apiserver/pkg/storage/cacher/cacher.go

1409 lines
50 KiB
Go

/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package cacher
import (
"context"
"fmt"
"net/http"
"reflect"
"strings"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
"google.golang.org/grpc/metadata"
"k8s.io/apimachinery/pkg/api/errors"
"k8s.io/apimachinery/pkg/api/meta"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/conversion"
"k8s.io/apimachinery/pkg/fields"
"k8s.io/apimachinery/pkg/labels"
"k8s.io/apimachinery/pkg/runtime"
"k8s.io/apimachinery/pkg/runtime/schema"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/apimachinery/pkg/watch"
"k8s.io/apiserver/pkg/audit"
"k8s.io/apiserver/pkg/endpoints/request"
"k8s.io/apiserver/pkg/features"
"k8s.io/apiserver/pkg/storage"
"k8s.io/apiserver/pkg/storage/cacher/delegator"
"k8s.io/apiserver/pkg/storage/cacher/metrics"
"k8s.io/apiserver/pkg/storage/cacher/progress"
etcdfeature "k8s.io/apiserver/pkg/storage/feature"
utilfeature "k8s.io/apiserver/pkg/util/feature"
"k8s.io/client-go/tools/cache"
"k8s.io/component-base/tracing"
"k8s.io/klog/v2"
"k8s.io/utils/clock"
"k8s.io/utils/ptr"
)
var (
emptyFunc = func(bool) {}
coreNamespaceResource = schema.GroupResource{Group: "", Resource: "namespaces"}
)
const (
// storageWatchListPageSize is the cacher's request chunk size of
// initial and resync watch lists to storage.
storageWatchListPageSize = int64(10000)
// DefaultEventFreshDuration is the default time duration of events
// we want to keep.
// We set it to defaultBookmarkFrequency plus epsilon to maximize
// chances that last bookmark was sent within kept history, at the
// same time, minimizing the needed memory usage.
DefaultEventFreshDuration = defaultBookmarkFrequency + 15*time.Second
// defaultBookmarkFrequency defines how frequently watch bookmarks should be send
// in addition to sending a bookmark right before watch deadline.
defaultBookmarkFrequency = time.Minute
)
// Config contains the configuration for a given Cache.
type Config struct {
// An underlying storage.Interface.
Storage storage.Interface
// An underlying storage.Versioner.
Versioner storage.Versioner
// The GroupResource the cacher is caching. Used for disambiguating *unstructured.Unstructured (CRDs) in logging
// and metrics.
GroupResource schema.GroupResource
// EventsHistoryWindow specifies minimum history duration that storage is keeping.
// If lower than DefaultEventFreshDuration, the cache creation will fail.
EventsHistoryWindow time.Duration
// The Cache will be caching objects of a given Type and assumes that they
// are all stored under ResourcePrefix directory in the underlying database.
ResourcePrefix string
// KeyFunc is used to get a key in the underlying storage for a given object.
KeyFunc func(runtime.Object) (string, error)
// GetAttrsFunc is used to get object labels, fields
GetAttrsFunc func(runtime.Object) (label labels.Set, field fields.Set, err error)
// IndexerFuncs is used for optimizing amount of watchers that
// needs to process an incoming event.
IndexerFuncs storage.IndexerFuncs
// Indexers is used to accelerate the list operation, falls back to regular list
// operation if no indexer found.
Indexers *cache.Indexers
// NewFunc is a function that creates new empty object storing a object of type Type.
NewFunc func() runtime.Object
// NewList is a function that creates new empty object storing a list of
// objects of type Type.
NewListFunc func() runtime.Object
Codec runtime.Codec
Clock clock.WithTicker
}
type watchersMap map[int]*cacheWatcher
func (wm watchersMap) addWatcher(w *cacheWatcher, number int) {
wm[number] = w
}
func (wm watchersMap) deleteWatcher(number int) {
delete(wm, number)
}
func (wm watchersMap) terminateAll(done func(*cacheWatcher)) {
for key, watcher := range wm {
delete(wm, key)
done(watcher)
}
}
type indexedWatchers struct {
allWatchers map[namespacedName]watchersMap
valueWatchers map[string]watchersMap
}
func (i *indexedWatchers) addWatcher(w *cacheWatcher, number int, scope namespacedName, value string, supported bool) {
if supported {
if _, ok := i.valueWatchers[value]; !ok {
i.valueWatchers[value] = watchersMap{}
}
i.valueWatchers[value].addWatcher(w, number)
} else {
scopedWatchers, ok := i.allWatchers[scope]
if !ok {
scopedWatchers = watchersMap{}
i.allWatchers[scope] = scopedWatchers
}
scopedWatchers.addWatcher(w, number)
}
}
func (i *indexedWatchers) deleteWatcher(number int, scope namespacedName, value string, supported bool) {
if supported {
i.valueWatchers[value].deleteWatcher(number)
if len(i.valueWatchers[value]) == 0 {
delete(i.valueWatchers, value)
}
} else {
i.allWatchers[scope].deleteWatcher(number)
if len(i.allWatchers[scope]) == 0 {
delete(i.allWatchers, scope)
}
}
}
func (i *indexedWatchers) terminateAll(groupResource schema.GroupResource, done func(*cacheWatcher)) {
// note that we don't have to call setDrainInputBufferLocked method on the watchers
// because we take advantage of the default value - stop immediately
// also watchers that have had already its draining strategy set
// are no longer available (they were removed from the allWatchers and the valueWatchers maps)
if len(i.allWatchers) > 0 || len(i.valueWatchers) > 0 {
klog.Warningf("Terminating all watchers from cacher %v", groupResource)
}
for _, watchers := range i.allWatchers {
watchers.terminateAll(done)
}
for _, watchers := range i.valueWatchers {
watchers.terminateAll(done)
}
i.allWatchers = map[namespacedName]watchersMap{}
i.valueWatchers = map[string]watchersMap{}
}
// As we don't need a high precision here, we keep all watchers timeout within a
// second in a bucket, and pop up them once at the timeout. To be more specific,
// if you set fire time at X, you can get the bookmark within (X-1,X+1) period.
