autoscaler/cluster-autoscaler/core/scale_down.go

1092 lines
40 KiB
Go

/*
Copyright 2016 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package core
import (
"fmt"
"math"
"reflect"
"strings"
"sync"
"time"
"k8s.io/autoscaler/cluster-autoscaler/cloudprovider"
"k8s.io/autoscaler/cluster-autoscaler/clusterstate"
"k8s.io/autoscaler/cluster-autoscaler/clusterstate/utils"
"k8s.io/autoscaler/cluster-autoscaler/context"
"k8s.io/autoscaler/cluster-autoscaler/metrics"
"k8s.io/autoscaler/cluster-autoscaler/simulator"
"k8s.io/autoscaler/cluster-autoscaler/utils/deletetaint"
"k8s.io/autoscaler/cluster-autoscaler/utils/errors"
kube_util "k8s.io/autoscaler/cluster-autoscaler/utils/kubernetes"
scheduler_util "k8s.io/autoscaler/cluster-autoscaler/utils/scheduler"
apiv1 "k8s.io/api/core/v1"
policyv1 "k8s.io/api/policy/v1beta1"
kube_errors "k8s.io/apimachinery/pkg/api/errors"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
kube_client "k8s.io/client-go/kubernetes"
kube_record "k8s.io/client-go/tools/record"
"github.com/golang/glog"
"k8s.io/apimachinery/pkg/util/sets"
"k8s.io/autoscaler/cluster-autoscaler/utils/gpu"
)
// ScaleDownResult represents the state of scale down.
type ScaleDownResult int
const (
// ScaleDownError - scale down finished with error.
ScaleDownError ScaleDownResult = iota
// ScaleDownNoUnneeded - no unneeded nodes and no errors.
ScaleDownNoUnneeded
// ScaleDownNoNodeDeleted - unneeded nodes present but not available for deletion.
ScaleDownNoNodeDeleted
// ScaleDownNodeDeleted - a node was deleted.
ScaleDownNodeDeleted
// ScaleDownNodeDeleteStarted - a node deletion process was started.
ScaleDownNodeDeleteStarted
)
const (
// ScaleDownDisabledKey is the name of annotation marking node as not eligible for scale down.
ScaleDownDisabledKey = "cluster-autoscaler.kubernetes.io/scale-down-disabled"
)
const (
// MaxKubernetesEmptyNodeDeletionTime is the maximum time needed by Kubernetes to delete an empty node.
MaxKubernetesEmptyNodeDeletionTime = 3 * time.Minute
// MaxCloudProviderNodeDeletionTime is the maximum time needed by cloud provider to delete a node.
MaxCloudProviderNodeDeletionTime = 5 * time.Minute
// MaxPodEvictionTime is the maximum time CA tries to evict a pod before giving up.
MaxPodEvictionTime = 2 * time.Minute
// EvictionRetryTime is the time after CA retries failed pod eviction.
EvictionRetryTime = 10 * time.Second
// PodEvictionHeadroom is the extra time we wait to catch situations when the pod is ignoring SIGTERM and
// is killed with SIGKILL after MaxGracefulTerminationTime
PodEvictionHeadroom = 30 * time.Second
// UnremovableNodeRecheckTimeout is the timeout before we check again a node that couldn't be removed before
UnremovableNodeRecheckTimeout = 5 * time.Minute
)
// NodeDeleteStatus tells whether a node is being deleted right now.
type NodeDeleteStatus struct {
sync.Mutex
deleteInProgress bool
}
// IsDeleteInProgress returns true if a node is being deleted.
func (n *NodeDeleteStatus) IsDeleteInProgress() bool {
n.Lock()
defer n.Unlock()
return n.deleteInProgress
}
// SetDeleteInProgress sets deletion process status
func (n *NodeDeleteStatus) SetDeleteInProgress(status bool) {
n.Lock()
defer n.Unlock()
n.deleteInProgress = status
}
type scaleDownResourcesLimits map[string]int64
type scaleDownResourcesDelta map[string]int64
// used as a value in scaleDownResourcesLimits if actual limit could not be obtained due to errors talking to cloud provider
const limitUnknown = math.MinInt64
func computeScaleDownResourcesLeftLimits(nodes []*apiv1.Node, resourceLimiter *cloudprovider.ResourceLimiter, cp cloudprovider.CloudProvider, timestamp time.Time) scaleDownResourcesLimits {
totalCores, totalMem := calculateCoresAndMemoryTotal(nodes, timestamp)
var totalGpus map[string]int64
var totalGpusErr error
if containsGpuResources(resourceLimiter.GetResources()) {
totalGpus, totalGpusErr = calculateGpusTotal(nodes, cp, timestamp)
}
resultScaleDownLimits := make(scaleDownResourcesLimits)
for _, resource := range resourceLimiter.GetResources() {
min := resourceLimiter.GetMin(resource)
// we put only actual limits into final map. No entry means no limit.
