650 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
// Copyright 2014 Google Inc.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
// Package btree implements in-memory B-Trees of arbitrary degree.
 | 
						|
//
 | 
						|
// btree implements an in-memory B-Tree for use as an ordered data structure.
 | 
						|
// It is not meant for persistent storage solutions.
 | 
						|
//
 | 
						|
// It has a flatter structure than an equivalent red-black or other binary tree,
 | 
						|
// which in some cases yields better memory usage and/or performance.
 | 
						|
// See some discussion on the matter here:
 | 
						|
//   http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
 | 
						|
// Note, though, that this project is in no way related to the C++ B-Tree
 | 
						|
// implmentation written about there.
 | 
						|
//
 | 
						|
// Within this tree, each node contains a slice of items and a (possibly nil)
 | 
						|
// slice of children.  For basic numeric values or raw structs, this can cause
 | 
						|
// efficiency differences when compared to equivalent C++ template code that
 | 
						|
// stores values in arrays within the node:
 | 
						|
//   * Due to the overhead of storing values as interfaces (each
 | 
						|
//     value needs to be stored as the value itself, then 2 words for the
 | 
						|
//     interface pointing to that value and its type), resulting in higher
 | 
						|
//     memory use.
 | 
						|
//   * Since interfaces can point to values anywhere in memory, values are
 | 
						|
//     most likely not stored in contiguous blocks, resulting in a higher
 | 
						|
//     number of cache misses.
 | 
						|
// These issues don't tend to matter, though, when working with strings or other
 | 
						|
// heap-allocated structures, since C++-equivalent structures also must store
 | 
						|
// pointers and also distribute their values across the heap.
 | 
						|
//
 | 
						|
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
 | 
						|
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
 | 
						|
// widely used ordered tree implementation in the Go ecosystem currently.
 | 
						|
// Its functions, therefore, exactly mirror those of
 | 
						|
// llrb.LLRB where possible.  Unlike gollrb, though, we currently don't
 | 
						|
// support storing multiple equivalent values or backwards iteration.
 | 
						|
package btree
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"io"
 | 
						|
	"sort"
 | 
						|
	"strings"
 | 
						|
)
 | 
						|
 | 
						|
// Item represents a single object in the tree.
 | 
						|
type Item interface {
 | 
						|
	// Less tests whether the current item is less than the given argument.
 | 
						|
	//
 | 
						|
	// This must provide a strict weak ordering.
 | 
						|
	// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
 | 
						|
	// hold one of either a or b in the tree).
 | 
						|
	Less(than Item) bool
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	DefaultFreeListSize = 32
 | 
						|
)
 | 
						|
 | 
						|
// FreeList represents a free list of btree nodes. By default each
 | 
						|
// BTree has its own FreeList, but multiple BTrees can share the same
 | 
						|
// FreeList.
 | 
						|
// Two Btrees using the same freelist are not safe for concurrent write access.
 | 
						|
type FreeList struct {
 | 
						|
	freelist []*node
 | 
						|
}
 | 
						|
 | 
						|
// NewFreeList creates a new free list.
 | 
						|
// size is the maximum size of the returned free list.
 | 
						|
func NewFreeList(size int) *FreeList {
 | 
						|
	return &FreeList{freelist: make([]*node, 0, size)}
 | 
						|
}
 | 
						|
 | 
						|
func (f *FreeList) newNode() (n *node) {
 | 
						|
	index := len(f.freelist) - 1
 | 
						|
	if index < 0 {
 | 
						|
		return new(node)
 | 
						|
	}
 | 
						|
	f.freelist, n = f.freelist[:index], f.freelist[index]
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func (f *FreeList) freeNode(n *node) {
 | 
						|
	if len(f.freelist) < cap(f.freelist) {
 | 
						|
		f.freelist = append(f.freelist, n)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
 | 
						|
// the tree.  When this function returns false, iteration will stop and the
 | 
						|
// associated Ascend* function will immediately return.
 | 
						|
type ItemIterator func(i Item) bool
 | 
						|
 | 
						|
// New creates a new B-Tree with the given degree.
 | 
						|
//
 | 
						|
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
 | 
						|
// and 2-4 children).
 | 
						|
func New(degree int) *BTree {
 | 
						|
	return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
 | 
						|
}
 | 
						|
 | 
						|
// NewWithFreeList creates a new B-Tree that uses the given node free list.
