autoscaler/cluster-autoscaler/utils/gpu/gpu.go

121 lines
4.1 KiB
Go

/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package gpu
import (
apiv1 "k8s.io/api/core/v1"
"k8s.io/autoscaler/cluster-autoscaler/cloudprovider"
"k8s.io/klog/v2"
)
const (
// ResourceNvidiaGPU is the name of the Nvidia GPU resource.
ResourceNvidiaGPU = "nvidia.com/gpu"
// ResourceDirectX is the name of the DirectX resource on windows.
ResourceDirectX = "microsoft.com/directx"
// DefaultGPUType is the type of GPU used in NAP if the user
// don't specify what type of GPU his pod wants.
DefaultGPUType = "nvidia-tesla-k80"
)
const (
// MetricsGenericGPU - for when there is no information about GPU type
MetricsGenericGPU = "generic"
// MetricsMissingGPU - for when there's a label, but GPU didn't appear
MetricsMissingGPU = "missing-gpu"
// MetricsUnexpectedLabelGPU - for when there's a label, but no GPU at all
MetricsUnexpectedLabelGPU = "unexpected-label"
// MetricsUnknownGPU - for when GPU type is unknown
MetricsUnknownGPU = "not-listed"
// MetricsErrorGPU - for when there was an error obtaining GPU type
MetricsErrorGPU = "error"
// MetricsNoGPU - for when there is no GPU and no label all
MetricsNoGPU = ""
)
// GetGpuTypeForMetrics returns name of the GPU used on the node or empty string if there's no GPU
// if the GPU type is unknown, "generic" is returned
// NOTE: current implementation is GKE/GCE-specific
func GetGpuTypeForMetrics(GPULabel string, availableGPUTypes map[string]struct{}, node *apiv1.Node, nodeGroup cloudprovider.NodeGroup) string {
// we use the GKE label if there is one
gpuType, labelFound := node.Labels[GPULabel]
capacity, capacityFound := node.Status.Capacity[ResourceNvidiaGPU]
if !labelFound {
// no label, fallback to generic solution
if capacityFound && !capacity.IsZero() {
return MetricsGenericGPU
}
// no signs of GPU
return MetricsNoGPU
}
// GKE-specific label & capacity are present - consistent state
if capacityFound {
return validateGpuType(availableGPUTypes, gpuType)
}
// GKE-specific label present but no capacity (yet?) - check the node template
if nodeGroup != nil {
template, err := nodeGroup.TemplateNodeInfo()
if err != nil {
klog.Warningf("Failed to build template for getting GPU metrics for node %v: %v", node.Name, err)
return MetricsErrorGPU
}
if _, found := template.Node().Status.Capacity[ResourceNvidiaGPU]; found {
return MetricsMissingGPU
}
// if template does not define GPUs we assume node will not have any even if it has gpu label
klog.Warningf("Template does not define GPUs even though node from its node group does; node=%v", node.Name)
return MetricsUnexpectedLabelGPU
}
return MetricsUnexpectedLabelGPU
}
func validateGpuType(availableGPUTypes map[string]struct{}, gpu string) string {
if _, found := availableGPUTypes[gpu]; found {
return gpu
}
return MetricsUnknownGPU
}
// NodeHasGpu returns true if a given node has GPU hardware.
// The result will be true if there is hardware capability. It doesn't matter
// if the drivers are installed and GPU is ready to use.
func NodeHasGpu(GPULabel string, node *apiv1.Node) bool {
_, hasGpuLabel := node.Labels[GPULabel]
gpuAllocatable, hasGpuAllocatable := node.Status.Allocatable[ResourceNvidiaGPU]
return hasGpuLabel || (hasGpuAllocatable && !gpuAllocatable.IsZero())
}
// PodRequestsGpu returns true if a given pod has GPU request.
func PodRequestsGpu(pod *apiv1.Pod) bool {
for _, container := range pod.Spec.Containers {
if container.Resources.Requests != nil {
_, gpuFound := container.Resources.Requests[ResourceNvidiaGPU]
if gpuFound {
return true
}
}
}
return false
}