if min > 0 {
switch {
case resource == cloudprovider.ResourceNameCores:
resultScaleDownLimits[resource] = computeLeft(totalCores, min)
case resource == cloudprovider.ResourceNameMemory:
resultScaleDownLimits[resource] = computeLeft(totalMem, min)
case cloudprovider.IsGpuResource(resource):
if totalGpusErr != nil {
resultScaleDownLimits[resource] = limitUnknown
} else {
resultScaleDownLimits[resource] = computeLeft(totalGpus[resource], min)
}
default:
glog.Errorf("Scale down limits defined for unsupported resource '%s'", resource)
}
}
}
return resultScaleDownLimits
}
func containsGpuResources(resources []string) bool {
for _, resource := range resources {
if cloudprovider.IsGpuResource(resource) {
return true
}
}
return false
}
func computeLeft(total int64, min int64) int64 {
if total > min {
return total - min
}
return 0
}
func calculateCoresAndMemoryTotal(nodes []*apiv1.Node, timestamp time.Time) (int64, int64) {
var coresTotal, memoryTotal int64
for _, node := range nodes {
if isNodeBeingDeleted(node, timestamp) {
// Nodes being deleted do not count towards total cluster resources
continue
}
cores, memory := getNodeCoresAndMemory(node)
coresTotal += cores
memoryTotal += memory
}
return coresTotal, memoryTotal
}
func calculateGpusTotal(nodes []*apiv1.Node, cp cloudprovider.CloudProvider, timestamp time.Time) (map[string]int64, error) {
type gpuInfo struct {
name string
count int64
}
result := make(map[string]int64)
ngCache := make(map[string]gpuInfo)
for _, node := range nodes {
if isNodeBeingDeleted(node, timestamp) {
// Nodes being deleted do not count towards total cluster resources
continue
}
nodeGroup, err := cp.NodeGroupForNode(node)
if err != nil {
return nil, errors.ToAutoscalerError(errors.CloudProviderError, err).AddPrefix("can not get node group for node %v when calculating cluster gpu usage", node.Name)
}
if reflect.ValueOf(nodeGroup).IsNil() {
// We do not trust cloud providers to return properly constructed nil for interface type - hence the reflection check.
// See https://golang.org/doc/faq#nil_error
// TODO[lukaszos] consider creating cloud_provider sanitizer which will wrap cloud provider and ensure sane behaviour.
nodeGroup = nil
}
var gpuType string
var gpuCount int64
var cached gpuInfo
var cacheHit bool
if nodeGroup != nil {
cached, cacheHit = ngCache[nodeGroup.Id()]
if cacheHit {
gpuType = cached.name
gpuCount = cached.count
}
}
if !cacheHit {
gpuType, gpuCount, err = gpu.GetNodeTargetGpus(node, nodeGroup)
if err != nil {
return nil, errors.ToAutoscalerError(errors.CloudProviderError, err).AddPrefix("can not get gpu count for node %v when calculating cluster gpu usage")
}
if nodeGroup != nil {
ngCache[nodeGroup.Id()] = gpuInfo{name: gpuType, count: gpuCount}
}
}
if gpuType == "" || gpuCount == 0 {
continue
}
result[gpuType] += gpuCount
}
return result, nil
}
func isNodeBeingDeleted(node *apiv1.Node, timestamp time.Time) bool {
deleteTime, _ := deletetaint.GetToBeDeletedTime(node)
return deleteTime != nil && (timestamp.Sub(*deleteTime) < MaxCloudProviderNodeDeletionTime || timestamp.Sub(*deleteTime) < MaxKubernetesEmptyNodeDeletionTime)
}
func noLimitsOnResources() scaleDownResourcesLimits {
return nil
}
func copyScaleDownResourcesLimits(source scaleDownResourcesLimits) scaleDownResourcesLimits {
copy := scaleDownResourcesLimits{}
for k, v := range source {
copy[k] = v
}
return copy
}
func computeScaleDownResourcesDelta(node *apiv1.Node, nodeGroup cloudprovider.NodeGroup, resourcesWithLimits []string) (scaleDownResourcesDelta, errors.AutoscalerError) {
resultScaleDownDelta := make(scaleDownResourcesDelta)
nodeCPU, nodeMemory := getNodeCoresAndMemory(node)
resultScaleDownDelta[cloudprovider.ResourceNameCores] = nodeCPU
resultScaleDownDelta[cloudprovider.ResourceNameMemory] = nodeMemory
if containsGpuResources(resourcesWithLimits) {
gpuType, gpuCount, err := gpu.GetNodeTargetGpus(node, nodeGroup)
if err != nil {
return scaleDownResourcesDelta{}, errors.ToAutoscalerError(errors.CloudProviderError, err).AddPrefix("Failed to get node %v gpu: %v", node.Name)
}
resultScaleDownDelta[gpuType] = gpuCount
}
return resultScaleDownDelta, nil
}
type limitCheckResult struct {
exceeded bool
exceededResources []string
}
func notExceeded() limitCheckResult {
return limitCheckResult{false, []string{}}
}
func (limits *scaleDownResourcesLimits) checkDeltaWithinLimits(delta scaleDownResourcesDelta) limitCheckResult {
exceededResources := sets.NewString()
for resource, resourceDelta := range delta {
resourceLeft, found := (*limits)[resource]
if found {
if (resourceDelta > 0) && (resourceLeft == limitUnknown || resourceDelta > resourceLeft) {
exceededResources.Insert(resource)
}
}
}
if len(exceededResources) > 0 {
return limitCheckResult{true, exceededResources.List()}
}
return notExceeded()
}
func (limits *scaleDownResourcesLimits) tryDecrementLimitsByDelta(delta scaleDownResourcesDelta) limitCheckResult {
result := limits.checkDeltaWithinLimits(delta)
if result.exceeded {
return result
}
for resource, resourceDelta := range delta {
resourceLeft, found := (*limits)[resource]
if found {
(*limits)[resource] = resourceLeft - resourceDelta
}
}
return notExceeded()
}
// ScaleDown is responsible for maintaining the state needed to perform unneeded node removals.
type ScaleDown struct {
context *context.AutoscalingContext
clusterStateRegistry *clusterstate.ClusterStateRegistry
unneededNodes map[string]time.Time
unneededNodesList []*apiv1.Node
unremovableNodes map[string]time.Time
podLocationHints map[string]string
nodeUtilizationMap map[string]float64
usageTracker *simulator.UsageTracker
nodeDeleteStatus *NodeDeleteStatus
}
// NewScaleDown builds new ScaleDown object.