 | 
						|
func NewWithFreeList(degree int, f *FreeList) *BTree {
 | 
						|
	if degree <= 1 {
 | 
						|
		panic("bad degree")
 | 
						|
	}
 | 
						|
	return &BTree{
 | 
						|
		degree:   degree,
 | 
						|
		freelist: f,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// items stores items in a node.
 | 
						|
type items []Item
 | 
						|
 | 
						|
// insertAt inserts a value into the given index, pushing all subsequent values
 | 
						|
// forward.
 | 
						|
func (s *items) insertAt(index int, item Item) {
 | 
						|
	*s = append(*s, nil)
 | 
						|
	if index < len(*s) {
 | 
						|
		copy((*s)[index+1:], (*s)[index:])
 | 
						|
	}
 | 
						|
	(*s)[index] = item
 | 
						|
}
 | 
						|
 | 
						|
// removeAt removes a value at a given index, pulling all subsequent values
 | 
						|
// back.
 | 
						|
func (s *items) removeAt(index int) Item {
 | 
						|
	item := (*s)[index]
 | 
						|
	(*s)[index] = nil
 | 
						|
	copy((*s)[index:], (*s)[index+1:])
 | 
						|
	*s = (*s)[:len(*s)-1]
 | 
						|
	return item
 | 
						|
}
 | 
						|
 | 
						|
// pop removes and returns the last element in the list.
 | 
						|
func (s *items) pop() (out Item) {
 | 
						|
	index := len(*s) - 1
 | 
						|
	out = (*s)[index]
 | 
						|
	(*s)[index] = nil
 | 
						|
	*s = (*s)[:index]
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// find returns the index where the given item should be inserted into this
 | 
						|
// list.  'found' is true if the item already exists in the list at the given
 | 
						|
// index.
 | 
						|
func (s items) find(item Item) (index int, found bool) {
 | 
						|
	i := sort.Search(len(s), func(i int) bool {
 | 
						|
		return item.Less(s[i])
 | 
						|
	})
 | 
						|
	if i > 0 && !s[i-1].Less(item) {
 | 
						|
		return i - 1, true
 | 
						|
	}
 | 
						|
	return i, false
 | 
						|
}
 | 
						|
 | 
						|
// children stores child nodes in a node.
 | 
						|
type children []*node
 | 
						|
 | 
						|
// insertAt inserts a value into the given index, pushing all subsequent values
 | 
						|
// forward.
 | 
						|
func (s *children) insertAt(index int, n *node) {
 | 
						|
	*s = append(*s, nil)
 | 
						|
	if index < len(*s) {
 | 
						|
		copy((*s)[index+1:], (*s)[index:])
 | 
						|
	}
 | 
						|
	(*s)[index] = n
 | 
						|
}
 | 
						|
 | 
						|
// removeAt removes a value at a given index, pulling all subsequent values
 | 
						|
// back.
 | 
						|
func (s *children) removeAt(index int) *node {
 | 
						|
	n := (*s)[index]
 | 
						|
	(*s)[index] = nil
 | 
						|
	copy((*s)[index:], (*s)[index+1:])
 | 
						|
	*s = (*s)[:len(*s)-1]
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// pop removes and returns the last element in the list.
 | 
						|
func (s *children) pop() (out *node) {
 | 
						|
	index := len(*s) - 1
 | 
						|
	out = (*s)[index]
 | 
						|
	(*s)[index] = nil
 | 
						|
	*s = (*s)[:index]
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// node is an internal node in a tree.
 | 
						|
//
 | 
						|
// It must at all times maintain the invariant that either
 | 
						|
//   * len(children) == 0, len(items) unconstrained
 | 
						|
//   * len(children) == len(items) + 1
 | 
						|
type node struct {
 | 
						|
	items    items
 | 
						|
	children children
 | 
						|
	t        *BTree
 | 
						|
}
 | 
						|
 | 
						|
// split splits the given node at the given index.  The current node shrinks,
 | 
						|
// and this function returns the item that existed at that index and a new node
 | 
						|
// containing all items/children after it.
 | 
						|
func (n *node) split(i int) (Item, *node) {
 | 
						|
	item := n.items[i]
 | 
						|
	next := n.t.newNode()
 | 
						|
	next.items = append(next.items, n.items[i+1:]...)
 | 
						|
	n.items = n.items[:i]
 | 
						|
	if len(n.children) > 0 {
 | 
						|
		next.children = append(next.children, n.children[i+1:]...)
