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Introduction 
This document is one of the artifacts produced following Trail of Bits’ March 11th to May 
10th, 2019 assessment of the security of the open source Kubernetes system. It provides a 
reference on different aspects of securing Kubernetes, based on the audit team’s 
observations. The white paper defines the key aspects of the Kubernetes attack surface 
and security architecture. 
 
The assessment yielded a significant amount of knowledge pertaining to the operation and 
internals of a Kubernetes cluster. This document presents that knowledge in a format 
useful to the community. We address key aspects of the Kubernetes attack surface and 
security architecture, enabling administrators, operators,  and developers to make sound 
design and implementation decisions. 
 
In order to provide background for best practice recommendations and guidelines, we 
describe the components of a cluster, how these components communicate, their internal 
abstractions, and, at a high level, how these components are hosted on the underlying 
infrastructure. We also detail the use of cryptography, and the potential threats a 
Kubernetes cluster could face. Next, we propose and discuss a set of best practices and 
guideline recommendations. 
 
Throughout many of the topics discussed, multi-tenancy is relevant. To help provide 
context to the affected tenants, we use these terms: 
 

● Cluster administrators are tenants with access to the underlying hosts, and who 
have elevated permissions on a cluster. 

● Cluster operators are tenants who have limited administrative access to a cluster, to 
perform operations such as the creation, deletion, and management of cluster 
workloads. 

● Workloads are applications, tasks, or jobs which can be executed and managed by 
Kubernetes. 

 
As a whole, this document is a summation of thoughts from the assessment team, covering 
security-adjacent issues uncovered throughout our assessment of Kubernetes. This 
content presents both general and specific recommendations from a team intimately 
aware of Kubernetes’ internals and wider cloud- and distributed-systems configurations. 
Additionally, guidance is included to promote further assessments and discussion of 
Kubernetes from the varied perspectives of administrators, security researchers, and 
developers. 
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Kubernetes overview 

Components 
A Kubernetes cluster requires several base components to operate, specifically: the 
kubelet, kube-apiserver, kube-scheduler, kube-controller-manager, and a kube-apiserver 
storage backend. Other components such as controllers and schedulers provide features 
related to networking, scheduling, or environment management. While these features may 
be required for certain workloads, they complement and extend the functionality of the 
base components. 

Communications and protocols 
The base components of Kubernetes use HTTP API endpoints for state-related 
communications. The core component of these state communications is the 
kube-apiserver. The kube-apiserver is the middle-man between the storage backend and 
the cluster components, allowing reads and modification of cluster state. Other 
components, such as the kubelet, use the kube-apiserver’s API to perform tasks such as 
retrieving information about which Pods their node should be currently running, or which 
service ports to configure on a node’s host. 
 
Similar to the kube-apiserver, the kubelet also interacts with external services. In order for 
Pods to execute, the kubelet must interact with a container runtime through a specified 
container runtime interface (CRI). Supported CRIs can be communicated with through a 
variety of protocols. Local to the node, standard TCP and sock communications can be 
used. Remotely, TCP communications are typically used. 
 
Beyond the scheduling and execution of Pods, most cluster workloads require external 
interaction with Pods. The kube-proxy, CNI, and kubelet are used to route ingress and 
egress TCP, UDP, and SCTP traffic from the host node to Pod based on service states 
returned by the kube-apiserver. Without this, Pods could be limited to egress 
communication abilities, using the underlying node’s host networking configuration. To 
allow ingress traffic, kube-proxy typically uses iptables  (or similar tools such as ipvs-adm) 1

to configure the node’s host to forward traffic from an external source to an internal Pod. 
 
As a whole, Kubernetes attempts to orchestrate and abstract existing systems to allow for 
large-scale container deployments through an easy-to-use declarative interface. Because of 
this, there is significant interaction between Kubernetes components and external systems. 

1 Kube-proxy configuration of iptables, 
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/#is-kube-proxy-writing-ipt
ables-rules 
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Without this interaction, Kubernetes would not be able to achieve expected functionality 
for supported workloads. 

Abstractions and objects 
Once a base Kubernetes cluster has been provisioned and configured, Kubernetes clusters 
are controlled via operator-defined objects. These objects are abstractions for cluster 
operations such as service discovery, replica management, port configuration, and the like . 2

The kube-apiserver derives how the state of the cluster should be mutated to reflect these 
objects. The other components of Kubernetes query the kube-apiserver for the state to 
maintain and adhere to. 
 
Through the use of the operator-defined objects, Kubernetes alleviates traditionally 
complex tasks related to system administration and task management. Component 
configuration is mostly agnostic of the workloads running atop the cluster, preventing 
reconfiguration of the underlying Kubernetes components and promoting configuration 
portability. However, component configuration does impact the effects of certain object 
definitions. 
 