type watcherBookmarkTimeBuckets struct {
// the key of watcherBuckets is the number of seconds since createTime
watchersBuckets map[int64][]*cacheWatcher
createTime time.Time
startBucketID int64
clock clock.Clock
bookmarkFrequency time.Duration
}
func newTimeBucketWatchers(clock clock.Clock, bookmarkFrequency time.Duration) *watcherBookmarkTimeBuckets {
return &watcherBookmarkTimeBuckets{
watchersBuckets: make(map[int64][]*cacheWatcher),
createTime: clock.Now(),
startBucketID: 0,
clock: clock,
bookmarkFrequency: bookmarkFrequency,
}
}
// adds a watcher to the bucket, if the deadline is before the start, it will be
// added to the first one.
func (t *watcherBookmarkTimeBuckets) addWatcherThreadUnsafe(w *cacheWatcher) bool {
// note that the returned time can be before t.createTime,
// especially in cases when the nextBookmarkTime method
// give us the zero value of type Time
// so buckedID can hold a negative value
nextTime, ok := w.nextBookmarkTime(t.clock.Now(), t.bookmarkFrequency)
if !ok {
return false
}
bucketID := int64(nextTime.Sub(t.createTime) / time.Second)
if bucketID < t.startBucketID {
bucketID = t.startBucketID
}
watchers := t.watchersBuckets[bucketID]
t.watchersBuckets[bucketID] = append(watchers, w)
return true
}
func (t *watcherBookmarkTimeBuckets) popExpiredWatchersThreadUnsafe() [][]*cacheWatcher {
currentBucketID := int64(t.clock.Since(t.createTime) / time.Second)
// There should be one or two elements in almost all cases
expiredWatchers := make([][]*cacheWatcher, 0, 2)
for ; t.startBucketID <= currentBucketID; t.startBucketID++ {
if watchers, ok := t.watchersBuckets[t.startBucketID]; ok {
delete(t.watchersBuckets, t.startBucketID)
expiredWatchers = append(expiredWatchers, watchers)
}
}
return expiredWatchers
}
type filterWithAttrsFunc func(key string, l labels.Set, f fields.Set) bool
type indexedTriggerFunc struct {
indexName string
indexerFunc storage.IndexerFunc
}
// Cacher is responsible for serving WATCH and LIST requests for a given
// resource from its internal cache and updating its cache in the background
// based on the underlying storage contents.
// Cacher implements storage.Interface (although most of the calls are just
// delegated to the underlying storage).
type Cacher struct {
// HighWaterMarks for performance debugging.
// Important: Since HighWaterMark is using sync/atomic, it has to be at the top of the struct due to a bug on 32-bit platforms
// See: https://golang.org/pkg/sync/atomic/ for more information
incomingHWM storage.HighWaterMark
// Incoming events that should be dispatched to watchers.
incoming chan watchCacheEvent
resourcePrefix string
sync.RWMutex
// Before accessing the cacher's cache, wait for the ready to be ok.
// This is necessary to prevent users from accessing structures that are
// uninitialized or are being repopulated right now.
// ready needs to be set to false when the cacher is paused or stopped.
// ready needs to be set to true when the cacher is ready to use after
// initialization.
ready *ready
// Underlying storage.Interface.
storage storage.Interface
// Expected type of objects in the underlying cache.
objectType reflect.Type
// Used for logging, to disambiguate *unstructured.Unstructured (CRDs)
groupResource schema.GroupResource
// "sliding window" of recent changes of objects and the current state.
watchCache *watchCache
reflector *cache.Reflector
// Versioner is used to handle resource versions.
versioner storage.Versioner
// newFunc is a function that creates new empty object storing a object of type Type.
newFunc func() runtime.Object
// newListFunc is a function that creates new empty list for storing objects of type Type.
newListFunc func() runtime.Object
// indexedTrigger is used for optimizing amount of watchers that needs to process
// an incoming event.
indexedTrigger *indexedTriggerFunc
// watchers is mapping from the value of trigger function that a
// watcher is interested into the watchers
watcherIdx int
watchers indexedWatchers
// Defines a time budget that can be spend on waiting for not-ready watchers
// while dispatching event before shutting them down.
dispatchTimeoutBudget timeBudget
// Handling graceful termination.
stopLock sync.RWMutex
stopped bool
stopCh chan struct{}
stopWg sync.WaitGroup
clock clock.Clock
// timer is used to avoid unnecessary allocations in underlying watchers.
timer *time.Timer
// dispatching determines whether there is currently dispatching of
// any event in flight.
dispatching bool
// watchersBuffer is a list of watchers potentially interested in currently
// dispatched event.
watchersBuffer []*cacheWatcher
// blockedWatchers is a list of watchers whose buffer is currently full.
blockedWatchers []*cacheWatcher
// watchersToStop is a list of watchers that were supposed to be stopped
// during current dispatching, but stopping was deferred to the end of
// dispatching that event to avoid race with closing channels in watchers.
watchersToStop []*cacheWatcher
// Maintain a timeout queue to send the bookmark event before the watcher times out.
// Note that this field when accessed MUST be protected by the Cacher.lock.
bookmarkWatchers *watcherBookmarkTimeBuckets
// expiredBookmarkWatchers is a list of watchers that were expired and need to be schedule for a next bookmark event
expiredBookmarkWatchers []*cacheWatcher
}
// NewCacherFromConfig creates a new Cacher responsible for servicing WATCH and LIST requests from
// its internal cache and updating its cache in the background based on the
// given configuration.
func NewCacherFromConfig(config Config) (*Cacher, error) {
stopCh := make(chan struct{})
obj := config.NewFunc()
// Give this error when it is constructed rather than when you get the
// first watch item, because it's much easier to track down that way.
if err := runtime.CheckCodec(config.Codec, obj); err != nil {
return nil, fmt.Errorf("storage codec doesn't seem to match given type: %v", err)
}
var indexedTrigger *indexedTriggerFunc
if config.IndexerFuncs != nil {
// For now, we don't support multiple trigger functions defined
// for a given resource.
if len(config.IndexerFuncs) > 1 {
return nil, fmt.Errorf("cacher %s doesn't support more than one IndexerFunc: ", reflect.TypeOf(obj).String())
}
for key, value := range config.IndexerFuncs {
if value != nil {
indexedTrigger = &indexedTriggerFunc{
indexName: key,
indexerFunc: value,
}
}
}
}
if config.Clock == nil {
config.Clock = clock.RealClock{}
}
objType := reflect.TypeOf(obj)
cacher := &Cacher{
resourcePrefix: config.ResourcePrefix,
ready: newReady(config.Clock),
storage: config.Storage,
objectType: objType,
groupResource: config.GroupResource,
versioner: config.Versioner,
newFunc: config.NewFunc,
newListFunc: config.NewListFunc,
indexedTrigger: indexedTrigger,
watcherIdx: 0,
watchers: indexedWatchers{
allWatchers: make(map[namespacedName]watchersMap),
valueWatchers: make(map[string]watchersMap),
},
// TODO: Figure out the correct value for the buffer size.
incoming: make(chan watchCacheEvent, 100),
dispatchTimeoutBudget: newTimeBudget(),
// We need to (potentially) stop both:
// - wait.Until go-routine
// - reflector.ListAndWatch
// and there are no guarantees on the order that they will stop.