func NewScaleDown(context *context.AutoscalingContext, clusterStateRegistry *clusterstate.ClusterStateRegistry) *ScaleDown {
return &ScaleDown{
context: context,
clusterStateRegistry: clusterStateRegistry,
unneededNodes: make(map[string]time.Time),
unremovableNodes: make(map[string]time.Time),
podLocationHints: make(map[string]string),
nodeUtilizationMap: make(map[string]float64),
usageTracker: simulator.NewUsageTracker(),
unneededNodesList: make([]*apiv1.Node, 0),
nodeDeleteStatus: &NodeDeleteStatus{},
}
}
// CleanUp cleans up the internal ScaleDown state.
func (sd *ScaleDown) CleanUp(timestamp time.Time) {
sd.usageTracker.CleanUp(timestamp.Add(-sd.context.ScaleDownUnneededTime))
}
// GetCandidatesForScaleDown gets candidates for scale down.
func (sd *ScaleDown) GetCandidatesForScaleDown() []*apiv1.Node {
return sd.unneededNodesList
}
// CleanUpUnneededNodes clears the list of unneeded nodes.
func (sd *ScaleDown) CleanUpUnneededNodes() {
sd.unneededNodesList = make([]*apiv1.Node, 0)
sd.unneededNodes = make(map[string]time.Time)
}
// UpdateUnneededNodes calculates which nodes are not needed, i.e. all pods can be scheduled somewhere else,
// and updates unneededNodes map accordingly. It also computes information where pods can be rescheduled and
// node utilization level. Timestamp is the current timestamp. The computations are made only for the nodes
// managed by CA.
func (sd *ScaleDown) UpdateUnneededNodes(
nodes []*apiv1.Node,
nodesToCheck []*apiv1.Node,
pods []*apiv1.Pod,
timestamp time.Time,
pdbs []*policyv1.PodDisruptionBudget) errors.AutoscalerError {
currentlyUnneededNodes := make([]*apiv1.Node, 0)
// Only scheduled non expendable pods and pods waiting for lower priority pods preemption can prevent node delete.
nonExpendablePods := FilterOutExpendablePods(pods, sd.context.ExpendablePodsPriorityCutoff)
nodeNameToNodeInfo := scheduler_util.CreateNodeNameToInfoMap(nonExpendablePods, nodes)
utilizationMap := make(map[string]float64)
sd.updateUnremovableNodes(nodes)
// Filter out nodes that were recently checked
filteredNodesToCheck := make([]*apiv1.Node, 0)
for _, node := range nodesToCheck {
if unremovableTimestamp, found := sd.unremovableNodes[node.Name]; found {
if unremovableTimestamp.After(timestamp) {
continue
}
delete(sd.unremovableNodes, node.Name)
}
filteredNodesToCheck = append(filteredNodesToCheck, node)
}
skipped := len(nodesToCheck) - len(filteredNodesToCheck)
if skipped > 0 {
glog.V(1).Infof("Scale-down calculation: ignoring %v nodes unremovable in the last %v", skipped, UnremovableNodeRecheckTimeout)
}
// Phase1 - look at the nodes utilization. Calculate the utilization
// only for the managed nodes.
for _, node := range filteredNodesToCheck {
// Skip nodes marked to be deleted, if they were marked recently.
// Old-time marked nodes are again eligible for deletion - something went wrong with them
// and they have not been deleted.
if isNodeBeingDeleted(node, timestamp) {
glog.V(1).Infof("Skipping %s from delete considerations - the node is currently being deleted", node.Name)
continue
}
// Skip nodes marked with no scale down annotation
if hasNoScaleDownAnnotation(node) {
glog.V(1).Infof("Skipping %s from delete consideration - the node is marked as no scale down", node.Name)
continue
}
nodeInfo, found := nodeNameToNodeInfo[node.Name]
if !found {
glog.Errorf("Node info for %s not found", node.Name)
continue
}
utilization, err := simulator.CalculateUtilization(node, nodeInfo)
if err != nil {
glog.Warningf("Failed to calculate utilization for %s: %v", node.Name, err)
}
glog.V(4).Infof("Node %s - utilization %f", node.Name, utilization)
utilizationMap[node.Name] = utilization
if utilization >= sd.context.ScaleDownUtilizationThreshold {
glog.V(4).Infof("Node %s is not suitable for removal - utilization too big (%f)", node.Name, utilization)
continue
}
currentlyUnneededNodes = append(currentlyUnneededNodes, node)
}
emptyNodes := make(map[string]bool)
emptyNodesList := getEmptyNodesNoResourceLimits(currentlyUnneededNodes, pods, len(currentlyUnneededNodes), sd.context.CloudProvider)
for _, node := range emptyNodesList {
emptyNodes[node.Name] = true
}
currentlyUnneededNonEmptyNodes := make([]*apiv1.Node, 0, len(currentlyUnneededNodes))
for _, node := range currentlyUnneededNodes {
if !emptyNodes[node.Name] {
currentlyUnneededNonEmptyNodes = append(currentlyUnneededNonEmptyNodes, node)
}
}
// Phase2 - check which nodes can be probably removed using fast drain.
currentCandidates, currentNonCandidates := sd.chooseCandidates(currentlyUnneededNonEmptyNodes)
// Look for nodes to remove in the current candidates
nodesToRemove, unremovable, newHints, simulatorErr := simulator.FindNodesToRemove(
currentCandidates, nodes, nonExpendablePods, nil, sd.context.PredicateChecker,
len(currentCandidates), true, sd.podLocationHints, sd.usageTracker, timestamp, pdbs)
if simulatorErr != nil {
return sd.markSimulationError(simulatorErr, timestamp)
}
additionalCandidatesCount := sd.context.ScaleDownNonEmptyCandidatesCount - len(nodesToRemove)
if additionalCandidatesCount > len(currentNonCandidates) {
additionalCandidatesCount = len(currentNonCandidates)
}
// Limit the additional candidates pool size for better performance.
