autoscaler/cluster-autoscaler/utils/gpu/gpu.go

199 lines
7.8 KiB
Go

/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package gpu
import (
apiv1 "k8s.io/api/core/v1"
"k8s.io/autoscaler/cluster-autoscaler/cloudprovider"
"k8s.io/autoscaler/cluster-autoscaler/utils/errors"
"k8s.io/autoscaler/cluster-autoscaler/utils/kubernetes"
klog "k8s.io/klog/v2"
)
const (
// ResourceNvidiaGPU is the name of the Nvidia GPU resource.
ResourceNvidiaGPU = "nvidia.com/gpu"
// DefaultGPUType is the type of GPU used in NAP if the user
// don't specify what type of GPU his pod wants.
DefaultGPUType = "nvidia-tesla-k80"
)
const (
// MetricsGenericGPU - for when there is no information about GPU type
MetricsGenericGPU = "generic"
// MetricsMissingGPU - for when there's a label, but GPU didn't appear
MetricsMissingGPU = "missing-gpu"
// MetricsUnexpectedLabelGPU - for when there's a label, but no GPU at all
MetricsUnexpectedLabelGPU = "unexpected-label"
// MetricsUnknownGPU - for when GPU type is unknown
MetricsUnknownGPU = "not-listed"
// MetricsErrorGPU - for when there was an error obtaining GPU type
MetricsErrorGPU = "error"
// MetricsNoGPU - for when there is no GPU and no label all
MetricsNoGPU = ""
)
// FilterOutNodesWithUnreadyGpus removes nodes that should have GPU, but don't have it in allocatable
// from ready nodes list and updates their status to unready on all nodes list.
// This is a hack/workaround for nodes with GPU coming up without installed drivers, resulting
// in GPU missing from their allocatable and capacity.
func FilterOutNodesWithUnreadyGpus(GPULabel string, allNodes, readyNodes []*apiv1.Node) ([]*apiv1.Node, []*apiv1.Node) {
newAllNodes := make([]*apiv1.Node, 0)
newReadyNodes := make([]*apiv1.Node, 0)
nodesWithUnreadyGpu := make(map[string]*apiv1.Node)
for _, node := range readyNodes {
_, hasGpuLabel := node.Labels[GPULabel]
gpuAllocatable, hasGpuAllocatable := node.Status.Allocatable[ResourceNvidiaGPU]
// We expect node to have GPU based on label, but it doesn't show up
// on node object. Assume the node is still not fully started (installing
// GPU drivers).
if hasGpuLabel && (!hasGpuAllocatable || gpuAllocatable.IsZero()) {
klog.V(3).Infof("Overriding status of node %v, which seems to have unready GPU",
node.Name)
nodesWithUnreadyGpu[node.Name] = kubernetes.GetUnreadyNodeCopy(node)
} else {
newReadyNodes = append(newReadyNodes, node)
}
}
// Override any node with unready GPU with its "unready" copy
for _, node := range allNodes {
if newNode, found := nodesWithUnreadyGpu[node.Name]; found {
newAllNodes = append(newAllNodes, newNode)
} else {
newAllNodes = append(newAllNodes, node)
}
}
return newAllNodes, newReadyNodes
}
// GetGpuTypeForMetrics returns name of the GPU used on the node or empty string if there's no GPU
// if the GPU type is unknown, "generic" is returned
// NOTE: current implementation is GKE/GCE-specific
func GetGpuTypeForMetrics(GPULabel string, availableGPUTypes map[string]struct{}, node *apiv1.Node, nodeGroup cloudprovider.NodeGroup) string {
// we use the GKE label if there is one
gpuType, labelFound := node.Labels[GPULabel]
capacity, capacityFound := node.Status.Capacity[ResourceNvidiaGPU]
if !labelFound {
// no label, fallback to generic solution
if capacityFound && !capacity.IsZero() {
return MetricsGenericGPU
}
// no signs of GPU
return MetricsNoGPU
}
// GKE-specific label & capacity are present - consistent state
if capacityFound {
return validateGpuType(availableGPUTypes, gpuType)
}
// GKE-specific label present but no capacity (yet?) - check the node template
if nodeGroup != nil {
template, err := nodeGroup.TemplateNodeInfo()
if err != nil {
klog.Warningf("Failed to build template for getting GPU metrics for node %v: %v", node.Name, err)
return MetricsErrorGPU
}
if _, found := template.Node().Status.Capacity[ResourceNvidiaGPU]; found {
return MetricsMissingGPU
}
// if template does not define GPUs we assume node will not have any even if it has gpu label
klog.Warningf("Template does not define GPUs even though node from its node group does; node=%v", node.Name)
return MetricsUnexpectedLabelGPU
}
return MetricsUnexpectedLabelGPU
}
func validateGpuType(availableGPUTypes map[string]struct{}, gpu string) string {
if _, found := availableGPUTypes[gpu]; found {
return gpu
}
return MetricsUnknownGPU
}
// NodeHasGpu returns true if a given node has GPU hardware.