// So we will be simply closing the channel, and synchronizing on the WaitGroup.
stopCh: stopCh,
clock: config.Clock,
timer: time.NewTimer(time.Duration(0)),
bookmarkWatchers: newTimeBucketWatchers(config.Clock, defaultBookmarkFrequency),
}
// Ensure that timer is stopped.
if !cacher.timer.Stop() {
// Consume triggered (but not yet received) timer event
// so that future reuse does not get a spurious timeout.
<-cacher.timer.C
}
var contextMetadata metadata.MD
if utilfeature.DefaultFeatureGate.Enabled(features.SeparateCacheWatchRPC) {
// Add grpc context metadata to watch and progress notify requests done by cacher to:
// * Prevent starvation of watch opened by cacher, by moving it to separate Watch RPC than watch request that bypass cacher.
// * Ensure that progress notification requests are executed on the same Watch RPC as their watch, which is required for it to work.
contextMetadata = metadata.New(map[string]string{"source": "cache"})
}
eventFreshDuration := config.EventsHistoryWindow
if eventFreshDuration < DefaultEventFreshDuration {
return nil, fmt.Errorf("config.EventsHistoryWindow (%v) must not be below %v", eventFreshDuration, DefaultEventFreshDuration)
}
progressRequester := progress.NewConditionalProgressRequester(config.Storage.RequestWatchProgress, config.Clock, contextMetadata)
watchCache := newWatchCache(
config.KeyFunc, cacher.processEvent, config.GetAttrsFunc, config.Versioner, config.Indexers,
config.Clock, eventFreshDuration, config.GroupResource, progressRequester)
listerWatcher := NewListerWatcher(config.Storage, config.ResourcePrefix, config.NewListFunc, contextMetadata)
reflectorName := "storage/cacher.go:" + config.ResourcePrefix
reflector := cache.NewNamedReflector(reflectorName, listerWatcher, obj, watchCache, 0)
// Configure reflector's pager to for an appropriate pagination chunk size for fetching data from
// storage. The pager falls back to full list if paginated list calls fail due to an "Expired" error.
reflector.WatchListPageSize = storageWatchListPageSize
// When etcd loses leader for 3 cycles, it returns error "no leader".
// We don't want to terminate all watchers as recreating all watchers puts high load on api-server.
// In most of the cases, leader is reelected within few cycles.
reflector.MaxInternalErrorRetryDuration = time.Second * 30
// since the watch-list is provided by the watch cache instruct
// the reflector to issue a regular LIST against the store
reflector.UseWatchList = ptr.To(false)
cacher.watchCache = watchCache
cacher.reflector = reflector
go cacher.dispatchEvents()
go progressRequester.Run(stopCh)
cacher.stopWg.Add(1)
go func() {
defer cacher.stopWg.Done()
defer cacher.terminateAllWatchers()
wait.Until(
func() {
if !cacher.isStopped() {
cacher.startCaching(stopCh)
}
}, time.Second, stopCh,
)
}()
return cacher, nil
}
func (c *Cacher) startCaching(stopChannel <-chan struct{}) {
c.watchCache.SetOnReplace(func() {
c.ready.setReady()
klog.V(1).Infof("cacher (%v): initialized", c.groupResource.String())
metrics.WatchCacheInitializations.WithLabelValues(c.groupResource.String()).Inc()
})
var err error
defer func() {
c.ready.setError(err)
}()
c.terminateAllWatchers()
err = c.reflector.ListAndWatch(stopChannel)
if err != nil {
klog.Errorf("cacher (%v): unexpected ListAndWatch error: %v; reinitializing...", c.groupResource.String(), err)
}
}
type namespacedName struct {
namespace string
name string
}
func (c *Cacher) Watch(ctx context.Context, key string, opts storage.ListOptions) (watch.Interface, error) {
pred := opts.Predicate
requestedWatchRV, err := c.versioner.ParseResourceVersion(opts.ResourceVersion)
if err != nil {
return nil, err
}
var readyGeneration int
if utilfeature.DefaultFeatureGate.Enabled(features.ResilientWatchCacheInitialization) {
var err error
var downtime time.Duration
readyGeneration, downtime, err = c.ready.checkAndReadGeneration()
if err != nil {
return nil, errors.NewTooManyRequests(err.Error(), calculateRetryAfterForUnreadyCache(downtime))
}
} else {
readyGeneration, err = c.ready.waitAndReadGeneration(ctx)
if err != nil {
return nil, errors.NewServiceUnavailable(err.Error())
}
}
// determine the namespace and name scope of the watch, first from the request, secondarily from the field selector
scope := namespacedName{}
if requestNamespace, ok := request.NamespaceFrom(ctx); ok && len(requestNamespace) > 0 {
scope.namespace = requestNamespace
} else if selectorNamespace, ok := pred.Field.RequiresExactMatch("metadata.namespace"); ok {
scope.namespace = selectorNamespace
}
if requestInfo, ok := request.RequestInfoFrom(ctx); ok && requestInfo != nil && len(requestInfo.Name) > 0 {
scope.name = requestInfo.Name
} else if selectorName, ok := pred.Field.RequiresExactMatch("metadata.name"); ok {
scope.name = selectorName
}
// for request like '/api/v1/watch/namespaces/*', set scope.namespace to empty.