To provide ease of configuration and portability, many of these abstractions have the 
requirement of being state- and component-agnostic, adding operational complexity of a 
different type. Many objects within Kubernetes are composed with other objects. This type 
of compositional approach allows for the creation of complex configurations, where 
considerations must account for both cluster-component capabilities, and object presence. 
Detailed discussions have been included in ​Infrastructure and cluster composition: 
Infrastructure management​ and ​Infrastructure and cluster composition: Object 
composition​. 
   

2 Understanding Kubernetes Objects, 
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/ 
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Infrastructure and cluster composition 

Infrastructure management 
While Kubernetes facilitates high-availability workload deployments, the underlying hosts, 
components, and environment of a Kubernetes cluster must be configured and managed. 
This management has a direct impact on the capabilities of the cluster, and affects the 
behavior of an operator’s composed objects. With this in mind, the options available for 
configuring components of Kubernetes often fluctuate significantly in supported versions, 
and vary in their approach to default settings. This leads to a non-trivial amount of 
configuration required by an administrator to stand-up a functional cluster for a given 
workload. More effort must then be spent maintaining the cluster to abide by these 
settings, especially when planning and executing upgrades of Kubernetes components. 
 
The impact of Kubernetes on the underlying node hosts must also be kept in mind. 
Kubernetes workloads may have operations or dependencies which use host resources, 
such as network interfaces, volumes, and applications. These types of operations impact 
the underlying node host in regards to file permissions, volume access, and resource 
consumption. For example, if an operator is able to schedule privileged Pods, they may 
have access to administrator resources in the underlying node hosts across the cluster, 
depending on the access controls in place on each node host. Furthermore, this can have 
an inverse effect on the security of the cluster, since a privileged process on a node host 
could gain access to sensitive cluster configuration information such as secrets and 
certificates. 
 
Configuration of Kubernetes components can also be made more complex due to 
Kubernetes’ ability to partially manage itself. kubelet is able to run Pods specified in static 
manifest files  within a manifest directory, as well as from a specified remote 3

kube-apiserver, at the same time. This allows cluster administrators to run certain cluster 
components in a kubelet-managed way. As an example, the kube-apiserver can be defined 
as a Pod in a static manifest, and the managing kubelet can be configured to point to the 
Pod (via ​--pod-manifest-path​ flag). Once the kube-apiserver Pod is started from the static 
manifest and reachable by the kubelet, the kubelet will begin pulling Pod specifications 
from the kube-apiserver to execute. This type of configuration fundamentally changes the 
security considerations that must be made when deploying a Kubernetes cluster, since the 
execution environment of the cluster components changes from running directly on the 
host to running within a container runtime managed by the kubelet.  
 

3 Kubernetes Static Pods, ​https://kubernetes.io/docs/tasks/administer-cluster/static-pod/  
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To help manage the complexity of configuration and management, various projects have 
been formed to help configure and manage the underlying hosts and environments of a 
Kubernetes cluster. Projects such as Kubespray , Kops , Rancher , and many others aim to 4 5 6

provide clusters which an administrator can further configure and better maintain. Despite 
many of these projects aiming to provide “production-ready” clusters, even these have 
differences in configuration, management, and operation. Furthermore, if extra 
functionality is required of the cluster, complexity of management increases. 

Object composition 
In order to use Kubernetes, operators must define objects for the cluster to derive state 
from. Nearly every aspect of the Kubernetes cluster is controllable through these objects, 
such as access controls (role based access controls, Pod security policies, etc), 
deployments, Pods, and volumes.  
 
When defining objects, operators may compose complex objects through references to 
other objects. At the time of object creation, another referenced object does not need to 
exist. This allows for trivial state-agnostic configuration, since once a referenced object 
exists, the cluster state will update and reflect its existence. 
 
While composing objects in a state-agnostic way makes complex-object composition 
easier—since it is no longer order-dependent—it can be tough for an operator to detect 
misconfigurations. Because some objects can be successfully created without the presence 
of an object that may be depended on, expected functionality must be tested to ensure the 
state properly reflects the operator’s intent and configuration. This is especially concerning 
when considering the impact a misconfiguration could have on a critical control such as 
Role Based Access Controls (RBAC) . To use RBAC, policies are defined through roles and 7

role bindings. Because roles and role bindings can be created and maintained separately, 
this could cause misconfigurations by an administrator who assumed a role or binding was 
created and applied successfully, but in fact was not applied as expected. 
 