 | 
						|
		n.children = n.children[:i+1]
 | 
						|
	}
 | 
						|
	return item, next
 | 
						|
}
 | 
						|
 | 
						|
// maybeSplitChild checks if a child should be split, and if so splits it.
 | 
						|
// Returns whether or not a split occurred.
 | 
						|
func (n *node) maybeSplitChild(i, maxItems int) bool {
 | 
						|
	if len(n.children[i].items) < maxItems {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	first := n.children[i]
 | 
						|
	item, second := first.split(maxItems / 2)
 | 
						|
	n.items.insertAt(i, item)
 | 
						|
	n.children.insertAt(i+1, second)
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// insert inserts an item into the subtree rooted at this node, making sure
 | 
						|
// no nodes in the subtree exceed maxItems items.  Should an equivalent item be
 | 
						|
// be found/replaced by insert, it will be returned.
 | 
						|
func (n *node) insert(item Item, maxItems int) Item {
 | 
						|
	i, found := n.items.find(item)
 | 
						|
	if found {
 | 
						|
		out := n.items[i]
 | 
						|
		n.items[i] = item
 | 
						|
		return out
 | 
						|
	}
 | 
						|
	if len(n.children) == 0 {
 | 
						|
		n.items.insertAt(i, item)
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	if n.maybeSplitChild(i, maxItems) {
 | 
						|
		inTree := n.items[i]
 | 
						|
		switch {
 | 
						|
		case item.Less(inTree):
 | 
						|
			// no change, we want first split node
 | 
						|
		case inTree.Less(item):
 | 
						|
			i++ // we want second split node
 | 
						|
		default:
 | 
						|
			out := n.items[i]
 | 
						|
			n.items[i] = item
 | 
						|
			return out
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return n.children[i].insert(item, maxItems)
 | 
						|
}
 | 
						|
 | 
						|
// get finds the given key in the subtree and returns it.
 | 
						|
func (n *node) get(key Item) Item {
 | 
						|
	i, found := n.items.find(key)
 | 
						|
	if found {
 | 
						|
		return n.items[i]
 | 
						|
	} else if len(n.children) > 0 {
 | 
						|
		return n.children[i].get(key)
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// min returns the first item in the subtree.
 | 
						|
func min(n *node) Item {
 | 
						|
	if n == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	for len(n.children) > 0 {
 | 
						|
		n = n.children[0]
 | 
						|
	}
 | 
						|
	if len(n.items) == 0 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return n.items[0]
 | 
						|
}
 | 
						|
 | 
						|
// max returns the last item in the subtree.
 | 
						|
func max(n *node) Item {
 | 
						|
	if n == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	for len(n.children) > 0 {
 | 
						|
		n = n.children[len(n.children)-1]
 | 
						|
	}
 | 
						|
	if len(n.items) == 0 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return n.items[len(n.items)-1]
 | 
						|
}
 | 
						|
 | 
						|
// toRemove details what item to remove in a node.remove call.
 | 
						|
type toRemove int
 | 
						|
 | 
						|
const (
 | 
						|
	removeItem toRemove = iota // removes the given item
 | 
						|
	removeMin                  // removes smallest item in the subtree
 | 
						|
	removeMax                  // removes largest item in the subtree
 | 
						|
)
 | 
						|
 | 
						|
// remove removes an item from the subtree rooted at this node.
 | 
						|
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
 | 
						|
	var i int
 | 
						|
	var found bool
 | 
						|
	switch typ {
 | 
						|
	case removeMax:
 | 
						|
		if len(n.children) == 0 {
 | 
						|
			return n.items.pop()
 | 
						|
		}
 | 
						|
		i = len(n.items)
 | 
						|
	case removeMin:
 | 
						|
		if len(n.children) == 0 {
 | 
						|
			return n.items.removeAt(0)
 | 
						|
		}
 | 
						|
		i = 0
 | 
						|
	case removeItem:
 | 
						|
		i, found = n.items.find(item)
 | 
						|
		if len(n.children) == 0 {
 | 
						|
			if found {
 | 
						|
				return n.items.removeAt(i)
 | 
						|
			}
 | 
						|
			return nil
 | 
						|
		}
 | 
						|
	default:
 | 
						|
		panic("invalid type")
 | 
						|
	}
 | 
						|
	// If we get to here, we have children.