// namespaces don't populate metadata.namespace in ObjFields.
if c.groupResource == coreNamespaceResource && len(scope.namespace) > 0 && scope.namespace == scope.name {
scope.namespace = ""
}
triggerValue, triggerSupported := "", false
if c.indexedTrigger != nil {
for _, field := range pred.IndexFields {
if field == c.indexedTrigger.indexName {
if value, ok := pred.Field.RequiresExactMatch(field); ok {
triggerValue, triggerSupported = value, true
break
}
}
}
}
// It boils down to a tradeoff between:
// - having it as small as possible to reduce memory usage
// - having it large enough to ensure that watchers that need to process
// a bunch of changes have enough buffer to avoid from blocking other
// watchers on our watcher having a processing hiccup
chanSize := c.watchCache.suggestedWatchChannelSize(c.indexedTrigger != nil, triggerSupported)
// client-go is going to fall back to a standard LIST on any error
// returned for watch-list requests
if isListWatchRequest(opts) && !etcdfeature.DefaultFeatureSupportChecker.Supports(storage.RequestWatchProgress) {
return newErrWatcher(fmt.Errorf("a watch stream was requested by the client but the required storage feature %s is disabled", storage.RequestWatchProgress)), nil
}
// Determine the ResourceVersion to which the watch cache must be synchronized
requiredResourceVersion, err := c.getWatchCacheResourceVersion(ctx, requestedWatchRV, opts)
if err != nil {
return newErrWatcher(err), nil
}
// Determine a function that computes the bookmarkAfterResourceVersion
bookmarkAfterResourceVersionFn, err := c.getBookmarkAfterResourceVersionLockedFunc(requestedWatchRV, requiredResourceVersion, opts)
if err != nil {
return newErrWatcher(err), nil
}
// Determine watch timeout('0' means deadline is not set, ignore checking)
deadline, _ := ctx.Deadline()
identifier := fmt.Sprintf("key: %q, labels: %q, fields: %q", key, pred.Label, pred.Field)
// Create a watcher here to reduce memory allocations under lock,
// given that memory allocation may trigger GC and block the thread.
// Also note that emptyFunc is a placeholder, until we will be able
// to compute watcher.forget function (which has to happen under lock).
watcher := newCacheWatcher(
chanSize,
filterWithAttrsAndPrefixFunction(key, pred),
emptyFunc,
c.versioner,
deadline,
pred.AllowWatchBookmarks,
c.groupResource,
identifier,
)
// note that c.waitUntilWatchCacheFreshAndForceAllEvents must be called without
// the c.watchCache.RLock held otherwise we are at risk of a deadlock
// mainly because c.watchCache.processEvent method won't be able to make progress
//
// moreover even though the c.waitUntilWatchCacheFreshAndForceAllEvents acquires a lock
// it is safe to release the lock after the method finishes because we don't require
// any atomicity between the call to the method and further calls that actually get the events.
err = c.waitUntilWatchCacheFreshAndForceAllEvents(ctx, requiredResourceVersion, opts)
if err != nil {
return newErrWatcher(err), nil
}
// We explicitly use thread unsafe version and do locking ourself to ensure that
// no new events will be processed in the meantime. The watchCache will be unlocked
// on return from this function.
// Note that we cannot do it under Cacher lock, to avoid a deadlock, since the
// underlying watchCache is calling processEvent under its lock.
c.watchCache.RLock()
defer c.watchCache.RUnlock()
var cacheInterval *watchCacheInterval
cacheInterval, err = c.watchCache.getAllEventsSinceLocked(requiredResourceVersion, key, opts)
if err != nil {
// To match the uncached watch implementation, once we have passed authn/authz/admission,
// and successfully parsed a resource version, other errors must fail with a watch event of type ERROR,
// rather than a directly returned error.
return newErrWatcher(err), nil
}
c.setInitialEventsEndBookmarkIfRequested(cacheInterval, opts, c.watchCache.resourceVersion)
addedWatcher := false
func() {
c.Lock()
defer c.Unlock()
if generation, _, err := c.ready.checkAndReadGeneration(); generation != readyGeneration || err != nil {
// We went unready or are already on a different generation.
// Avoid registering and starting the watch as it will have to be
// terminated immediately anyway.
return
}
// Update watcher.forget function once we can compute it.
watcher.forget = forgetWatcher(c, watcher, c.watcherIdx, scope, triggerValue, triggerSupported)
// Update the bookMarkAfterResourceVersion
watcher.setBookmarkAfterResourceVersion(bookmarkAfterResourceVersionFn())
c.watchers.addWatcher(watcher, c.watcherIdx, scope, triggerValue, triggerSupported)
addedWatcher = true
// Add it to the queue only when the client support watch bookmarks.
if watcher.allowWatchBookmarks {
c.bookmarkWatchers.addWatcherThreadUnsafe(watcher)
}
c.watcherIdx++
}()
if !addedWatcher {
// Watcher isn't really started at this point, so it's safe to just drop it.
//
// We're simulating the immediate watch termination, which boils down to simply
// closing the watcher.
return newImmediateCloseWatcher(), nil
}
go watcher.processInterval(ctx, cacheInterval, requiredResourceVersion)
return watcher, nil
}
func (c *Cacher) Get(ctx context.Context, key string, opts storage.GetOptions, objPtr runtime.Object) error {
getRV, err := c.versioner.ParseResourceVersion(opts.ResourceVersion)
if err != nil {
return err
}
objVal, err := conversion.EnforcePtr(objPtr)
if err != nil {
return err
}
obj, exists, readResourceVersion, err := c.watchCache.WaitUntilFreshAndGet(ctx, getRV, key)
if err != nil {
return err
}
if exists {
elem, ok := obj.(*storeElement)
if !ok {
return fmt.Errorf("non *storeElement returned from storage: %v", obj)
}
objVal.Set(reflect.ValueOf(elem.Object).Elem())
} else {
objVal.Set(reflect.Zero(objVal.Type()))
if !opts.IgnoreNotFound {
return storage.NewKeyNotFoundError(key, int64(readResourceVersion))
}
}
return nil
}
// computeListLimit determines whether the cacher should
// apply a limit to an incoming LIST request and returns its value.
//
// note that this function doesn't check RVM nor the Continuation token.
// these parameters are validated by the shouldDelegateList function.