additionalCandidatesPoolSize := int(math.Ceil(float64(len(nodes)) * sd.context.ScaleDownCandidatesPoolRatio))
if additionalCandidatesPoolSize < sd.context.ScaleDownCandidatesPoolMinCount {
additionalCandidatesPoolSize = sd.context.ScaleDownCandidatesPoolMinCount
}
if additionalCandidatesPoolSize > len(currentNonCandidates) {
additionalCandidatesPoolSize = len(currentNonCandidates)
}
if additionalCandidatesCount > 0 {
// Look for additional nodes to remove among the rest of nodes.
glog.V(3).Infof("Finding additional %v candidates for scale down.", additionalCandidatesCount)
additionalNodesToRemove, additionalUnremovable, additionalNewHints, simulatorErr :=
simulator.FindNodesToRemove(currentNonCandidates[:additionalCandidatesPoolSize], nodes, nonExpendablePods, nil,
sd.context.PredicateChecker, additionalCandidatesCount, true,
sd.podLocationHints, sd.usageTracker, timestamp, pdbs)
if simulatorErr != nil {
return sd.markSimulationError(simulatorErr, timestamp)
}
nodesToRemove = append(nodesToRemove, additionalNodesToRemove...)
unremovable = append(unremovable, additionalUnremovable...)
for key, value := range additionalNewHints {
newHints[key] = value
}
}
for _, node := range emptyNodesList {
nodesToRemove = append(nodesToRemove, simulator.NodeToBeRemoved{Node: node, PodsToReschedule: []*apiv1.Pod{}})
}
// Update the timestamp map.
result := make(map[string]time.Time)
unneededNodesList := make([]*apiv1.Node, 0, len(nodesToRemove))
for _, node := range nodesToRemove {
name := node.Node.Name
unneededNodesList = append(unneededNodesList, node.Node)
if val, found := sd.unneededNodes[name]; !found {
result[name] = timestamp
} else {
result[name] = val
}
}
// Add nodes to unremovable map
if len(unremovable) > 0 {
unremovableTimeout := timestamp.Add(UnremovableNodeRecheckTimeout)
for _, node := range unremovable {
sd.unremovableNodes[node.Name] = unremovableTimeout
}
glog.V(1).Infof("%v nodes found to be unremovable in simulation, will re-check them at %v", len(unremovable), unremovableTimeout)
}
// Update state and metrics
sd.unneededNodesList = unneededNodesList
sd.unneededNodes = result
sd.podLocationHints = newHints
sd.nodeUtilizationMap = utilizationMap
sd.clusterStateRegistry.UpdateScaleDownCandidates(sd.unneededNodesList, timestamp)
metrics.UpdateUnneededNodesCount(len(sd.unneededNodesList))
return nil
}
// updateUnremovableNodes updates unremovableNodes map according to current
// state of the cluster. Removes from the map nodes that are no longer in the
// nodes list.
func (sd *ScaleDown) updateUnremovableNodes(nodes []*apiv1.Node) {
if len(sd.unremovableNodes) <= 0 {
return
}
// A set of nodes to delete from unremovableNodes map.
nodesToDelete := make(map[string]struct{}, len(sd.unremovableNodes))
for name := range sd.unremovableNodes {
nodesToDelete[name] = struct{}{}
}
// Nodes that are in the cluster should not be deleted.
for _, node := range nodes {
if _, ok := nodesToDelete[node.Name]; ok {
delete(nodesToDelete, node.Name)
}
}
for nodeName := range nodesToDelete {
delete(sd.unremovableNodes, nodeName)
}
}
// markSimulationError indicates a simulation error by clearing relevant scale
// down state and returning an appropriate error.
func (sd *ScaleDown) markSimulationError(simulatorErr errors.AutoscalerError,
timestamp time.Time) errors.AutoscalerError {
glog.Errorf("Error while simulating node drains: %v", simulatorErr)
sd.unneededNodesList = make([]*apiv1.Node, 0)
sd.unneededNodes = make(map[string]time.Time)
sd.nodeUtilizationMap = make(map[string]float64)
sd.clusterStateRegistry.UpdateScaleDownCandidates(sd.unneededNodesList, timestamp)
return simulatorErr.AddPrefix("error while simulating node drains: ")
}
// chooseCandidates splits nodes into current candidates for scale-down and the
// rest. Current candidates are unneeded nodes from the previous run that are
// still in the nodes list.
func (sd *ScaleDown) chooseCandidates(nodes []*apiv1.Node) ([]*apiv1.Node, []*apiv1.Node) {
// Number of candidates should not be capped. We will look for nodes to remove
// from the whole set of nodes.
if sd.context.ScaleDownNonEmptyCandidatesCount <= 0 {
return nodes, []*apiv1.Node{}
}
currentCandidates := make([]*apiv1.Node, 0, len(sd.unneededNodesList))
currentNonCandidates := make([]*apiv1.Node, 0, len(nodes))
for _, node := range nodes {
if _, found := sd.unneededNodes[node.Name]; found {
currentCandidates = append(currentCandidates, node)
} else {
currentNonCandidates = append(currentNonCandidates, node)
}
}
return currentCandidates, currentNonCandidates
}
// TryToScaleDown tries to scale down the cluster. It returns ScaleDownResult indicating if any node was
// removed and error if such occurred.