 | 
						|
	child := n.children[i]
 | 
						|
	if len(child.items) <= minItems {
 | 
						|
		return n.growChildAndRemove(i, item, minItems, typ)
 | 
						|
	}
 | 
						|
	// Either we had enough items to begin with, or we've done some
 | 
						|
	// merging/stealing, because we've got enough now and we're ready to return
 | 
						|
	// stuff.
 | 
						|
	if found {
 | 
						|
		// The item exists at index 'i', and the child we've selected can give us a
 | 
						|
		// predecessor, since if we've gotten here it's got > minItems items in it.
 | 
						|
		out := n.items[i]
 | 
						|
		// We use our special-case 'remove' call with typ=maxItem to pull the
 | 
						|
		// predecessor of item i (the rightmost leaf of our immediate left child)
 | 
						|
		// and set it into where we pulled the item from.
 | 
						|
		n.items[i] = child.remove(nil, minItems, removeMax)
 | 
						|
		return out
 | 
						|
	}
 | 
						|
	// Final recursive call.  Once we're here, we know that the item isn't in this
 | 
						|
	// node and that the child is big enough to remove from.
 | 
						|
	return child.remove(item, minItems, typ)
 | 
						|
}
 | 
						|
 | 
						|
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
 | 
						|
// item from it while keeping it at minItems, then calls remove to actually
 | 
						|
// remove it.
 | 
						|
//
 | 
						|
// Most documentation says we have to do two sets of special casing:
 | 
						|
//   1) item is in this node
 | 
						|
//   2) item is in child
 | 
						|
// In both cases, we need to handle the two subcases:
 | 
						|
//   A) node has enough values that it can spare one
 | 
						|
//   B) node doesn't have enough values
 | 
						|
// For the latter, we have to check:
 | 
						|
//   a) left sibling has node to spare
 | 
						|
//   b) right sibling has node to spare
 | 
						|
//   c) we must merge
 | 
						|
// To simplify our code here, we handle cases #1 and #2 the same:
 | 
						|
// If a node doesn't have enough items, we make sure it does (using a,b,c).
 | 
						|
// We then simply redo our remove call, and the second time (regardless of
 | 
						|
// whether we're in case 1 or 2), we'll have enough items and can guarantee
 | 
						|
// that we hit case A.
 | 
						|
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
 | 
						|
	child := n.children[i]
 | 
						|
	if i > 0 && len(n.children[i-1].items) > minItems {
 | 
						|
		// Steal from left child
 | 
						|
		stealFrom := n.children[i-1]
 | 
						|
		stolenItem := stealFrom.items.pop()
 | 
						|
		child.items.insertAt(0, n.items[i-1])
 | 
						|
		n.items[i-1] = stolenItem
 | 
						|
		if len(stealFrom.children) > 0 {
 | 
						|
			child.children.insertAt(0, stealFrom.children.pop())
 | 
						|
		}
 | 
						|
	} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
 | 
						|
		// steal from right child
 | 
						|
		stealFrom := n.children[i+1]
 | 
						|
		stolenItem := stealFrom.items.removeAt(0)
 | 
						|
		child.items = append(child.items, n.items[i])
 | 
						|
		n.items[i] = stolenItem
 | 
						|
		if len(stealFrom.children) > 0 {
 | 
						|
			child.children = append(child.children, stealFrom.children.removeAt(0))
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if i >= len(n.items) {
 | 
						|
			i--
 | 
						|
			child = n.children[i]
 | 
						|
		}
 | 
						|
		// merge with right child
 | 
						|
		mergeItem := n.items.removeAt(i)
 | 
						|
		mergeChild := n.children.removeAt(i + 1)
 | 
						|
		child.items = append(child.items, mergeItem)
 | 
						|
		child.items = append(child.items, mergeChild.items...)
 | 
						|
		child.children = append(child.children, mergeChild.children...)
 | 
						|
		n.t.freeNode(mergeChild)
 | 
						|
	}
 | 
						|
	return n.remove(item, minItems, typ)
 | 
						|
}
 | 
						|
 | 
						|
// iterate provides a simple method for iterating over elements in the tree.
 | 
						|
// It could probably use some work to be extra-efficient (it calls from() a
 | 
						|
// little more than it should), but it works pretty well for now.