//
// as of today, the limit is ignored for requests that set RV == 0
func computeListLimit(opts storage.ListOptions) int64 {
if opts.Predicate.Limit <= 0 || opts.ResourceVersion == "0" {
return 0
}
return opts.Predicate.Limit
}
func (c *Cacher) listItems(ctx context.Context, listRV uint64, key string, opts storage.ListOptions) (listResp, string, error) {
if !opts.Recursive {
obj, exists, readResourceVersion, err := c.watchCache.WaitUntilFreshAndGet(ctx, listRV, key)
if err != nil {
return listResp{}, "", err
}
if exists {
return listResp{Items: []interface{}{obj}, ResourceVersion: readResourceVersion}, "", nil
}
return listResp{ResourceVersion: readResourceVersion}, "", nil
}
return c.watchCache.WaitUntilFreshAndList(ctx, listRV, key, opts)
}
type listResp struct {
Items []interface{}
ResourceVersion uint64
}
// GetList implements storage.Interface
func (c *Cacher) GetList(ctx context.Context, key string, opts storage.ListOptions, listObj runtime.Object) error {
// For recursive lists, we need to make sure the key ended with "/" so that we only
// get children "directories". e.g. if we have key "/a", "/a/b", "/ab", getting keys
// with prefix "/a" will return all three, while with prefix "/a/" will return only
// "/a/b" which is the correct answer.
preparedKey := key
if opts.Recursive && !strings.HasSuffix(key, "/") {
preparedKey += "/"
}
listRV, err := c.versioner.ParseResourceVersion(opts.ResourceVersion)
if err != nil {
return err
}
ctx, span := tracing.Start(ctx, "cacher.GetList",
attribute.String("audit-id", audit.GetAuditIDTruncated(ctx)),
attribute.Stringer("type", c.groupResource))
defer span.End(500 * time.Millisecond)
if utilfeature.DefaultFeatureGate.Enabled(features.ResilientWatchCacheInitialization) {
if downtime, err := c.ready.check(); err != nil {
// If Cacher is not initialized, reject List requests
// as described in https://kep.k8s.io/4568
return errors.NewTooManyRequests(err.Error(), calculateRetryAfterForUnreadyCache(downtime))
}
} else {
if err := c.ready.wait(ctx); err != nil {
return errors.NewServiceUnavailable(err.Error())
}
}
span.AddEvent("Ready")
// List elements with at least 'listRV' from cache.
listPtr, err := meta.GetItemsPtr(listObj)
if err != nil {
return err
}
listVal, err := conversion.EnforcePtr(listPtr)
if err != nil {
return err
}
if listVal.Kind() != reflect.Slice {
return fmt.Errorf("need a pointer to slice, got %v", listVal.Kind())
}
resp, indexUsed, err := c.listItems(ctx, listRV, preparedKey, opts)
if err != nil {
return err
}
span.AddEvent("Listed items from cache", attribute.Int("count", len(resp.Items)))
// store pointer of eligible objects,
// Why not directly put object in the items of listObj?
// the elements in ListObject are Struct type, making slice will bring excessive memory consumption.
// so we try to delay this action as much as possible
var selectedObjects []runtime.Object
var lastSelectedObjectKey string
var hasMoreListItems bool
limit := computeListLimit(opts)
for i, obj := range resp.Items {
elem, ok := obj.(*storeElement)
if !ok {
return fmt.Errorf("non *storeElement returned from storage: %v", obj)
}
if opts.Predicate.MatchesObjectAttributes(elem.Labels, elem.Fields) {
selectedObjects = append(selectedObjects, elem.Object)
lastSelectedObjectKey = elem.Key
}
if limit > 0 && int64(len(selectedObjects)) >= limit {
hasMoreListItems = i < len(resp.Items)-1
break
}
}
if len(selectedObjects) == 0 {
// Ensure that we never return a nil Items pointer in the result for consistency.
listVal.Set(reflect.MakeSlice(listVal.Type(), 0, 0))
} else {
// Resize the slice appropriately, since we already know that size of result set
listVal.Set(reflect.MakeSlice(listVal.Type(), len(selectedObjects), len(selectedObjects)))
span.AddEvent("Resized result")
for i, o := range selectedObjects {
listVal.Index(i).Set(reflect.ValueOf(o).Elem())
}
}
span.AddEvent("Filtered items", attribute.Int("count", listVal.Len()))
if c.versioner != nil {
continueValue, remainingItemCount, err := storage.PrepareContinueToken(lastSelectedObjectKey, key, int64(resp.ResourceVersion), int64(len(resp.Items)), hasMoreListItems, opts)
if err != nil {
return err
}
if err = c.versioner.UpdateList(listObj, resp.ResourceVersion, continueValue, remainingItemCount); err != nil {
return err
}
}
metrics.RecordListCacheMetrics(c.resourcePrefix, indexUsed, len(resp.Items), listVal.Len())
return nil
}
// baseObjectThreadUnsafe omits locking for cachingObject.
func baseObjectThreadUnsafe(object runtime.Object) runtime.Object {
if co, ok := object.(*cachingObject); ok {
return co.object
}
return object
}
func (c *Cacher) triggerValuesThreadUnsafe(event *watchCacheEvent) ([]string, bool) {
if c.indexedTrigger == nil {
return nil, false
}
result := make([]string, 0, 2)
result = append(result, c.indexedTrigger.indexerFunc(baseObjectThreadUnsafe(event.Object)))
if event.PrevObject == nil {
return result, true
}
prevTriggerValue := c.indexedTrigger.indexerFunc(baseObjectThreadUnsafe(event.PrevObject))
if result[0] != prevTriggerValue {
result = append(result, prevTriggerValue)
}
return result, true
}
func (c *Cacher) processEvent(event *watchCacheEvent) {
if curLen := int64(len(c.incoming)); c.incomingHWM.Update(curLen) {
// Monitor if this gets backed up, and how much.
klog.V(1).Infof("cacher (%v): %v objects queued in incoming channel.", c.groupResource.String(), curLen)
}
c.incoming <- *event
}
func (c *Cacher) dispatchEvents() {
// Jitter to help level out any aggregate load.
bookmarkTimer := c.clock.NewTimer(wait.Jitter(time.Second, 0.25))
defer bookmarkTimer.Stop()
// The internal informer populates the RV as soon as it conducts
// The first successful sync with the underlying store.
// The cache must wait until this first sync is completed to be deemed ready.
// Since we cannot send a bookmark when the lastProcessedResourceVersion is 0,
// we poll aggressively for the first list RV before entering the dispatch loop.
lastProcessedResourceVersion := uint64(0)
if err := wait.PollUntilContextCancel(wait.ContextForChannel(c.stopCh), 10*time.Millisecond, true, func(_ context.Context) (bool, error) {
if rv := c.watchCache.getListResourceVersion(); rv != 0 {
lastProcessedResourceVersion = rv
return true, nil
}
return false, nil
}); err != nil {
// given the function above never returns error,
// the non-empty error means that the stopCh was closed
return
}
for {
select {
case event, ok := <-c.incoming:
if !ok {
return
}
// Don't dispatch bookmarks coming from the storage layer.
// They can be very frequent (even to the level of subseconds)
// to allow efficient watch resumption on kube-apiserver restarts,
// and propagating them down may overload the whole system.
//
// TODO: If at some point we decide the performance and scalability
// footprint is acceptable, this is the place to hook them in.