func (sd *ScaleDown) TryToScaleDown(allNodes []*apiv1.Node, pods []*apiv1.Pod, pdbs []*policyv1.PodDisruptionBudget, currentTime time.Time) (ScaleDownResult, errors.AutoscalerError) {
nodeDeletionDuration := time.Duration(0)
findNodesToRemoveDuration := time.Duration(0)
defer updateScaleDownMetrics(time.Now(), &findNodesToRemoveDuration, &nodeDeletionDuration)
nodesWithoutMaster := filterOutMasters(allNodes, pods)
candidates := make([]*apiv1.Node, 0)
readinessMap := make(map[string]bool)
resourceLimiter, errCP := sd.context.CloudProvider.GetResourceLimiter()
if errCP != nil {
return ScaleDownError, errors.ToAutoscalerError(
errors.CloudProviderError,
errCP)
}
scaleDownResourcesLeft := computeScaleDownResourcesLeftLimits(nodesWithoutMaster, resourceLimiter, sd.context.CloudProvider, currentTime)
nodeGroupSize := getNodeGroupSizeMap(sd.context.CloudProvider)
resourcesWithLimits := resourceLimiter.GetResources()
for _, node := range nodesWithoutMaster {
if val, found := sd.unneededNodes[node.Name]; found {
glog.V(2).Infof("%s was unneeded for %s", node.Name, currentTime.Sub(val).String())
// Check if node is marked with no scale down annotation.
if hasNoScaleDownAnnotation(node) {
glog.V(4).Infof("Skipping %s - scale down disabled annotation found", node.Name)
continue
}
ready, _, _ := kube_util.GetReadinessState(node)
readinessMap[node.Name] = ready
// Check how long the node was underutilized.
if ready && !val.Add(sd.context.ScaleDownUnneededTime).Before(currentTime) {
continue
}
// Unready nodes may be deleted after a different time than underutilized nodes.
if !ready && !val.Add(sd.context.ScaleDownUnreadyTime).Before(currentTime) {
continue
}
nodeGroup, err := sd.context.CloudProvider.NodeGroupForNode(node)
if err != nil {
glog.Errorf("Error while checking node group for %s: %v", node.Name, err)
continue
}
if nodeGroup == nil || reflect.ValueOf(nodeGroup).IsNil() {
glog.V(4).Infof("Skipping %s - no node group config", node.Name)
continue
}
size, found := nodeGroupSize[nodeGroup.Id()]
if !found {
glog.Errorf("Error while checking node group size %s: group size not found in cache", nodeGroup.Id())
continue
}
if size <= nodeGroup.MinSize() {
glog.V(1).Infof("Skipping %s - node group min size reached", node.Name)
continue
}
scaleDownResourcesDelta, err := computeScaleDownResourcesDelta(node, nodeGroup, resourcesWithLimits)
if err != nil {
glog.Errorf("Error getting node resources: %v", err)
continue
}
checkResult := scaleDownResourcesLeft.checkDeltaWithinLimits(scaleDownResourcesDelta)
if checkResult.exceeded {
glog.V(4).Infof("Skipping %s - minimal limit exceeded for %v", node.Name, checkResult.exceededResources)
continue
}
candidates = append(candidates, node)
}
}
if len(candidates) == 0 {
glog.V(1).Infof("No candidates for scale down")
return ScaleDownNoUnneeded, nil
}
// Trying to delete empty nodes in bulk. If there are no empty nodes then CA will
// try to delete not-so-empty nodes, possibly killing some pods and allowing them
// to recreate on other nodes.
emptyNodes := getEmptyNodes(candidates, pods, sd.context.MaxEmptyBulkDelete, scaleDownResourcesLeft, sd.context.CloudProvider)
if len(emptyNodes) > 0 {
nodeDeletionStart := time.Now()
confirmation := make(chan errors.AutoscalerError, len(emptyNodes))
sd.scheduleDeleteEmptyNodes(emptyNodes, sd.context.ClientSet, sd.context.Recorder, readinessMap, confirmation)
err := sd.waitForEmptyNodesDeleted(emptyNodes, confirmation)
nodeDeletionDuration = time.Now().Sub(nodeDeletionStart)
if err == nil {
return ScaleDownNodeDeleted, nil
}
return ScaleDownError, err.AddPrefix("failed to delete at least one empty node: ")
}
findNodesToRemoveStart := time.Now()
// Only scheduled non expendable pods are taken into account and have to be moved.
nonExpendablePods := FilterOutExpendablePods(pods, sd.context.ExpendablePodsPriorityCutoff)
// We look for only 1 node so new hints may be incomplete.
nodesToRemove, _, _, err := simulator.FindNodesToRemove(candidates, nodesWithoutMaster, nonExpendablePods, sd.context.ClientSet,
sd.context.PredicateChecker, 1, false,
sd.podLocationHints, sd.usageTracker, time.Now(), pdbs)
findNodesToRemoveDuration = time.Now().Sub(findNodesToRemoveStart)
if err != nil {
return ScaleDownError, err.AddPrefix("Find node to remove failed: ")
}
if len(nodesToRemove) == 0 {
glog.V(1).Infof("No node to remove")
return ScaleDownNoNodeDeleted, nil
}
toRemove := nodesToRemove[0]
utilization := sd.nodeUtilizationMap[toRemove.Node.Name]
podNames := make([]string, 0, len(toRemove.PodsToReschedule))
for _, pod := range toRemove.PodsToReschedule {
podNames = append(podNames, pod.Namespace+"/"+pod.Name)
}
glog.V(0).Infof("Scale-down: removing node %s, utilization: %v, pods to reschedule: %s", toRemove.Node.Name, utilization,
strings.Join(podNames, ","))
sd.context.LogRecorder.Eventf(apiv1.EventTypeNormal, "ScaleDown", "Scale-down: removing node %s, utilization: %v, pods to reschedule: %s",
toRemove.Node.Name, utilization, strings.Join(podNames, ","))
// Nothing super-bad should happen if the node is removed from tracker prematurely.