 | 
						|
//
 | 
						|
// It requires that 'from' and 'to' both return true for values we should hit
 | 
						|
// with the iterator.  It should also be the case that 'from' returns true for
 | 
						|
// values less than or equal to values 'to' returns true for, and 'to'
 | 
						|
// returns true for values greater than or equal to those that 'from'
 | 
						|
// does.
 | 
						|
func (n *node) iterate(from, to func(Item) bool, iter ItemIterator) bool {
 | 
						|
	for i, item := range n.items {
 | 
						|
		if !from(item) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if len(n.children) > 0 && !n.children[i].iterate(from, to, iter) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		if !to(item) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		if !iter(item) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if len(n.children) > 0 {
 | 
						|
		return n.children[len(n.children)-1].iterate(from, to, iter)
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// Used for testing/debugging purposes.
 | 
						|
func (n *node) print(w io.Writer, level int) {
 | 
						|
	fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat("  ", level), n.items)
 | 
						|
	for _, c := range n.children {
 | 
						|
		c.print(w, level+1)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// BTree is an implementation of a B-Tree.
 | 
						|
//
 | 
						|
// BTree stores Item instances in an ordered structure, allowing easy insertion,
 | 
						|
// removal, and iteration.
 | 
						|
//
 | 
						|
// Write operations are not safe for concurrent mutation by multiple
 | 
						|
// goroutines, but Read operations are.
 | 
						|
type BTree struct {
 | 
						|
	degree   int
 | 
						|
	length   int
 | 
						|
	root     *node
 | 
						|
	freelist *FreeList
 | 
						|
}
 | 
						|
 | 
						|
// maxItems returns the max number of items to allow per node.
 | 
						|
func (t *BTree) maxItems() int {
 | 
						|
	return t.degree*2 - 1
 | 
						|
}
 | 
						|
 | 
						|
// minItems returns the min number of items to allow per node (ignored for the
 | 
						|
// root node).
 | 
						|
func (t *BTree) minItems() int {
 | 
						|
	return t.degree - 1
 | 
						|
}
 | 
						|
 | 
						|
func (t *BTree) newNode() (n *node) {
 | 
						|
	n = t.freelist.newNode()
 | 
						|
	n.t = t
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
func (t *BTree) freeNode(n *node) {
 | 
						|
	for i := range n.items {
 | 
						|
		n.items[i] = nil // clear to allow GC
 | 
						|
	}
 | 
						|
	n.items = n.items[:0]
 | 
						|
	for i := range n.children {
 | 
						|
		n.children[i] = nil // clear to allow GC
 | 
						|
	}
 | 
						|
	n.children = n.children[:0]
 | 
						|
	n.t = nil // clear to allow GC
 | 
						|
	t.freelist.freeNode(n)
 | 
						|
}
 | 
						|
 | 
						|
// ReplaceOrInsert adds the given item to the tree.  If an item in the tree
 | 
						|
// already equals the given one, it is removed from the tree and returned.
 | 
						|
// Otherwise, nil is returned.
 | 
						|
//
 | 
						|
// nil cannot be added to the tree (will panic).
 | 
						|
func (t *BTree) ReplaceOrInsert(item Item) Item {
 | 
						|
	if item == nil {
 | 
						|
		panic("nil item being added to BTree")
 | 
						|
	}
 | 
						|
	if t.root == nil {
 | 
						|
		t.root = t.newNode()
 | 
						|
		t.root.items = append(t.root.items, item)
 | 
						|
		t.length++
 | 
						|
		return nil
 | 
						|
	} else if len(t.root.items) >= t.maxItems() {
 | 
						|
		item2, second := t.root.split(t.maxItems() / 2)
 | 
						|
		oldroot := t.root
 | 
						|
		t.root = t.newNode()
 | 
						|
		t.root.items = append(t.root.items, item2)
 | 
						|
		t.root.children = append(t.root.children, oldroot, second)
 | 
						|
	}
 | 
						|
	out := t.root.insert(item, t.maxItems())
 | 
						|
	if out == nil {
 | 
						|
		t.length++
 | 
						|
	}
 | 
						|
	return out
 | 
						|
}
 | 
						|
 | 
						|
// Delete removes an item equal to the passed in item from the tree, returning
 | 
						|
// it.  If no such item exists, returns nil.
 | 
						|
func (t *BTree) Delete(item Item) Item {
 | 
						|
	return t.deleteItem(item, removeItem)
 | 
						|
}
 | 
						|
 | 
						|
// DeleteMin removes the smallest item in the tree and returns it.