Furthermore, the objects an operator can define on the cluster can be impacted by the 
underlying configuration of the cluster. Similar to how an object will be created even if a 
reference does not exist, Kubernetes allows objects to be created even if the component 
which would use its configuration does not exist or is disabled. For example, an operator 
can define a PodSecurityPolicy (PSP) even if the PSP admission controller is not enabled on 

4 Kubespray, ​https://github.com/kubernetes-sigs/kubespray  
5 Kops, ​https://github.com/kubernetes/kops  
6 Rancher, ​https://rancher.com/  
7 Role Based Access Control Overview for Kubernetes, 
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#api-overview  
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the kube-apiserver , resulting in a policy which will not be enforced, even if it is bound to a 8

role. 

Health detection and failures 
One of Kubernetes’ many goals is to facilitate high-availability, fault-tolerant service 
management. To achieve this, health detection and fault tolerance is required on multiple 
layers of the Kubernetes stack.  
 
On the lowest layer, base Kubernetes components contain health checks to ensure they 
are responsive and healthy, managing unhealthy components through eviction periods and 
timeouts. This allows the cluster components to regulate workloads based on the status of 
underlying components. 
 
On the workload layer, Kubernetes supports the ability to define both liveness and 
readiness checks . The readiness checks allow the kubelet to determine when a Pod is 9

ready to perform work. The liveness checks allow the kubelet to determine if a Pod is 
continuously suitable for work. Both of these checks support three probing methods of 
checking a Pod’s status: TCP, HTTP, and Executor. When performing the TCP and HTTP(S) 
status checks, the kubelet will attempt to contact a specified host and port based on the 
Pod’s specification. If a connection is successfully established (TCP) or an acceptable 
response status (HTTP(S)) has been returned, the check will succeed. In the case of the 
Executor, the kubelet will attempt to execute a command within the specified Pod. If the 
command returns a successful status code, the check will succeed. 
 
Regardless of layer, Kubernetes will attempt to mitigate the impact of a workload or node 
which fails its status checks . For both, eviction and timeout policies are typically used. If a 10

kubelet node is no longer passing its status checks, eviction policies may take effect, 
evicting a node from the cluster and triggering Pods to be rescheduled away from the 
evicted node. If a Pod is no longer passing its status checks, it may be restarted on the 
same node, or rescheduled to another node in an attempt to get the status check to 
succeed.  
 
When configuring and securing a cluster and its workloads, all aspects of this functionality 
must be considered. If an attacker gains access to a container, the attacker must do so in a 
way that does not disrupt a Pod’s health checks. If an attacker causes a Pod to fail health 
checks, this could lead to the container being terminated and started elsewhere. 
Furthermore, outside constraints such as cgroups could lead to a Pod container’s 

8 The PodSecurityPolicy admission controller, 
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies  
9 Liveness and Readiness checks in Kubernetes, 
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/  
10 Node conditions, ​https://kubernetes.io/docs/concepts/architecture/nodes/#condition   
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termination if resource allocations are exceeded, limiting an attacker’s ability to use 
available resources. 
 
Beyond avoiding health check disruption, an attacker with the ability to schedule Pods 
could also use liveness and readiness checks to find out information about a node’s host 
environment. Using the fact that the kubelet performs probes from the host, an arbitrary 
host and port can be specified for a TCP and HTTP(S) status probe, allowing an attacker to 
enumerate host ports on the networks available to the underlying node host’s interfaces.   
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Host and cluster multi-tenancy 
Because Kubernetes can be used for such a wide variety of workloads, it is important to 
consider the impact and potential effects of multi-tenant cluster operators, cluster 
workloads, and cluster node hosts. 
 
Multi-tenant node hosts present a unique challenge to the security of a Kubernetes cluster. 
Underlying host resources can be consumed by other users of the system, resulting in 
reduced workload capacity. For example, resources such as CPU, memory, ports, and disk 
space are directly influenced by a multi-tenant node host. Depending on the size of the 
cluster and the type of workload, sudden node-host resource-availability changes could 
result in workload-availability issues. From an attacker’s perspective, even if direct access to 
the cluster is not possible, resource exhaustion attacks on multi-tenant hosts still present a 
potential method of interfering with cluster operations. While this is not the fault of 
Kubernetes, it requires consideration when designing where node clusters should run. 
 
Within a cluster, there are several tenancy considerations that must be made when 
building and managing a cluster. Numerous operators of a cluster can exist at the same 
time, with varying levels of access. Furthermore, multiple workloads can co-exist on a 
cluster, both in and outside of the same namespace. Between operator multi-tenancy and 
workload multi-tenancy, there is a significant attack surface for an attacker with access to 
either a workload or operator account. 
 