simulator.RemoveNodeFromTracker(sd.usageTracker, toRemove.Node.Name, sd.unneededNodes)
nodeDeletionStart := time.Now()
// Starting deletion.
nodeDeletionDuration = time.Now().Sub(nodeDeletionStart)
sd.nodeDeleteStatus.SetDeleteInProgress(true)
go func() {
// Finishing the delete process once this goroutine is over.
defer sd.nodeDeleteStatus.SetDeleteInProgress(false)
err := sd.deleteNode(toRemove.Node, toRemove.PodsToReschedule)
if err != nil {
glog.Errorf("Failed to delete %s: %v", toRemove.Node.Name, err)
return
}
if readinessMap[toRemove.Node.Name] {
metrics.RegisterScaleDown(1, metrics.Underutilized)
} else {
metrics.RegisterScaleDown(1, metrics.Unready)
}
}()
return ScaleDownNodeDeleteStarted, nil
}
// updateScaleDownMetrics registers duration of different parts of scale down.
// Separates time spent on finding nodes to remove, deleting nodes and other operations.
func updateScaleDownMetrics(scaleDownStart time.Time, findNodesToRemoveDuration *time.Duration, nodeDeletionDuration *time.Duration) {
stop := time.Now()
miscDuration := stop.Sub(scaleDownStart) - *nodeDeletionDuration - *findNodesToRemoveDuration
metrics.UpdateDuration(metrics.ScaleDownNodeDeletion, *nodeDeletionDuration)
metrics.UpdateDuration(metrics.ScaleDownFindNodesToRemove, *findNodesToRemoveDuration)
metrics.UpdateDuration(metrics.ScaleDownMiscOperations, miscDuration)
}
func getEmptyNodesNoResourceLimits(candidates []*apiv1.Node, pods []*apiv1.Pod, maxEmptyBulkDelete int,
cloudProvider cloudprovider.CloudProvider) []*apiv1.Node {
return getEmptyNodes(candidates, pods, maxEmptyBulkDelete, noLimitsOnResources(), cloudProvider)
}
// This functions finds empty nodes among passed candidates and returns a list of empty nodes
// that can be deleted at the same time.
func getEmptyNodes(candidates []*apiv1.Node, pods []*apiv1.Pod, maxEmptyBulkDelete int,
resourcesLimits scaleDownResourcesLimits, cloudProvider cloudprovider.CloudProvider) []*apiv1.Node {
emptyNodes := simulator.FindEmptyNodesToRemove(candidates, pods)
availabilityMap := make(map[string]int)
result := make([]*apiv1.Node, 0)
resourcesLimitsCopy := copyScaleDownResourcesLimits(resourcesLimits) // we do not want to modify input parameter
resourcesNames := sets.StringKeySet(resourcesLimits).List()
for _, node := range emptyNodes {
nodeGroup, err := cloudProvider.NodeGroupForNode(node)
if err != nil {
glog.Errorf("Failed to get group for %s", node.Name)
continue
}
if nodeGroup == nil || reflect.ValueOf(nodeGroup).IsNil() {
continue
}
var available int
var found bool
if available, found = availabilityMap[nodeGroup.Id()]; !found {
// Will be cached.
size, err := nodeGroup.TargetSize()
if err != nil {
glog.Errorf("Failed to get size for %s: %v ", nodeGroup.Id(), err)
continue
}
available = size - nodeGroup.MinSize()
if available < 0 {
available = 0
}
availabilityMap[nodeGroup.Id()] = available
}
if available > 0 {
resourcesDelta, err := computeScaleDownResourcesDelta(node, nodeGroup, resourcesNames)
if err != nil {
glog.Errorf("Error: %v", err)
continue
}
checkResult := resourcesLimitsCopy.tryDecrementLimitsByDelta(resourcesDelta)
if checkResult.exceeded {
continue
}
available -= 1
availabilityMap[nodeGroup.Id()] = available
result = append(result, node)
}
}
limit := maxEmptyBulkDelete
if len(result) < limit {
limit = len(result)
}
return result[:limit]
}
func (sd *ScaleDown) scheduleDeleteEmptyNodes(emptyNodes []*apiv1.Node, client kube_client.Interface,
recorder kube_record.EventRecorder, readinessMap map[string]bool, confirmation chan errors.AutoscalerError) {
for _, node := range emptyNodes {
glog.V(0).Infof("Scale-down: removing empty node %s", node.Name)
sd.context.LogRecorder.Eventf(apiv1.EventTypeNormal, "ScaleDownEmpty", "Scale-down: removing empty node %s", node.Name)
simulator.RemoveNodeFromTracker(sd.usageTracker, node.Name, sd.unneededNodes)
go func(nodeToDelete *apiv1.Node) {
taintErr := deletetaint.MarkToBeDeleted(nodeToDelete, client)
if taintErr != nil {
recorder.Eventf(nodeToDelete, apiv1.EventTypeWarning, "ScaleDownFailed", "failed to mark the node as toBeDeleted/unschedulable: %v", taintErr)
confirmation <- errors.ToAutoscalerError(errors.ApiCallError, taintErr)
return
}
var deleteErr errors.AutoscalerError
// If we fail to delete the node we want to remove delete taint
defer func() {
if deleteErr != nil {
deletetaint.CleanToBeDeleted(nodeToDelete, client)
recorder.Eventf(nodeToDelete, apiv1.EventTypeWarning, "ScaleDownFailed", "failed to delete empty node: %v", deleteErr)
}
}()
deleteErr = deleteNodeFromCloudProvider(nodeToDelete, sd.context.CloudProvider,
sd.context.Recorder, sd.clusterStateRegistry)
if deleteErr == nil {
if readinessMap[nodeToDelete.Name] {
metrics.RegisterScaleDown(1, metrics.Empty)
} else {
metrics.RegisterScaleDown(1, metrics.Unready)
}
}
confirmation <- deleteErr
}(node)
}
}
func (sd *ScaleDown) waitForEmptyNodesDeleted(emptyNodes []*apiv1.Node, confirmation chan errors.AutoscalerError) errors.AutoscalerError {
