis/scheduling/v1alpha1" trainer "github.com/kubeflow/trainer/pkg/apis/trainer/v1alpha1" "github.com/kubeflow/trainer/pkg/constants" jobsetplugin "github.com/kubeflow/trainer/pkg/runtime/framework/plugins/jobset" testingutil "github.com/kubeflow/trainer/pkg/util/testing" ) func TestTrainingRuntimeNewObjects(t *testing.T) { resRequests := corev1.ResourceList{ corev1.ResourceCPU: resource.MustParse("1"), } // TODO (andreyvelich): Add more test cases. cases := map[string]struct { trainingRuntime *trainer.TrainingRuntime trainJob *trainer.TrainJob wantObjs []runtime.Object wantError error }{ // Test cases for the PlainML MLPolicy. "succeeded to build PodGroup and JobSet with NumNodes from the TrainJob and container from the Runtime.": { trainingRuntime: testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime"). Label("conflictLabel", "overridden"). Annotation("conflictAnnotation", "overridden"). RuntimeSpec( testingutil.MakeTrainingRuntimeSpecWrapper(testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").Spec). ContainerDatasetModelInitializer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). WithMLPolicy( testingutil.MakeMLPolicyWrapper(). WithNumNodes(100). Obj(), ). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). PodGroupPolicyCoschedulingSchedulingTimeout(120). Obj(), ).Obj(), trainJob: testingutil.MakeTrainJobWrapper(metav1.NamespaceDefault, "test-job"). Suspend(true). UID("uid"). RuntimeRef(trainer.SchemeGroupVersion.WithKind(trainer.TrainingRuntimeKind), "test-runtime"). SpecLabel("conflictLabel", "override"). SpecAnnotation("conflictAnnotation", "override"). Trainer( testingutil.MakeTrainJobTrainerWrapper(). NumNodes(30). Obj(), ). Obj(), wantObjs: []runtime.Object{ testingutil.MakeJobSetWrapper(metav1.NamespaceDefault, "test-job"). ContainerDatasetModelInitializer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). NumNodes(30). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). Suspend(true). Label("conflictLabel", "override"). Annotation("conflictAnnotation", "override"). PodLabel(schedulerpluginsv1alpha1.PodGroupLabel, "test-job"). ControllerReference(trainer.SchemeGroupVersion.WithKind(trainer.TrainJobKind), "test-job", "uid"). Obj(), testingutil.MakeSchedulerPluginsPodGroup(metav1.NamespaceDefault, "test-job"). ControllerReference(trainer.SchemeGroupVersion.WithKind(trainer.TrainJobKind), "test-job", "uid"). MinMember(31). // 31 replicas = 30 Trainer nodes + 1 Initializer. MinResources(corev1.ResourceList{ // Trainer node has 30 CPUs + 2 CPUs from 2 initializer containers. corev1.ResourceCPU: resource.MustParse("32"), }). SchedulingTimeout(120). Obj(), }, }, "succeeded to build JobSet with NumNodes from the Runtime and container from the TrainJob.": { trainingRuntime: testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").RuntimeSpec( testingutil.MakeTrainingRuntimeSpecWrapper(testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").Spec). WithMLPolicy( testingutil.MakeMLPolicyWrapper(). WithNumNodes(100). Obj(), ). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). ContainerTrainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "original", }, { Name: "RUNTIME", Value: "test:runtime", }, }, ). Obj(), ).Obj(), trainJob: testingutil.MakeTrainJobWrapper(metav1.NamespaceDefault, "test-job"). UID("uid"). RuntimeRef(trainer.SchemeGroupVersion.WithKind(trainer.TrainingRuntimeKind), "test-runtime"). Trainer( testingutil.MakeTrainJobTrainerWrapper(). Container("test:trainjob", []string{"trainjob"}, []string{"trainjob"}, resRequests). ContainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "override", }, { Name: "TRAIN_JOB_CUSTOM", Value: "test:trainjob", }, }..., ). Obj(), ). Obj(), wantObjs: []runtime.Object{ testingutil.MakeJobSetWrapper(metav1.NamespaceDefault, "test-job"). NumNodes(100). ContainerTrainer("test:trainjob", []string{"trainjob"}, []string{"trainjob"}, resRequests). ContainerTrainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "override", }, { Name: "TRAIN_JOB_CUSTOM", Value: "test:trainjob", }, { Name: "RUNTIME", Value: "test:runtime", }, }, ). ControllerReference(trainer.SchemeGroupVersion.WithKind(trainer.TrainJobKind), "test-job", "uid"). Obj(), }, }, "succeeded to build JobSet with dataset and model initializer from the TrainJob.": { trainingRuntime: testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").RuntimeSpec( testingutil.MakeTrainingRuntimeSpecWrapper(testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").Spec). ContainerDatasetModelInitializer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). WithMLPolicy( testingutil.MakeMLPolicyWrapper(). WithNumNodes(100). Obj(), ). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). Obj(), ).Obj(), trainJob: testingutil.MakeTrainJobWrapper(metav1.NamespaceDefault, "test-job"). UID("uid"). RuntimeRef(trainer.SchemeGroupVersion.WithKind(trainer.TrainingRuntimeKind), "test-runtime"). Trainer( testingutil.MakeTrainJobTrainerWrapper(). Obj(), ). DatasetConfig( testingutil.MakeTrainJobDatasetConfigWrapper(). StorageUri("hf://trainjob-dataset"). ContainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "test:trainjob:dataset", }, }, ). SecretRef(corev1.LocalObjectReference{Name: "trainjob-secret-dataset"}). Obj(), ). ModelConfig( testingutil.MakeTrainJobModelConfigWrapper(). StorageUri("hf://trainjob-model"). ContainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "test:trainjob:model", }, }, ). SecretRef(corev1.LocalObjectReference{Name: "trainjob-secret-model"}). Obj(), ). Obj(), wantObjs: []runtime.Object{ testingutil.MakeJobSetWrapper(metav1.NamespaceDefault, "test-job"). NumNodes(100). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). ContainerDatasetModelInitializer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). ContainerDatasetInitializerEnv( []corev1.EnvVar{ { Name: jobsetplugin.InitializerEnvStorageUri, Value: "hf://trainjob-dataset", }, { Name: "TRAIN_JOB", Value: "test:trainjob:dataset", }, }, ). ContainerDatasetInitializerEnvFrom( []corev1.EnvFromSource{ { SecretRef: &corev1.SecretEnvSource{ LocalObjectReference: corev1.LocalObjectReference{ Name: "trainjob-secret-dataset", }, }, }, }, ). ContainerModelInitializerEnv( []corev1.EnvVar{ { Name: jobsetplugin.InitializerEnvStorageUri, Value: "hf://trainjob-model", }, { Name: "TRAIN_JOB", Value: "test:trainjob:model", }, }, ). ContainerModelInitializerEnvFrom( []corev1.EnvFromSource{ { SecretRef: &corev1.SecretEnvSource{ LocalObjectReference: corev1.LocalObjectReference{ Name: "trainjob-secret-model", }, }, }, }, ). ControllerReference(trainer.SchemeGroupVersion.WithKind(trainer.TrainJobKind), "test-job", "uid"). Obj(), }, }, // Test cases for the Torch MLPolicy. "succeeded to build JobSet with Torch values from the TrainJob": { trainingRuntime: testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").RuntimeSpec( testingutil.MakeTrainingRuntimeSpecWrapper(testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").Spec). WithMLPolicy( testingutil.MakeMLPolicyWrapper(). WithNumNodes(100). TorchPolicy("auto", nil). Obj(), ). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). Obj(), ).Obj(), trainJob: testingutil.MakeTrainJobWrapper(metav1.NamespaceDefault, "test-job"). UID("uid"). RuntimeRef(trainer.SchemeGroupVersion.WithKind(trainer.TrainingRuntimeKind), "test-runtime"). Trainer( testingutil.MakeTrainJobTrainerWrapper(). NumNodes(30). NumProcPerNode(intstr.FromInt32(3)). Obj(), ). Obj(), wantObjs: []runtime.Object{ testingutil.MakeJobSetWrapper(metav1.NamespaceDefault, "test-job"). NumNodes(30). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). ContainerTrainerPorts([]corev1.ContainerPort{{ContainerPort: constants.ContainerTrainerPort}}). ContainerTrainerEnv( []corev1.EnvVar{ { Name: constants.TorchEnvNumNodes, Value: "30", }, { Name: constants.TorchEnvNumProcPerNode, Value: "3", }, { Name: constants.TorchEnvNodeRank, ValueFrom: &corev1.EnvVarSource{ FieldRef: &corev1.ObjectFieldSelector{ FieldPath: constants.JobCompletionIndexFieldPath, }, }, }, { Name: constants.TorchEnvMasterAddr, Value: fmt.Sprintf("test-job-%s-0-0.test-job", constants.JobTrainerNode), }, { Name: constants.TorchEnvMasterPort, Value: fmt.Sprintf("%d", constants.ContainerTrainerPort), }, }, ). ControllerReference(trainer.SchemeGroupVersion.WithKind(trainer.TrainJobKind), "test-job", "uid"). Obj(), }, }, "succeeded to build JobSet with Torch values from the Runtime and envs.": { trainingRuntime: testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").RuntimeSpec( testingutil.MakeTrainingRuntimeSpecWrapper(testingutil.MakeTrainingRuntimeWrapper(metav1.NamespaceDefault, "test-runtime").Spec). WithMLPolicy( testingutil.MakeMLPolicyWrapper(). WithNumNodes(100). TorchPolicy("auto", nil). Obj(), ). ContainerTrainer("test:runtime", []string{"runtime"}, []string{"runtime"}, resRequests). ContainerTrainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "original", }, { Name: "RUNTIME", Value: "test:runtime", }, }, ). Obj(), ).Obj(), trainJob: testingutil.MakeTrainJobWrapper(metav1.NamespaceDefault, "test-job"). UID("uid"). RuntimeRef(trainer.SchemeGroupVersion.WithKind(trainer.TrainingRuntimeKind), "test-runtime"). Trainer( testingutil.MakeTrainJobTrainerWrapper(). Container("test:trainjob", []string{"trainjob"}, []string{"trainjob"}, resRequests). ContainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "override", }, { Name: "TRAIN_JOB_CUSTOM", Value: "test:trainjob", }, }..., ). Obj(), ). Obj(), wantObjs: []runtime.Object{ testingutil.MakeJobSetWrapper(metav1.NamespaceDefault, "test-job"). NumNodes(100). ContainerTrainer("test:trainjob", []string{"trainjob"}, []string{"trainjob"}, resRequests). ContainerTrainerPorts([]corev1.ContainerPort{{ContainerPort: constants.ContainerTrainerPort}}). ContainerTrainerEnv( []corev1.EnvVar{ { Name: "TRAIN_JOB", Value: "override", }, { Name: "TRAIN_JOB_CUSTOM", Value: "test:trainjob", }, { Name: constants.TorchEnvNumNodes, Value: "100", }, { Name: constants.TorchEnvNumProcPerNode, Value: "auto", }, { Name: constants.TorchEnvNodeRank, ValueFrom: &corev1.EnvVarSource{ FieldRef: &corev1.ObjectFieldSelector{ FieldPath: constants.JobCompletionIndexFieldPath, }, }, }, { Name: constants.TorchEnvMasterAddr, Value: fmt.Sprintf("test-job-%s-0-0.test-job", constants.JobTrainerNode), }, { Name: constants.TorchEnvMasterPort, Value: fmt.Sprintf("%d", constants.ContainerTrainerPort), }, { Name: "RUNTIME", Value: "test:runtime", }, }, ). ControllerReference(trainer.SchemeGroupVersion.WithKind(trainer.TrainJobKind), "test-job", "uid"). Obj(), }, }, // Failed test cases. "missing trainingRuntime resource": { trainJob: testingutil.MakeTrainJobWrapper(metav1.NamespaceDefault, "test-job-3"). UID("uid"). RuntimeRef(trainer.SchemeGroupVersion.WithKind(trainer.TrainingRuntimeKind), "test-runtime-3"). Trainer( testingutil.MakeTrainJobTrainerWrapper(). Obj(), ). Obj(), wantError: errorNotFoundSpecifiedTrainingRuntime, }, } cmpOpts := []cmp.Option{ cmpopts.SortSlices(func(a, b runtime.Object) bool { return a.GetObjectKind().GroupVersionKind().String() < b.GetObjectKind().GroupVersionKind().String() }), cmpopts.SortSlices(func(a, b corev1.EnvVar) bool { return a.Name < b.Name }), cmpopts.EquateEmpty(), cmpopts.SortMaps(func(a, b string) bool { return a < b }), } for name, tc := range cases { t.Run(name, func(t *testing.T) { ctx, cancel := context.WithCancel(context.Background()) t.Cleanup(cancel) clientBuilder := testingutil.NewClientBuilder() if tc.trainingRuntime != nil { clientBuilder.WithObjects(tc.trainingRuntime) } c := clientBuilder.Build() trainingRuntime, err := NewTrainingRuntime(ctx, c, testingutil.AsIndex(clientBuilder)) if err != nil { t.Fatal(err) } objs, err := trainingRuntime.NewObjects(ctx, tc.trainJob) if diff := cmp.Diff(tc.wantError, err, cmpopts.EquateErrors()); len(diff) != 0 { t.Errorf("Unexpected error (-want,+got):\n%s", diff) } resultObjs, err := testingutil.ToObject(c.Scheme(), objs...) if err != nil { t.Errorf("Pipeline built unrecognizable objects: %v", err) } if diff := cmp.Diff(tc.wantObjs, resultObjs, cmpOpts...); len(diff) != 0 { t.Errorf("Unexpected objects (-want,+got):\n%s", diff) } }) } }