Kubernetes namespaces were developed as a method to help provide workload isolation . 11

Running multiple, potentially multi-tenant, workloads in the same namespace sidesteps the 
protections of namespaces, resulting in a single large and flat namespace. In an 
environment with two workloads in the same namespace, an attacker with access to one 
workload could possibly access the other workload without encountering 
cluster-namespace restrictions. Depending on workload configuration, an attacker could 
use this lateral access to move and escalate to a more privileged workload. 
 
Compounding namespace-workload tenancy concerns, operator tenancies and privileges 
directly affect the security of a cluster. If an attacker gains access to a particular tenant’s 
credentials, the attacker may be able to escalate in and across namespaces and workloads 
through configuration of cluster objects. 
   

11 When to use multiple namespaces, 
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-mul
tiple-namespaces  
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Kubernetes and cryptography 
Several core components of the Kubernetes framework require the use of cryptography. In 
particular users need four features: 
 

1. Encryption of data in etcd 
2. Verifiable  and tamper-proof encrypted data storage in etcd 
3. Encrypted data transports 
4. Verifiable component identities 

 
In this section, we discuss how Kubernetes solves these problems and the choices 
administrators have during setup. 

Encryption in etcd 
When administrators store information in etcd, they need to be sure that their data is both 
private and tamper-resistant. Information privacy can be achieved through standard block 
cipher modes such as AES-CBC. However, privacy and tamper resistance can be 
accomplished simultaneously by using an authenticated encryption scheme . Kubernetes 12

supports four options when encrypting data, of which only the latter three provide 
authenticated encryption: 
 

1. AES-CBC with PKCS#7 padding 
2. AES-GCM 
3. Secretbox 
4. KMS 

 
In the documentation, administrators are told that KMS and AES-CBC provide the highest 
level of security. While Trail of Bits believes that KMS is the best choice in general, by no 
means is AES-CBC more secure or more performant than Secretbox. In particular, AES-CBC 
does not provide authenticated encryption and is known to be vulnerable to padding oracle 
attacks . While it is unlikely an attacker would be able to mount such a padding oracle 13

attack on the data storage component of Kubernetes, future changes to the system may 
introduce such a vulnerability. 
 
Despite authenticating encrypted data, AES-GCM is an extremely error-prone mode of 
encryption. It requires administrators to supply a random nonce which, if repeated, allows 
an adversary to decrypt messages and recover parts of the user’s key. To avoid reusing 

12 How to choose an Authenticated Encryption mode, 
https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-authenticated-encryption/ 
13 Padding oracle attack on CBC encryption, 
https://en.wikipedia.org/wiki/Padding_oracle_attack#Padding_oracle_attack_on_CBC_encryption 
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nonces, administrators must frequently rotate keys. Since this process requires great care 
and diligence, it is a major weakness in AES-GCM. Clusters which use AES-GCM should 
instead use KMS, which uses AES-GCM as its underlying encryption algorithm but 
automates key rotation. Furthermore, the user-friendly API and documentation of KMS 
make it substantially less error prone than manually setting up encryption in Kubernetes 
itself. 
 
Kubernetes should depreciate AES-GCM and AES-CBC. Administrators should be instructed 
to use KMS or encrypt all sensitive data with Secretbox by default. 

Certificates 
In order for components within a Kubernetes cluster to prove they are who they say they 
are, the kube-apiserver issues each component a cryptographic certificate which proves the 
component’s identity. When two components need to communicate, they verify each 
other’s certificates before sending any sensitive information. If a node is taken out of a 
cluster or is corrupted, administrators need a way to revoke that node’s certificate. 
Currently there is no way to accomplish this in Kubernetes .  14

 
Perhaps the simplest solution to this problem is to have nodes maintain a certificate 
revocation list (CRL). This requires all components of the cluster to periodically check with 
the kube-apiserver to ensure their CRL is up-to-date. For small clusters this may be 
acceptable, but the bandwidth requirements become prohibitive for larger systems. We do 
note, however, that this scheme has been implemented in etcd . 15

 
OCSP stapling would be a more sensible alternative . In this scheme, the kube-apiserver 16

manages a revocation list. When a node needs to verify that a certificate is valid, it sends 
the certificate to the kube-apiserver which subsequently sends a signed response 
indicating the status of the certificate. This scheme reduces bandwidth and prevents 
adversaries from taking advantage of gaps between CRL updates. 