var finalError errors.AutoscalerError
startTime := time.Now()
for range emptyNodes {
timeElapsed := time.Now().Sub(startTime)
timeLeft := MaxCloudProviderNodeDeletionTime - timeElapsed
if timeLeft < 0 {
return errors.NewAutoscalerError(errors.TransientError, "Failed to delete nodes in time")
}
select {
case err := <-confirmation:
if err != nil {
glog.Errorf("Problem with empty node deletion: %v", err)
finalError = err
}
case <-time.After(timeLeft):
finalError = errors.NewAutoscalerError(errors.TransientError, "Failed to delete nodes in time")
}
}
return finalError
}
func (sd *ScaleDown) deleteNode(node *apiv1.Node, pods []*apiv1.Pod) errors.AutoscalerError {
deleteSuccessful := false
drainSuccessful := false
if err := deletetaint.MarkToBeDeleted(node, sd.context.ClientSet); err != nil {
sd.context.Recorder.Eventf(node, apiv1.EventTypeWarning, "ScaleDownFailed", "failed to mark the node as toBeDeleted/unschedulable: %v", err)
return errors.ToAutoscalerError(errors.ApiCallError, err)
}
// If we fail to evict all the pods from the node we want to remove delete taint
defer func() {
if !deleteSuccessful {
deletetaint.CleanToBeDeleted(node, sd.context.ClientSet)
if !drainSuccessful {
sd.context.Recorder.Eventf(node, apiv1.EventTypeWarning, "ScaleDownFailed", "failed to drain the node, aborting ScaleDown")
} else {
sd.context.Recorder.Eventf(node, apiv1.EventTypeWarning, "ScaleDownFailed", "failed to delete the node")
}
}
}()
sd.context.Recorder.Eventf(node, apiv1.EventTypeNormal, "ScaleDown", "marked the node as toBeDeleted/unschedulable")
// attempt drain
if err := drainNode(node, pods, sd.context.ClientSet, sd.context.Recorder, sd.context.MaxGracefulTerminationSec, MaxPodEvictionTime, EvictionRetryTime); err != nil {
return err
}
drainSuccessful = true
// attempt delete from cloud provider
err := deleteNodeFromCloudProvider(node, sd.context.CloudProvider, sd.context.Recorder, sd.clusterStateRegistry)
if err != nil {
return err
}
deleteSuccessful = true // Let the deferred function know there is no need to cleanup
return nil
}
func evictPod(podToEvict *apiv1.Pod, client kube_client.Interface, recorder kube_record.EventRecorder,
maxGracefulTerminationSec int, retryUntil time.Time, waitBetweenRetries time.Duration) error {
recorder.Eventf(podToEvict, apiv1.EventTypeNormal, "ScaleDown", "deleting pod for node scale down")
maxTermination := int64(apiv1.DefaultTerminationGracePeriodSeconds)
if podToEvict.Spec.TerminationGracePeriodSeconds != nil {
if *podToEvict.Spec.TerminationGracePeriodSeconds < int64(maxGracefulTerminationSec) {
maxTermination = *podToEvict.Spec.TerminationGracePeriodSeconds
} else {
maxTermination = int64(maxGracefulTerminationSec)
}
}
var lastError error
for first := true; first || time.Now().Before(retryUntil); time.Sleep(waitBetweenRetries) {
first = false
eviction := &policyv1.Eviction{
ObjectMeta: metav1.ObjectMeta{
Namespace: podToEvict.Namespace,
Name: podToEvict.Name,
},
DeleteOptions: &metav1.DeleteOptions{
GracePeriodSeconds: &maxTermination,
},
}
lastError = client.CoreV1().Pods(podToEvict.Namespace).Evict(eviction)
if lastError == nil || kube_errors.IsNotFound(lastError) {
return nil
}
}
glog.Errorf("Failed to evict pod %s, error: %v", podToEvict.Name, lastError)
recorder.Eventf(podToEvict, apiv1.EventTypeWarning, "ScaleDownFailed", "failed to delete pod for ScaleDown")
return fmt.Errorf("Failed to evict pod %s/%s within allowed timeout (last error: %v)", podToEvict.Namespace, podToEvict.Name, lastError)
}
// Performs drain logic on the node. Marks the node as unschedulable and later removes all pods, giving
// them up to MaxGracefulTerminationTime to finish.
func drainNode(node *apiv1.Node, pods []*apiv1.Pod, client kube_client.Interface, recorder kube_record.EventRecorder,
maxGracefulTerminationSec int, maxPodEvictionTime time.Duration, waitBetweenRetries time.Duration) errors.AutoscalerError {
toEvict := len(pods)
retryUntil := time.Now().Add(maxPodEvictionTime)
confirmations := make(chan error, toEvict)
for _, pod := range pods {
go func(podToEvict *apiv1.Pod) {
confirmations <- evictPod(podToEvict, client, recorder, maxGracefulTerminationSec, retryUntil, waitBetweenRetries)
}(pod)
}
evictionErrs := make([]error, 0)
for range pods {
select {
case err := <-confirmations:
if err != nil {
evictionErrs = append(evictionErrs, err)
} else {
metrics.RegisterEvictions(1)
}
case <-time.After(retryUntil.Sub(time.Now()) + 5*time.Second):
return errors.NewAutoscalerError(
errors.ApiCallError, "Failed to drain node %s/%s: timeout when waiting for creating evictions", node.Namespace, node.Name)
}
}
if len(evictionErrs) != 0 {
return errors.NewAutoscalerError(
errors.ApiCallError, "Failed to drain node %s/%s, due to following errors: %v", node.Namespace, node.Name, evictionErrs)
}
// Evictions created successfully, wait maxGracefulTerminationSec + PodEvictionHeadroom to see if pods really disappeared.