 | 
						|
// If no such item exists, returns nil.
 | 
						|
func (t *BTree) DeleteMin() Item {
 | 
						|
	return t.deleteItem(nil, removeMin)
 | 
						|
}
 | 
						|
 | 
						|
// DeleteMax removes the largest item in the tree and returns it.
 | 
						|
// If no such item exists, returns nil.
 | 
						|
func (t *BTree) DeleteMax() Item {
 | 
						|
	return t.deleteItem(nil, removeMax)
 | 
						|
}
 | 
						|
 | 
						|
func (t *BTree) deleteItem(item Item, typ toRemove) Item {
 | 
						|
	if t.root == nil || len(t.root.items) == 0 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	out := t.root.remove(item, t.minItems(), typ)
 | 
						|
	if len(t.root.items) == 0 && len(t.root.children) > 0 {
 | 
						|
		oldroot := t.root
 | 
						|
		t.root = t.root.children[0]
 | 
						|
		t.freeNode(oldroot)
 | 
						|
	}
 | 
						|
	if out != nil {
 | 
						|
		t.length--
 | 
						|
	}
 | 
						|
	return out
 | 
						|
}
 | 
						|
 | 
						|
// AscendRange calls the iterator for every value in the tree within the range
 | 
						|
// [greaterOrEqual, lessThan), until iterator returns false.
 | 
						|
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
 | 
						|
	if t.root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	t.root.iterate(
 | 
						|
		func(a Item) bool { return !a.Less(greaterOrEqual) },
 | 
						|
		func(a Item) bool { return a.Less(lessThan) },
 | 
						|
		iterator)
 | 
						|
}
 | 
						|
 | 
						|
// AscendLessThan calls the iterator for every value in the tree within the range
 | 
						|
// [first, pivot), until iterator returns false.
 | 
						|
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
 | 
						|
	if t.root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	t.root.iterate(
 | 
						|
		func(a Item) bool { return true },
 | 
						|
		func(a Item) bool { return a.Less(pivot) },
 | 
						|
		iterator)
 | 
						|
}
 | 
						|
 | 
						|
// AscendGreaterOrEqual calls the iterator for every value in the tree within
 | 
						|
// the range [pivot, last], until iterator returns false.
 | 
						|
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
 | 
						|
	if t.root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	t.root.iterate(
 | 
						|
		func(a Item) bool { return !a.Less(pivot) },
 | 
						|
		func(a Item) bool { return true },
 | 
						|
		iterator)
 | 
						|
}
 | 
						|
 | 
						|
// Ascend calls the iterator for every value in the tree within the range
 | 
						|
// [first, last], until iterator returns false.
 | 
						|
func (t *BTree) Ascend(iterator ItemIterator) {
 | 
						|
	if t.root == nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	t.root.iterate(
 | 
						|
		func(a Item) bool { return true },
 | 
						|
		func(a Item) bool { return true },
 | 
						|
		iterator)
 | 
						|
}
 | 
						|
 | 
						|
// Get looks for the key item in the tree, returning it.  It returns nil if
 | 
						|
// unable to find that item.
 | 
						|
func (t *BTree) Get(key Item) Item {
 | 
						|
	if t.root == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return t.root.get(key)
 | 
						|
}
 | 
						|
 | 
						|
// Min returns the smallest item in the tree, or nil if the tree is empty.
 | 
						|
func (t *BTree) Min() Item {
 | 
						|
	return min(t.root)
 | 
						|
}
 | 
						|
 | 
						|
// Max returns the largest item in the tree, or nil if the tree is empty.
 | 
						|
func (t *BTree) Max() Item {
 | 
						|
	return max(t.root)
 | 
						|
}
 | 
						|
 | 
						|
// Has returns true if the given key is in the tree.
 | 
						|
func (t *BTree) Has(key Item) bool {
 | 
						|
	return t.Get(key) != nil
 | 
						|
}
 | 
						|
 | 
						|
// Len returns the number of items currently in the tree.
 | 
						|
func (t *BTree) Len() int {
 | 
						|
	return t.length
 | 
						|
}
 | 
						|
 | 
						|
// Int implements the Item interface for integers.
 | 
						|
type Int int
 | 
						|
 | 
						|
// Less returns true if int(a) < int(b).
 | 
						|
func (a Int) Less(b Item) bool {
 | 
						|
	return a < b.(Int)
 | 
						|
}
 |