// However, we then need to check if this was called as a result
// of a bookmark event or regular Add/Update/Delete operation by
// checking if resourceVersion here has changed.
if event.Type != watch.Bookmark {
c.dispatchEvent(&event)
}
lastProcessedResourceVersion = event.ResourceVersion
metrics.EventsCounter.WithLabelValues(c.groupResource.String()).Inc()
case <-bookmarkTimer.C():
bookmarkTimer.Reset(wait.Jitter(time.Second, 0.25))
bookmarkEvent := &watchCacheEvent{
Type: watch.Bookmark,
Object: c.newFunc(),
ResourceVersion: lastProcessedResourceVersion,
}
if err := c.versioner.UpdateObject(bookmarkEvent.Object, bookmarkEvent.ResourceVersion); err != nil {
klog.Errorf("failure to set resourceVersion to %d on bookmark event %+v", bookmarkEvent.ResourceVersion, bookmarkEvent.Object)
continue
}
c.dispatchEvent(bookmarkEvent)
case <-c.stopCh:
return
}
}
}
func setCachingObjects(event *watchCacheEvent, versioner storage.Versioner) {
switch event.Type {
case watch.Added, watch.Modified:
if object, err := newCachingObject(event.Object); err == nil {
event.Object = object
} else {
klog.Errorf("couldn't create cachingObject from: %#v", event.Object)
}
// Don't wrap PrevObject for update event (for create events it is nil).
// We only encode those to deliver DELETE watch events, so if
// event.Object is not nil it can be used only for watchers for which
// selector was satisfied for its previous version and is no longer
// satisfied for the current version.
// This is rare enough that it doesn't justify making deep-copy of the
// object (done by newCachingObject) every time.
case watch.Deleted:
// Don't wrap Object for delete events - these are not to deliver any
// events. Only wrap PrevObject.
if object, err := newCachingObject(event.PrevObject); err == nil {
// Update resource version of the object.
// event.PrevObject is used to deliver DELETE watch events and
// for them, we set resourceVersion to <current> instead of
// the resourceVersion of the last modification of the object.
updateResourceVersion(object, versioner, event.ResourceVersion)
event.PrevObject = object
} else {
klog.Errorf("couldn't create cachingObject from: %#v", event.Object)
}
}
}
func (c *Cacher) dispatchEvent(event *watchCacheEvent) {
c.startDispatching(event)
defer c.finishDispatching()
// Watchers stopped after startDispatching will be delayed to finishDispatching,
// Since add() can block, we explicitly add when cacher is unlocked.
// Dispatching event in nonblocking way first, which make faster watchers
// not be blocked by slower ones.
//
// Note: if we ever decide to cache the serialization of bookmark events,
// we will also need to modify the watchEncoder encoder
if event.Type == watch.Bookmark {
for _, watcher := range c.watchersBuffer {
watcher.nonblockingAdd(event)
}
} else {
// Set up caching of object serializations only for dispatching this event.
//
// Storing serializations in memory would result in increased memory usage,
// but it would help for caching encodings for watches started from old
// versions. However, we still don't have a convincing data that the gain
// from it justifies increased memory usage, so for now we drop the cached
// serializations after dispatching this event.
//
// Given that CachingObject is just wrapping the object and not perfoming
// deep-copying (until some field is explicitly being modified), we create
// it unconditionally to ensure safety and reduce deep-copying.
//
// Make a shallow copy to allow overwriting Object and PrevObject.
wcEvent := *event
setCachingObjects(&wcEvent, c.versioner)
event = &wcEvent
c.blockedWatchers = c.blockedWatchers[:0]
for _, watcher := range c.watchersBuffer {
if !watcher.nonblockingAdd(event) {
c.blockedWatchers = append(c.blockedWatchers, watcher)
}
}
if len(c.blockedWatchers) > 0 {
// dispatchEvent is called very often, so arrange
// to reuse timers instead of constantly allocating.
startTime := time.Now()
timeout := c.dispatchTimeoutBudget.takeAvailable()
c.timer.Reset(timeout)
// Send event to all blocked watchers. As long as timer is running,
// `add` will wait for the watcher to unblock. After timeout,
// `add` will not wait, but immediately close a still blocked watcher.
// Hence, every watcher gets the chance to unblock itself while timer
// is running, not only the first ones in the list.
timer := c.timer
for _, watcher := range c.blockedWatchers {
if !watcher.add(event, timer) {
// fired, clean the timer by set it to nil.
timer = nil
}
}
// Stop the timer if it is not fired
if timer != nil && !timer.Stop() {
// Consume triggered (but not yet received) timer event
// so that future reuse does not get a spurious timeout.
<-timer.C
}
c.dispatchTimeoutBudget.returnUnused(timeout - time.Since(startTime))
}
}
}
func (c *Cacher) startDispatchingBookmarkEventsLocked() {
// Pop already expired watchers. However, explicitly ignore stopped ones,
// as we don't delete watcher from bookmarkWatchers when it is stopped.
for _, watchers := range c.bookmarkWatchers.popExpiredWatchersThreadUnsafe() {
for _, watcher := range watchers {
// c.Lock() is held here.
// watcher.stopThreadUnsafe() is protected by c.Lock()
if watcher.stopped {
continue
}
c.watchersBuffer = append(c.watchersBuffer, watcher)
c.expiredBookmarkWatchers = append(c.expiredBookmarkWatchers, watcher)
}
}
}
// startDispatching chooses watchers potentially interested in a given event
// a marks dispatching as true.
func (c *Cacher) startDispatching(event *watchCacheEvent) {
// It is safe to call triggerValuesThreadUnsafe here, because at this
// point only this thread can access this event (we create a separate
// watchCacheEvent for every dispatch).
triggerValues, supported := c.triggerValuesThreadUnsafe(event)
c.Lock()
defer c.Unlock()
c.dispatching = true
// We are reusing the slice to avoid memory reallocations in every
// dispatchEvent() call. That may prevent Go GC from freeing items
// from previous phases that are sitting behind the current length
// of the slice, but there is only a limited number of those and the
// gain from avoiding memory allocations is much bigger.