allGone := true
for start := time.Now(); time.Now().Sub(start) < time.Duration(maxGracefulTerminationSec)*time.Second+PodEvictionHeadroom; time.Sleep(5 * time.Second) {
allGone = true
for _, pod := range pods {
podreturned, err := client.CoreV1().Pods(pod.Namespace).Get(pod.Name, metav1.GetOptions{})
if err == nil && (podreturned == nil || podreturned.Spec.NodeName == node.Name) {
glog.Errorf("Not deleted yet %v", podreturned)
allGone = false
break
}
if err != nil && !kube_errors.IsNotFound(err) {
glog.Errorf("Failed to check pod %s/%s: %v", pod.Namespace, pod.Name, err)
allGone = false
break
}
}
if allGone {
glog.V(1).Infof("All pods removed from %s", node.Name)
// Let the deferred function know there is no need for cleanup
return nil
}
}
return errors.NewAutoscalerError(
errors.TransientError, "Failed to drain node %s/%s: pods remaining after timeout", node.Namespace, node.Name)
}
// cleanToBeDeleted cleans ToBeDeleted taints.
func cleanToBeDeleted(nodes []*apiv1.Node, client kube_client.Interface, recorder kube_record.EventRecorder) {
for _, node := range nodes {
cleaned, err := deletetaint.CleanToBeDeleted(node, client)
if err != nil {
glog.Warningf("Error while releasing taints on node %v: %v", node.Name, err)
recorder.Eventf(node, apiv1.EventTypeWarning, "ClusterAutoscalerCleanup",
"failed to clean toBeDeletedTaint: %v", err)
} else if cleaned {
glog.V(1).Infof("Successfully released toBeDeletedTaint on node %v", node.Name)
recorder.Eventf(node, apiv1.EventTypeNormal, "ClusterAutoscalerCleanup", "marking the node as schedulable")
}
}
}
// Removes the given node from cloud provider. No extra pre-deletion actions are executed on
// the Kubernetes side.
func deleteNodeFromCloudProvider(node *apiv1.Node, cloudProvider cloudprovider.CloudProvider,
recorder kube_record.EventRecorder, registry *clusterstate.ClusterStateRegistry) errors.AutoscalerError {
nodeGroup, err := cloudProvider.NodeGroupForNode(node)
if err != nil {
return errors.NewAutoscalerError(
errors.CloudProviderError, "failed to find node group for %s: %v", node.Name, err)
}
if nodeGroup == nil || reflect.ValueOf(nodeGroup).IsNil() {
return errors.NewAutoscalerError(errors.InternalError, "picked node that doesn't belong to a node group: %s", node.Name)
}
if err = nodeGroup.DeleteNodes([]*apiv1.Node{node}); err != nil {
return errors.NewAutoscalerError(errors.CloudProviderError, "failed to delete %s: %v", node.Name, err)
}
recorder.Eventf(node, apiv1.EventTypeNormal, "ScaleDown", "node removed by cluster autoscaler")
registry.RegisterScaleDown(&clusterstate.ScaleDownRequest{
NodeGroupName: nodeGroup.Id(),
NodeName: node.Name,
Time: time.Now(),
ExpectedDeleteTime: time.Now().Add(MaxCloudProviderNodeDeletionTime),
})
return nil
}
func hasNoScaleDownAnnotation(node *apiv1.Node) bool {
return node.Annotations[ScaleDownDisabledKey] == "true"
}
func cleanUpNodeAutoprovisionedGroups(cloudProvider cloudprovider.CloudProvider, logRecorder *utils.LogEventRecorder) error {
nodeGroups := cloudProvider.NodeGroups()
for _, nodeGroup := range nodeGroups {
if !nodeGroup.Autoprovisioned() {
continue
}
targetSize, err := nodeGroup.TargetSize()
if err != nil {
return err
}
if targetSize > 0 {
continue
}
nodes, err := nodeGroup.Nodes()
if err != nil {
return err
}
if len(nodes) > 0 {
continue
}
ngId := nodeGroup.Id()
if err := nodeGroup.Delete(); err != nil {
logRecorder.Eventf(apiv1.EventTypeWarning, "FailedToDeleteNodeGroup",
"NodeAutoprovisioning: attempt to delete node group %v failed: %v", ngId, err)
// TODO(maciekpytel): add some metric here after figuring out failure scenarios
return err
}
logRecorder.Eventf(apiv1.EventTypeNormal, "DeletedNodeGroup",
"NodeAutoprovisioning: removed node group %v", ngId)
metrics.RegisterNodeGroupDeletion()
}
return nil
}
const (
apiServerLabelKey = "component"
apiServerLabelValue = "kube-apiserver"
)
func filterOutMasters(nodes []*apiv1.Node, pods []*apiv1.Pod) []*apiv1.Node {
masters := make(map[string]bool)
for _, pod := range pods {
if pod.Namespace == metav1.NamespaceSystem && pod.Labels[apiServerLabelKey] == apiServerLabelValue {
masters[pod.Spec.NodeName] = true
}
}
// if masters aren't on the list of nodes, capacity will be increased on overflowing append
others := make([]*apiv1.Node, 0, len(nodes)-len(masters))
for _, node := range nodes {
if !masters[node.Name] {
others = append(others, node)
}
}
return others
}