HTTPS Connections  
The Kubernetes system allows administrators to set up a public key infrastructure (PKI), but 
often fails to authenticate TLS connections between components, negating any benefit to 
using a PKI. This failure to authenticate components within the system is extremely 
dangerous and should be changed to use authenticated HTTPS by default. Lack of 
authentication opens up the possibility for malicious entities to trick the cluster into 
believing they have privileges they do not. Until this is fixed, administrators need to be 

14 Support for managing revoked certs, ​https://github.com/kubernetes/kubernetes/issues/18982 
15 Support for managing revoked certs, ​https://github.com/etcd-io/etcd/issues/4034  
16 Online Certificate Status Protocol, ​https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol 
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aware that much of their inter-node communications are not authenticated, and they must 
manually enable HTTPS in kubelet .   17

17 TLS bootstrapping, 
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/ 
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Positioning Threat Actors within a Kubernetes cluster 
Understanding threat actors and their associated positions is critical to understanding the 
risk of any finding: ​who​ can do ​what​ to ​whom​ from​ where​. Kubernetes is a large system, with 
many attack surfaces exposed to users only at specific privilege levels. This section of the 
white paper focuses on what is exposed to attackers at each level. Our assessment focused 
on three main classes of attackers: 
 

● External attackers, who did not have access to the cluster 
● Internal attackers, who had transited a trust boundary, such as access to a Pod 
● Malicious Internal users, who abuse their privilege within the cluster 

 
Each threat in the threat model or finding in the technical report was rated with these three 
attackers and their positions in mind. 

Internal and External Network Access  
Kubernetes’ components are highly networked: components retrieve configuration from 
kube-apiservers via HTTP. kube-apiserver itself retrieves status from components via HTTP 
servers which they themselves expose. While the kube-apiserver is protected with strong 
authentication and authorization, many other components in the cluster are not. Attackers 
with access to the network in an unfiltered capacity may have access to a wide range of 
information, including Pod specifications (from kubelet), namespace names, and secrets’ 
names. 
 
Therefore, Kubernetes must be protected by ancillary network controls. This should ensure 
that cluster components are separated from the wider internet and even from themselves. 
For example, Pods should rarely if ever need access to the kube-apiserver or etcd, and thus 
may be segmented away from those internal components. In contrast, kubelet and 
kube-proxy, which may live on the same physical host as a Pod, do need this access. The 
cluster as a whole should be protected at the perimeter from unauthenticated user access. 
Only direct, service-specific access should be granted to cluster-level hosted services and 
Pods.  
 
Within the cluster, care should be paid to restricting egress from core components like 
kube-apiserver and from Pods to internal components, such as kubelet or kube-apiserver. 
Cutting off internal ingress and egress restrictions and external access to the cluster can 
frustrate most network-level attacks, or force an attacker to reach even deeper into a 
cluster, requiring the compromise of core hosts or other exposed components. 
Additionally, the cluster is not immune to attacks such as ARP poisoning, so normal server 
hardening should be taken into account when determining network and host configuration. 
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Host Access 
Eventually, all items within a cluster, from Pods to Kubernetes’ own components, must run 
on a specific host, which may have administrators who are not active in the cluster itself. 
For example, a host may have a systems-administration team that handles disk space and 
network access, but does not have access to the larger cluster. Kubernetes relies on 
functionality on hosts for low-level details; for example, kube-proxy and kubelet make 
heavy use of the Linux routing system to accomplish their tasks. Furthermore, several 
Kubernetes components rely on Unix Domain Sockets to protect access to sensitive 
functionality; attackers with access to hosts could access a wider array of cluster 
functionality. 
 
Internal Attackers or Malicious Internal Users with access to a host could impact a number 
of cluster components. Kube-proxy makes heavy use of iptables or ipvs for inter-Pod 
routing and service connections. An attacker who could change routing tables could route 
traffic to other hosts and expose sensitive cluster data to malicious hosts. Additionally, 
host-level users with access to privileged accounts could theoretically impact functionality 
via Unix Domain Sockets which lack further authentication. Hosts backing cluster 
components should never be shared across any other functionality, and should for all 
intents and purposes be considered “closed servers,” with minimal ability for host-level 
users to login. Furthermore, hosts should adopt all normal hardening measures, ensuring 
that Kernel Security Modules (KSMs) and heavy auditing are configured, so as to determine 
if and when a malicious user undertook a specific action. 

Pod Access 
Pods are an abstraction level of containers within a cluster, but do not provide strong 
isolation protections by themselves. As Pods run arbitrary user workloads, Internal 
Attackers may be able to get an initial foothold through a vulnerable client application. 
Likewise, because Pods are scheduled by users of the cluster, a Malicious Internal User may 
be able to abuse Kubernetes’ functionality to consume extra resources or create various 
“noisy neighbor” problems (wherein a tenant or tenants of a cluster consume far more 
resources than other neighbors at a virtual machine or API level, which are difficult to 
detect at a higher level) within the cluster. Lastly, Kubernetes does not yet have a strong 
sense of multi-tenant isolation. Deciding on a single direction for multi-tenancy will help 
foment a set of rules and understandings that may be applied more fully to the threat 
profile of a given cluster.  
 