c.watchersBuffer = c.watchersBuffer[:0]
if event.Type == watch.Bookmark {
c.startDispatchingBookmarkEventsLocked()
// return here to reduce following code indentation and diff
return
}
// iterate over watchers for each applicable namespace/name tuple
namespace := event.ObjFields["metadata.namespace"]
name := event.ObjFields["metadata.name"]
if len(namespace) > 0 {
if len(name) > 0 {
// namespaced watchers scoped by name
for _, watcher := range c.watchers.allWatchers[namespacedName{namespace: namespace, name: name}] {
c.watchersBuffer = append(c.watchersBuffer, watcher)
}
}
// namespaced watchers not scoped by name
for _, watcher := range c.watchers.allWatchers[namespacedName{namespace: namespace}] {
c.watchersBuffer = append(c.watchersBuffer, watcher)
}
}
if len(name) > 0 {
// cluster-wide watchers scoped by name
for _, watcher := range c.watchers.allWatchers[namespacedName{name: name}] {
c.watchersBuffer = append(c.watchersBuffer, watcher)
}
}
// cluster-wide watchers unscoped by name
for _, watcher := range c.watchers.allWatchers[namespacedName{}] {
c.watchersBuffer = append(c.watchersBuffer, watcher)
}
if supported {
// Iterate over watchers interested in the given values of the trigger.
for _, triggerValue := range triggerValues {
for _, watcher := range c.watchers.valueWatchers[triggerValue] {
c.watchersBuffer = append(c.watchersBuffer, watcher)
}
}
} else {
// supported equal to false generally means that trigger function
// is not defined (or not aware of any indexes). In this case,
// watchers filters should generally also don't generate any
// trigger values, but can cause problems in case of some
// misconfiguration. Thus we paranoidly leave this branch.
// Iterate over watchers interested in exact values for all values.
for _, watchers := range c.watchers.valueWatchers {
for _, watcher := range watchers {
c.watchersBuffer = append(c.watchersBuffer, watcher)
}
}
}
}
// finishDispatching stops all the watchers that were supposed to be
// stopped in the meantime, but it was deferred to avoid closing input
// channels of watchers, as add() may still have writing to it.
// It also marks dispatching as false.
func (c *Cacher) finishDispatching() {
c.Lock()
defer c.Unlock()
c.dispatching = false
for _, watcher := range c.watchersToStop {
watcher.stopLocked()
}
c.watchersToStop = c.watchersToStop[:0]
for _, watcher := range c.expiredBookmarkWatchers {
if watcher.stopped {
continue
}
// requeue the watcher for the next bookmark if needed.
c.bookmarkWatchers.addWatcherThreadUnsafe(watcher)
}
c.expiredBookmarkWatchers = c.expiredBookmarkWatchers[:0]
}
func (c *Cacher) terminateAllWatchers() {
c.Lock()
defer c.Unlock()
c.watchers.terminateAll(c.groupResource, c.stopWatcherLocked)
}
func (c *Cacher) stopWatcherLocked(watcher *cacheWatcher) {
if c.dispatching {
c.watchersToStop = append(c.watchersToStop, watcher)
} else {
watcher.stopLocked()
}
}
func (c *Cacher) isStopped() bool {
c.stopLock.RLock()
defer c.stopLock.RUnlock()
return c.stopped
}
// Stop implements the graceful termination.
func (c *Cacher) Stop() {
c.stopLock.Lock()
if c.stopped {
// avoid stopping twice (note: cachers are shared with subresources)
c.stopLock.Unlock()
return
}
c.stopped = true
c.ready.stop()
c.stopLock.Unlock()
close(c.stopCh)
c.stopWg.Wait()
}
func forgetWatcher(c *Cacher, w *cacheWatcher, index int, scope namespacedName, triggerValue string, triggerSupported bool) func(bool) {
return func(drainWatcher bool) {
c.Lock()
defer c.Unlock()
w.setDrainInputBufferLocked(drainWatcher)
// It's possible that the watcher is already not in the structure (e.g. in case of
// simultaneous Stop() and terminateAllWatchers(), but it is safe to call stopLocked()
// on a watcher multiple times.
c.watchers.deleteWatcher(index, scope, triggerValue, triggerSupported)
c.stopWatcherLocked(w)
}
}
func filterWithAttrsAndPrefixFunction(key string, p storage.SelectionPredicate) filterWithAttrsFunc {
filterFunc := func(objKey string, label labels.Set, field fields.Set) bool {
if !hasPathPrefix(objKey, key) {
return false
}
return p.MatchesObjectAttributes(label, field)
}
return filterFunc
}
// LastSyncResourceVersion returns resource version to which the underlying cache is synced.
func (c *Cacher) LastSyncResourceVersion() (uint64, error) {
if err := c.ready.wait(context.Background()); err != nil {
return 0, errors.NewServiceUnavailable(err.Error())
}
resourceVersion := c.reflector.LastSyncResourceVersion()
return c.versioner.ParseResourceVersion(resourceVersion)
}
// getBookmarkAfterResourceVersionLockedFunc returns a function that
// spits a ResourceVersion after which the bookmark event will be delivered.
//
// The returned function must be called under the watchCache lock.
func (c *Cacher) getBookmarkAfterResourceVersionLockedFunc(parsedResourceVersion, requiredResourceVersion uint64, opts storage.ListOptions) (func() uint64, error) {
if !isListWatchRequest(opts) {
return func() uint64 { return 0 }, nil
}
switch {
case len(opts.ResourceVersion) == 0:
return func() uint64 { return requiredResourceVersion }, nil
case parsedResourceVersion == 0:
// here we assume that watchCache locked is already held
return func() uint64 { return c.watchCache.resourceVersion }, nil
default:
return func() uint64 { return parsedResourceVersion }, nil
}
}
func isListWatchRequest(opts storage.ListOptions) bool {
return opts.SendInitialEvents != nil && *opts.SendInitialEvents && opts.Predicate.AllowWatchBookmarks
}
// getWatchCacheResourceVersion returns a ResourceVersion to which the watch cache must be synchronized to
//
// Depending on the input parameters, the semantics of the returned ResourceVersion are:
// - must be at Exact RV (when parsedWatchResourceVersion > 0)
// - can be at Any RV (when parsedWatchResourceVersion = 0)
// - must be at Most Recent RV (return an RV from etcd)
//
// note that the above semantic is enforced by the API validation (defined elsewhere):
//
// if SendInitiaEvents != nil => ResourceVersionMatch = NotOlderThan
// if ResourceVersionmatch != nil => ResourceVersionMatch = NotOlderThan & SendInitialEvents != nil
func (c *Cacher) getWatchCacheResourceVersion(ctx context.Context, parsedWatchResourceVersion uint64, opts storage.ListOptions) (uint64, error) {
if len(opts.ResourceVersion) != 0 {
return parsedWatchResourceVersion, nil
}
// legacy case
if !utilfeature.DefaultFeatureGate.Enabled(features.WatchFromStorageWithoutResourceVersion) && opts.SendInitialEvents == nil && opts.ResourceVersion == "" {
return 0, nil
}
rv, err := c.storage.GetCurrentResourceVersion(ctx)
return rv, err
}
// waitUntilWatchCacheFreshAndForceAllEvents waits until cache is at least
// as fresh as given requestedWatchRV if sendInitialEvents was requested.