// The result will be true if there is hardware capability. It doesn't matter
// if the drivers are installed and GPU is ready to use.
func NodeHasGpu(GPULabel string, node *apiv1.Node) bool {
_, hasGpuLabel := node.Labels[GPULabel]
gpuAllocatable, hasGpuAllocatable := node.Status.Allocatable[ResourceNvidiaGPU]
return hasGpuLabel || (hasGpuAllocatable && !gpuAllocatable.IsZero())
}
// PodRequestsGpu returns true if a given pod has GPU request.
func PodRequestsGpu(pod *apiv1.Pod) bool {
for _, container := range pod.Spec.Containers {
if container.Resources.Requests != nil {
_, gpuFound := container.Resources.Requests[ResourceNvidiaGPU]
if gpuFound {
return true
}
}
}
return false
}
// GetNodeTargetGpus returns the number of gpus on a given node. This includes gpus which are not yet
// ready to use and visible in kubernetes.
func GetNodeTargetGpus(GPULabel string, node *apiv1.Node, nodeGroup cloudprovider.NodeGroup) (gpuType string, gpuCount int64, error errors.AutoscalerError) {
gpuLabel, found := node.Labels[GPULabel]
if !found {
return "", 0, nil
}
gpuAllocatable, found := node.Status.Allocatable[ResourceNvidiaGPU]
if found && gpuAllocatable.Value() > 0 {
return gpuLabel, gpuAllocatable.Value(), nil
}
// A node is supposed to have GPUs (based on label), but they're not available yet
// (driver haven't installed yet?).
// Unfortunately we can't deduce how many GPUs it will actually have from labels (just
// that it will have some).
// Ready for some evil hacks? Well, you won't be disappointed - let's pretend we haven't
// seen the node and just use the template we use for scale from 0. It'll be our little
// secret.
if nodeGroup == nil {
// We expect this code path to be triggered by situation when we are looking at a node which is expected to have gpus (has gpu label)
// But those are not yet visible in node's resource (e.g. gpu drivers are still being installed).
// In case of node coming from autoscaled node group we would look and node group template here.
// But for nodes coming from non-autoscaled groups we have no such possibility.
// Let's hope it is a transient error. As long as it exists we will not scale nodes groups with gpus.
return "", 0, errors.NewAutoscalerError(errors.InternalError, "node without with gpu label, without capacity not belonging to autoscaled node group")
}
template, err := nodeGroup.TemplateNodeInfo()
if err != nil {
klog.Errorf("Failed to build template for getting GPU estimation for node %v: %v", node.Name, err)
return "", 0, errors.ToAutoscalerError(errors.CloudProviderError, err)
}
if gpuCapacity, found := template.Node().Status.Capacity[ResourceNvidiaGPU]; found {
return gpuLabel, gpuCapacity.Value(), nil
}
// if template does not define gpus we assume node will not have any even if ith has gpu label
klog.Warningf("Template does not define gpus even though node from its node group does; node=%v", node.Name)
return "", 0, nil
}