Similarly to host access, Internal Attackers may parlay access to a Pod into wider cluster 
access. At the time of this report, Kubernetes mounted default credentials in every Pod; an 
Internal Attacker could use these credentials to access other resources within the cluster, 
such as the kublet. From there, the Internal Attacker may be able to move laterally 
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throughout the cluster to wider access. For cluster administrators, care should be taken 
that vulnerable applications and Pods are patched as soon as possible, so that Internal 
Attackers may not gain an initial foothold within the cluster. Additionally, audit all 
component logs within the system for lateral movement; this should include regular checks 
of accesses of cluster components by Pods and other user workloads.  
 
Finally, Malicious Internal Users may abuse functionality within a cluster to consume 
resources and cause a denial of service. For example, if a Malicious Internal User can 
schedule Pods, not only can they schedule whatever Pod they’d like, including ones with 
malicious software, they may simply use an Anti-affinity scheduler to claim whole host 
nodes to themselves. Monitoring and auditing the workload of a cluster is a must. 
Reviewing the allocation structure of every host is as important as ensuring the correct 
kube-scheduler configurations are available to minimize resource hogging.  

Cluster Access 
The cluster itself has functionality that may be manipulated by Malicious Internal Users. 
Kubernetes is architected around a “spoke and wheel” style architecture: components 
watch for their resource type from kube-apiserver, and in turn update related resources 
within the kube-apiserver, leading to further changes in other components. In terms of 
design, the kube-apiserver should be the central arbiter of truth and consistency within a 
cluster. However, several components within the system, such as kubelet, allow users with 
certain Role-Based Access Control (RBAC) roles to access functionality directly, bypassing 
the kube-apiserver.  
 
While kube-apiserver contains logs that reconstruct user actions, individual components do 
not by default log with enough granularity to reconstruct a Malicious Internal User’s 
actions. Restrict network access even for privileged users to the smallest amount of surface 
necessary. If possible, only allow a cluster’s users access to the kube-apiserver itself, as this 
will reduce the number of components a Malicious Internal User may be able to 
communicate with, and will allow cluster administrators to recreate an attacker’s path via 
kube-apiserver alone.   
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Recommendations for cluster administrators 

Attribute Based Access Controls vs Role Based Access Controls 
When comparing the permissions systems, Role-Based Access Controls (RBAC) are heavily 
recommended over the use of Attribute-Based Access Controls (ABAC). RBAC may be 
configured dynamically while a cluster is operational. In contrast, the static nature of ABAC 
can increase the difficulty of ensuring proper deployment and enforcement of controls. 
 
Clusters should not use both ABAC and RBAC. This could grant users unintended 
permissions, since if one validation fails, but the other succeeds, the cluster operator will 
still be able to perform the action . Administrators who are migrating off of ABAC should 18

be extremely careful of this drawback, as it could allow operators to perform actions they 
are not allowed to perform during migration. 

RBAC best practices 
When interacting with RBAC, it is important to remember that the configuration of 
Kubernetes’ components impacts the defined policies. As mentioned in the ​Kubernetes 
overview: Abstractions and objects​ section, objects can be composed by referencing 
objects that may not yet exist. Additionally, objects can be created even if the component 
using the object does not exist. This functionality can be very dangerous when constructing 
RBAC policies, since functionality must be tested to ensure the configuration works in the 
expected manner. This could lead an administrator to believe that policies are in effect, 
when in fact they are not. To avoid this type of mistake, administrators should test to 
ensure: that policies defined on the cluster are backed by an appropriate component 
configuration, that policies are properly tied to roles, and that the policies properly restrict 
behavior. 

Node-host configurations and permissions 
When configuring a host to run Kubernetes, file permissions should be as restrictive as 
possible, especially for the kubelet and control plane components. An attacker with access 
to the underlying host (either through a Pod, or direct access) can use certificates, tokens, 
and other sensitive information on disk to gain privileged access to the underlying host or 
Kubernetes cluster.  
 
Exposed services on the underlying host should be restricted through network policy and 
authentication to prevent unauthorized access from a Pod scheduled on a node. 
Kubernetes itself is composed of various components which expose themselves as services 

18 RBAC Support in Kubernetes, ​https://kubernetes.io/blog/2017/04/rbac-support-in-kubernetes/  
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on the underlying host to facilitate bidirectional communications. Because of this, it is 
important to ensure that appropriate authentication and access controls are in place for 
the cluster nodes, since an attacker with network access to a single node could use 
Kubernetes components to compromise other nodes. 