// otherwise, we allow for establishing the connection because the clients
// can wait for events without unnecessary blocking.
func (c *Cacher) waitUntilWatchCacheFreshAndForceAllEvents(ctx context.Context, requestedWatchRV uint64, opts storage.ListOptions) error {
if opts.SendInitialEvents != nil && *opts.SendInitialEvents {
// Here be dragons:
// Since the etcd feature checker needs to check all members
// to determine whether a given feature is supported,
// we may receive a positive response even if the feature is not supported.
//
// In this very rare scenario, the worst case will be that this
// request will wait for 3 seconds before it fails.
if etcdfeature.DefaultFeatureSupportChecker.Supports(storage.RequestWatchProgress) && c.watchCache.notFresh(requestedWatchRV) {
c.watchCache.waitingUntilFresh.Add()
defer c.watchCache.waitingUntilFresh.Remove()
}
err := c.watchCache.waitUntilFreshAndBlock(ctx, requestedWatchRV)
defer c.watchCache.RUnlock()
return err
}
return nil
}
// Wait blocks until the cacher is Ready or Stopped, it returns an error if Stopped.
func (c *Cacher) Wait(ctx context.Context) error {
return c.ready.wait(ctx)
}
// setInitialEventsEndBookmarkIfRequested sets initialEventsEndBookmark field in watchCacheInterval for watchlist request
func (c *Cacher) setInitialEventsEndBookmarkIfRequested(cacheInterval *watchCacheInterval, opts storage.ListOptions, currentResourceVersion uint64) {
if opts.SendInitialEvents != nil && *opts.SendInitialEvents && opts.Predicate.AllowWatchBookmarks {
// We don't need to set the InitialEventsAnnotation for this bookmark event,
// because this will be automatically set during event conversion in cacheWatcher.convertToWatchEvent method
initialEventsEndBookmark := &watchCacheEvent{
Type: watch.Bookmark,
Object: c.newFunc(),
ResourceVersion: currentResourceVersion,
}
if err := c.versioner.UpdateObject(initialEventsEndBookmark.Object, initialEventsEndBookmark.ResourceVersion); err != nil {
klog.Errorf("failure to set resourceVersion to %d on initialEventsEndBookmark event %+v for watchlist request and wait for bookmark trigger to send", initialEventsEndBookmark.ResourceVersion, initialEventsEndBookmark.Object)
initialEventsEndBookmark = nil
}
cacheInterval.initialEventsEndBookmark = initialEventsEndBookmark
}
}
func (c *Cacher) Ready() bool {
_, err := c.ready.check()
return err == nil
}
// errWatcher implements watch.Interface to return a single error
type errWatcher struct {
result chan watch.Event
}
func newErrWatcher(err error) *errWatcher {
// Create an error event
errEvent := watch.Event{Type: watch.Error}
switch err := err.(type) {
case runtime.Object:
errEvent.Object = err
case *errors.StatusError:
errEvent.Object = &err.ErrStatus
default:
errEvent.Object = &metav1.Status{
Status: metav1.StatusFailure,
Message: err.Error(),
Reason: metav1.StatusReasonInternalError,
Code: http.StatusInternalServerError,
}
}
// Create a watcher with room for a single event, populate it, and close the channel
watcher := &errWatcher{result: make(chan watch.Event, 1)}
watcher.result <- errEvent
close(watcher.result)
return watcher
}
func (c *Cacher) ShouldDelegateExactRV(resourceVersion string, recursive bool) (delegator.Result, error) {
// Not Recursive is not supported unitl exact RV is implemented for WaitUntilFreshAndGet.
if !recursive || c.watchCache.snapshots == nil {
return delegator.Result{ShouldDelegate: true}, nil
}
listRV, err := c.versioner.ParseResourceVersion(resourceVersion)
if err != nil {
return delegator.Result{}, err
}
return c.shouldDelegateExactRV(listRV)
}
func (c *Cacher) ShouldDelegateContinue(continueToken string, recursive bool) (delegator.Result, error) {
// Not Recursive is not supported unitl exact RV is implemented for WaitUntilFreshAndGet.
if !recursive || c.watchCache.snapshots == nil {
return delegator.Result{ShouldDelegate: true}, nil
}
_, continueRV, err := storage.DecodeContinue(continueToken, c.resourcePrefix)
if err != nil {
return delegator.Result{}, err
}
if continueRV > 0 {
return c.shouldDelegateExactRV(uint64(continueRV))
} else {
// Continue with negative RV is a consistent read.
return c.ShouldDelegateConsistentRead()
}
}
func (c *Cacher) shouldDelegateExactRV(rv uint64) (delegator.Result, error) {
// Exact requests on future revision require support for consistent read, but are not a consistent read by themselves.
if c.watchCache.notFresh(rv) {
return delegator.Result{
ShouldDelegate: !delegator.ConsistentReadSupported(),
}, nil
}
_, canServe := c.watchCache.snapshots.GetLessOrEqual(rv)
return delegator.Result{
ShouldDelegate: !canServe,
}, nil
}
func (c *Cacher) ShouldDelegateConsistentRead() (delegator.Result, error) {
return delegator.Result{
ConsistentRead: true,
ShouldDelegate: !delegator.ConsistentReadSupported(),
}, nil
}
// Implements watch.Interface.
func (c *errWatcher) ResultChan() <-chan watch.Event {
return c.result
}
// Implements watch.Interface.
func (c *errWatcher) Stop() {
// no-op
}
// immediateCloseWatcher implements watch.Interface that is immediately closed
type immediateCloseWatcher struct {
result chan watch.Event
}
func newImmediateCloseWatcher() *immediateCloseWatcher {
watcher := &immediateCloseWatcher{result: make(chan watch.Event)}
close(watcher.result)
return watcher
}
// Implements watch.Interface.
func (c *immediateCloseWatcher) ResultChan() <-chan watch.Event {
return c.result
}
// Implements watch.Interface.
func (c *immediateCloseWatcher) Stop() {
// no-op
}