apiserver/pkg/authentication/token/cache/cached_token_authenticator.go

175 lines
5.4 KiB
Go

/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package cache
import (
"context"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"encoding/binary"
"hash"
"io"
"sync"
"time"
"unsafe"
utilclock "k8s.io/apimachinery/pkg/util/clock"
"k8s.io/apiserver/pkg/authentication/authenticator"
)
// cacheRecord holds the three return values of the authenticator.Token AuthenticateToken method
type cacheRecord struct {
resp *authenticator.Response
ok bool
err error
}
type cachedTokenAuthenticator struct {
authenticator authenticator.Token
cacheErrs bool
successTTL time.Duration
failureTTL time.Duration
cache cache
// hashPool is a per authenticator pool of hash.Hash (to avoid allocations from building the Hash)
// HMAC with SHA-256 and a random key is used to prevent precomputation and length extension attacks
// It also mitigates hash map DOS attacks via collisions (the inputs are supplied by untrusted users)
hashPool *sync.Pool
}
type cache interface {
// given a key, return the record, and whether or not it existed
get(key string) (value *cacheRecord, exists bool)
// caches the record for the key
set(key string, value *cacheRecord, ttl time.Duration)
// removes the record for the key
remove(key string)
}
// New returns a token authenticator that caches the results of the specified authenticator. A ttl of 0 bypasses the cache.
func New(ctx context.Context, authenticator authenticator.Token, cacheErrs bool, successTTL, failureTTL time.Duration) authenticator.Token {
return newWithClock(ctx, authenticator, cacheErrs, successTTL, failureTTL, utilclock.RealClock{})
}
func newWithClock(ctx context.Context, authenticator authenticator.Token, cacheErrs bool, successTTL, failureTTL time.Duration, clock utilclock.Clock) authenticator.Token {
randomCacheKey := make([]byte, 32)
if _, err := rand.Read(randomCacheKey); err != nil {
panic(err) // rand should never fail
}
return &cachedTokenAuthenticator{
authenticator: authenticator,
cacheErrs: cacheErrs,
successTTL: successTTL,
failureTTL: failureTTL,
// Cache performance degrades noticeably when the number of
// tokens in operation exceeds the size of the cache. It is
// cheap to make the cache big in the second dimension below,
// the memory is only consumed when that many tokens are being
// used. Currently we advertise support 5k nodes and 10k
// namespaces; a 32k entry cache is therefore a 2x safety
// margin.
cache: newStripedCache(32, fnvHashFunc, func() cache { return newSimpleCache(ctx, clock) }),
hashPool: &sync.Pool{
New: func() interface{} {
return hmac.New(sha256.New, randomCacheKey)
},
},
}
}
// AuthenticateToken implements authenticator.Token
func (a *cachedTokenAuthenticator) AuthenticateToken(ctx context.Context, token string) (*authenticator.Response, bool, error) {
auds, _ := authenticator.AudiencesFrom(ctx)
key := keyFunc(a.hashPool, auds, token)
if record, ok := a.cache.get(key); ok {
return record.resp, record.ok, record.err
}
resp, ok, err := a.authenticator.AuthenticateToken(ctx, token)
if !a.cacheErrs && err != nil {
return resp, ok, err
}
switch {
case ok && a.successTTL > 0:
a.cache.set(key, &cacheRecord{resp: resp, ok: ok, err: err}, a.successTTL)
case !ok && a.failureTTL > 0:
a.cache.set(key, &cacheRecord{resp: resp, ok: ok, err: err}, a.failureTTL)
}
return resp, ok, err
}
// keyFunc generates a string key by hashing the inputs.
// This lowers the memory requirement of the cache and keeps tokens out of memory.
func keyFunc(hashPool *sync.Pool, auds []string, token string) string {
h := hashPool.Get().(hash.Hash)
h.Reset()
// try to force stack allocation
var a [4]byte
b := a[:]
writeLengthPrefixedString(h, b, token)
// encode the length of audiences to avoid ambiguities
writeLength(h, b, len(auds))
for _, aud := range auds {
writeLengthPrefixedString(h, b, aud)
}
key := toString(h.Sum(nil)) // skip base64 encoding to save an allocation
hashPool.Put(h)
return key
}
// writeLengthPrefixedString writes s with a length prefix to prevent ambiguities, i.e. "xy" + "z" == "x" + "yz"
// the length of b is assumed to be 4 (b is mutated by this function to store the length of s)
func writeLengthPrefixedString(w io.Writer, b []byte, s string) {
writeLength(w, b, len(s))
if _, err := w.Write(toBytes(s)); err != nil {
panic(err) // Write() on hash never fails
}
}
// writeLength encodes length into b and then writes it via the given writer
// the length of b is assumed to be 4
func writeLength(w io.Writer, b []byte, length int) {
binary.BigEndian.PutUint32(b, uint32(length))
if _, err := w.Write(b); err != nil {
panic(err) // Write() on hash never fails
}
}
// toBytes performs unholy acts to avoid allocations
func toBytes(s string) []byte {
return *(*[]byte)(unsafe.Pointer(&s))
}
// toString performs unholy acts to avoid allocations
func toString(b []byte) string {
return *(*string)(unsafe.Pointer(&b))
}