Default settings and backwards compatibility 
Kubernetes contains many default settings which negatively impact the security posture of 
a cluster. These settings also have conflicting usage semantics, where some use either 
opt-in or opt-out specifications. The conflicting usage generally boils down to the 
preservation of backwards compatibility for both workload and component configurations. 
Ensuring appropriate configuration of all options requires significant attention by cluster 
administrators and operators. 
 
Cluster operators and administrators must ensure component and workload settings can 
be rapidly changed and redeployed in the event of compromise or required update. 
Furthermore, post-deployment tests of both workloads and components should account 
for the presence of opt-in and opt-out settings to ensure implicit configuration has not 
occurred. 

Networking 
Due to the complexity of Kubernetes networking and the impact a container-networking 
interface has on a cluster’s network requirements, it is difficult to provide specific 
recommendations suitable for all use cases. However, there are general guidelines that can 
be followed across these different configurations.  
 
Proper segmentation and isolation rules of the underlying cluster hosts should be defined. 
Hosts tasked with executing control-plane components should be isolated to the greatest 
extent possible. Any interactions with control-plane components should be whitelisted 
explicitly. Next, hosts tasked with executing cluster workloads (kubelet nodes) should be as 
segmented as possible. While workloads may make host segmentation difficult due to 
service-discovery and -availability requirements, it is recommended to ensure host firewalls 
adequately restrict all network access regardless of the cluster workloads. Finally, ensure 
the container network interface is as restrictive as possible through the definition of cluster 
network policies. 

Environment considerations 
The environment a cluster is operated in affects the security considerations that must be 
made. Kubernetes contains many features which depend on cloud environments, such as 
load balancers and persistent volumes. These features directly impact resources which 
could be external to the hosted cluster within the operating environment. Conversely, the 
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security of these resources directly impacts the cluster itself. If one of these environment 
resources (e.g. a persistent volume) is compromised and the cluster uses this resource, an 
attacker could use this functionality to pivot into the cluster. 
 
As a whole, it is recommended that the security of a cluster’s operating environment is 
addressed. If a cluster is hosted on a cloud provider, administrators should ensure that 
best-practice hardening rules are implemented. Furthermore, administrators should audit 
the access controls applied to cloud resources created and used by a cluster. Resources 
shared across an operating environment should be monitored closely. 

Logging and alerting 
Kubernetes can run in many environments, including those where underlying cluster hosts 
for worker nodes are ephemeral. Furthermore, a cluster can facilitate ephemeral 
workloads. Centralized logging of both workload and cluster host logs is recommended to 
enable debugging and event reconstruction. 
 
The security of centralized logs and their corresponding alerts is extremely important. 
Depending on the logging levels used for components and workloads, it is possible for 
sensitive information to be disclosed through logs. Limit access to these logs, and make a 
best effort to filter sensitive information from logs. 
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Recommendations for developers 

Avoid hardcoding paths to dependencies 
Hardcoding paths to external resources or dependencies, especially for large, long-living 
projects like Kubernetes is problematic. A path change in a dependency can go unnoticed 
in the future, especially if the code using the path is rarely used or when there is a fallback 
mechanism. 
 
An example can be seen in Kubernetes' kubelet process, where a dependency on 
hardcoded paths for PID files led to a race condition which could allow an attacker to 
escalate privileges. These hardcoded PID file paths were intended to be used to retrieve the 
PID of a running process. When they weren’t found, it fell back to an insecure version of 
finding processes’ PIDs by traversing the ​/proc​ directory and checking for a process name. 
This made it possible for an unprivileged user to spoof a process and potentially get more 
privileged access to devices (see findings TOB-K8S-21 and TOB-K8S-22 in the ​Kubernetes 
Security Assessment​). 
 
It is important to be conservative and cautious when handling external paths. Users should 
be warned if a path was not found, and have an option to specify it through a configuration 
variable. 
 
Testing all hardcoded paths during end-to-end tests and carefully reasoning about cases 
where they might be different is recommended. Centralization of operator path 
configurations should be considered. This could reduce operator error, since path 
configuration would be less disparate. 

File permissions checking 
To configure components of Kubernetes, configuration files must often reside on disk. 
Furthermore, many of these configuration files contain sensitive information which, if an 
attacker is able to gain access to, could allow for privilege escalation on the host or cluster. 
Kubernetes currently does not enforce minimum file permissions to prevent this. It is 
recommended that Kubernetes support the ability to perform file permissions checking, 
and enable this feature by default. This will help prevent common file permissions 
misconfigurations and help promote more secure practices.  

Monitoring processes on Linux 
A Linux process can be uniquely identified in the user-space via a process identifier or PID. 
A given PID will point to a given process as long as the process is alive. If it dies, the PID can 
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be reused by another spawned process. PIDs are usually assigned incrementally skipping 
already taken PIDs. When they reach a maximum number they overflow and start back 
from 0. The maximum PID number is defined in ​/proc/sys/kernel/pid_max​ file on Linux. 
It is usually set to 32768.  
 
Process properties can be read and sometimes modified through the “proc” virtual 
filesystem which contains a directory for each PID. Those directories contain significant 
process metadata, such as links to the path name of the executed command, its current 
working directory, environment variables, opened files and sockets, security attributes, 
memory mappings and much more. 
 
When using the “proc” virtual filesystem, it can be easy to make incorrect assumptions 
about expected behaviour and errors. For example if the process binary is located in a very 
long path, one can read the binary file via ​/proc/<pid>/exe​ but a readlink of it will result in 
an ​ENAMETOOLONG​ error. Furthermore, when the binary itself has been deleted, it is still 
possible to read its content via reading the file the link points to, but it’s readlink will return 
the old path concatenated with a “(deleted)” string. 
  
It’s also important to note that PIDs are not process handles. They can’t be operated on 
directly like file descriptors. When reading multiple files from ​/proc/<pid>/​ it is important 
to first grab a ​/proc/<pid>/​ directory stream or file descriptor, and then access files 
through it. This prevents a race condition  where a PID could be reused by another process 
between reading two files from ​/proc/<pid>/​ for a given PID. This is the result of  an open 
directory stream pointing to the inode of the old process ​/proc/<pid>​ directory, while the 
new process ​/proc/<pid>​ will have a new inode. 

Moving processes to a cgroup 
A process and its threads can be moved to a v1 cgroup  on Linux systems by writing the 19

process’s PID to ​/sys/fs/cgroup/<controller>/<control group>/cgroup.procs​. 
Because this solution also uses PIDs, it is also vulnerable to race conditions. When moving a 
given process to less restricted cgroup it is necessary to validate that the process is the 
correct process after performing the movement. 

Future cgroup considerations for Kubernetes 
Both Kubernetes and the components it uses (runc, Docker) have no support for cgroups 
v2 . While this is currently not an issue as most current Linux systems come with support 20

19 Control Group v1 documentation, 
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt  
20 Control Group v2 documentation, ​https://www.kernel.org/doc/Documentation/cgroup-v2.txt 
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for both cgroups v1 and v2 by default, it would be good to track this topic  as it might 21

change in the future. 

Future process handling considerations for Kubernetes 
While the exact future of handling processes (or threads) on Linux is yet to be determined, 
tracking and participating in it’s development is recommended. There are currently efforts 
to implement a “PIDFD,” a race-free process descriptor   . The main goal is to send 22 23 24

signals to processes in a race-free fashion.  

Best practices for spawning processes 
Many CLI programs support passing both optional and positional arguments. When 
passing them programmatically it is important to be cautious with spawning them via a 
shell, as this could let an attacker use the shell’s glob patterns or exploit expansions. Go 
mitigates this by the fact that the ​exec​ package does not invoke shell directly to launch a 
process . 25

 
However, there is still room for programmer error by letting users pass an optional 
argument in the place of a positional argument. As an example, when we invoke ​ls DIR 
and the DIR is user controlled, the user can pass either a file, directory name, or an optional 
argument such as ​--help​. The latter might have tremendous consequences in some 
programs. Examples of this abuse include in ​tar​, ​chown​, ​chmod​ or ​rsync . 26

 
In most situations these problems can be mitigated by passing “​--​” after specifying all 
desired optional arguments. The “- -” is an argument supported by most parsing libraries, 
informing them to stop parsing optional arguments. As a result, an invocation of “​ls -- 
--help​” will list a file or directory named “​--help​”. 
 
Although the “--” mitigation can work in many cases, there are programs that do manual 
parsing instead of using tested libraries that support “- -”. Therefore, it is recommended to 
always check whether a given program supports “- -”. If it doesn’t, add additional validation 
to the positional parameters passed from user input. 

21 "cgroupv2: Linux’s new unified control group system", 
https://chrisdown.name/2017/03/01/cgroupv2-linux-new-cgroup-hierarchy.html 
22 Towards race free process signaling, ​https://lwn.net/Articles/773459/ 
23 Race-free pidfd access example 
https://github.com/torvalds/linux/commit/43c6afee48d4d866d5eb984d3a5dbbc7d9b4e7bf 
24 Pidfds: Process file descriptors on Linux 
https://kernel-recipes.org/en/2019/talks/pidfds-process-file-descriptors-on-linux/ 
25 Golang docs: exec package overview, ​https://golang.org/pkg/os/exec/ 
26 Back To The Future: Unix Wildcards Gone Wild, 
https://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt 
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