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Introduction 
The Cloud Native Computing Foundation (CNCF) tasked Trail of Bits to conduct a 
component-focused threat model of the Kubernetes system. This threat model reviewed 
Kubernetes’ components across six control families: 
 
● Networking 
● Cryptography 
● Authentication 
● Authorization 
● Secrets Management 
● Multi-tenancy 

 
Kubernetes itself is a large system, spanning from API gateways to container orchestration 
to networking and beyond. In order to contain scope creep and keep a reasonable timeline 
for threat modeling, the CNCF selected eight components within the larger Kubernetes 
ecosystem for evaluation: 
 
● kube-apiserver 
● etcd 
● kube-scheduler 
● kube-controller-manager 
● cloud-controller-manager 
● kubelet 
● kube-proxy 
● Container Runtime 

 
In total, the assessment team found 17 issues  across the various components, ranging in 
severity from Medium to Informational. 

Key Findings 

Kubernetes allows users to define policies at multiple levels of the cluster. This can impact 
items from network filtering through to how Pods interact with the underlying host. 
However, many of these policies are not applied without the correct components installed 
and enabled; this, unto itself, is fine. However, Kubernetes does not warn users that these 
policies are not applied due to missing components. This may lead to a situation wherein a 
user assumes they have applied a security control, when it is in fact missing. Warning users 
when security controls are missing or unapplied would allow them to respond by either 
enabling the correct components or mitigate the issue in another way. More generally, 
Kubernetes does not readily provide auditing information to users in a unified fashion. 
Components may or may not collect auditing information sufficient to track a user’s path 



through the system. Providing more feedback to users, administrators, and incident 
responders will help not only to increase the general security of Kubernetes, but also to 
give users  a more consistent and friendly User Experience as well. 
 
Kubernetes is also a highly networked system, with multiple communications protocols. 
Many of these protocols traffic in sensitive information, such as cluster secrets or 
credentials, and yet do not use the strongest TLS configurations possible or even use it at 
all. While it is difficult for attackers to intercept communications between components, it is 
possible in certain configurations. Therefore, always enforcing HTTPS, providing ingress 
and egress filtering for clusters, and using the strongest cryptographic controls possible will 
provide users with a secure baseline that must be modified to be insecure, rather than the 
other way around.  
 
Furthermore, it must rely on traditional operating systems to  do the heavy lifting of 
running containers and cluster services. However, it generally assumes those operating 
systems to be trustworthy, and that sensitive data may be exposed to the operating system 
freely. However, Hosts (called “Node” in the Kubernetes ontology if running a kubelet) 
should be treated as a separate security domain from the cluster itself: systems 
administrators for Hosts may not be the same systems administrators for the cluster. 
Sensitive data exposed to a Host could allow Internal Attackers or Malicious Internal Users 
to parlay their access to a single Host into wider cluster access, simply by viewing logs, 
processes, or environmental data. There are two general directions that Kubernetes can 
take: 
 

1. Hosts must be “closed,” and all systems administrators for Hosts should be treated 
as privileged enough to view the data shared via IPC and environment variables. 

2. Move away from exposing sensitive data to systems, and towards a model similar to 
a Vault or Key Management System/Hardware Security Module, wherein the system 
provides APIs that do not expose secrets to any other processes or persons under 
normal circumstances. 

 
Either choice would be a reasonable direction for Kubernetes, however, a choice must be 
made. Choosing one direction or the other will ensure that controls and designs can be 
made that satisfy the chosen direction, and that all components understand and can 
adhere to this direction. A similar issue exists with  Multi-tenancy: many components do 
not have a notion of Multi-tenancy, which is relatively loosely defined at the time of this 
assessment. Choosing a direction, and providing developers with guidance as to how to 
achieve this direction. This  will strengthen the core of Kubernetes, and remove many of 
the current issues, wherein components do not have an answer for certain aspects of the 
system, because they are ill-defined.  
 
 



Report Position 
Kubernetes is a large, intricate system, with many security controls and design decisions 
having arisen from organic decisions that made sense in situ to diverse and distributed 
teams. This report attempts to catalog many of the discussions captured within the Rapid 
Risk Assessment processes. However, the raw Rapid Risk Assessment documents will be 
provided upon release of this report, so that the community as a whole may see the 
discussions and notes made during meetings. 
 
The remainder of this report analyzes components, trust zones, data flows, threat actors, 
controls, and findings of the Kubernetes threat model. This was a point-in-time 
assessment, and reflects the state of Kubernetes, specifically version 1.13.4, at the time of 
the assessment, rather than any current or future state.     
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Methodology 
This document is the result of several person-weeks worth of effort from members of the 
community, the  Security Working Group, and the assessment team, across diagrams, 
documents, RRAs, Manning’s ​Kubernetes in Action​ book, and Kubernetes’ own 
documentation. It is a control-focused threat model, with a review of each component 
vis-a-vis the controls selected by the Security Working Group.  The RRA template is 
provided in ​Appendix A: RRA Template​. 
 
Performing a threat model and architecture review of a system as large as Kubernetes 
proved  challenging. First, we designed a dataflow for the selected components, and 
modified Mozilla’s Rapid Risk Assessment (RRA)​ document to focus on the selected 
controls. Next, we pre-filled sections of the documents for each component, based on our 
understanding of the component and online documentation. Then, we polled the 
community for feedback, and held remote meetings with members of the community to 
correct any gaps in the RRA documents and to discuss the impact of each control within the 
selected component. Once the RRA had been filled out by a group of community members, 
a different group of community members was selected to peer review the document for 
accuracy.  
 
We would like to thank  all of the members of the community who came together to donate 
their time to us, in order to discuss and review areas of Kubernetes’ design, and provide 
holistic information that can make Kubernetes as a whole better.  
   

https://www.manning.com/books/kubernetes-in-action
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html


Components 
The Kubernetes architecture is composed of multiple components, many of which are 
stand-alone binaries written in Go. The following table describes the eight selected 
Kubernetes components: 
 

Component  Description 

kube-apiserver  A RESTful web server that handles coördination of all aspects 
of a cluster. Specifically, it accepts client requests for 
updating all other components within a cluster. These 
requests are authenticated, authorized, processed, and then 
stored within etcd for further processing and use. Clients 
may subscribe to topics in order to be notified of changes 
that are relevant to their interests; for example, a kubelet 
may listen for Pod scheduling events that require the 
kubelet’s action. 

etcd  A key-value store that leverages gPRC and TLS (potentially 
with two-way, or client-authenticated TLS), used to store the 
most sensitive data within a cluster. Access to etcd should be 
restricted to as few users as possible. Generally, 
unrestrained access to etcd is considered “root” (or 
administrative) access to the cluster itself. 

kube-scheduler  A component that reads from Pod descriptions and 
schedules the Pods to nodes based on a scheduling 
algorithm and resource constraints. In practice, this means 
the scheduler “listens” to new Pod creation on the API server, 
reviews the node list for potential resource allocation and 
rules, and updates the Pod to be assigned to a specific node 
within the API server. A further process, namely the kubelet, 
will actually handle the task of instructing the container 
runtime to run and execute the Pod. 

kube-controller-manager 
 

A daemon that listens for specific updates within the API 
server, taking action, and storing its own updates within the 
API server itself. The purpose of the daemon is to run 
“controllers” within an infinite loop, with each controller 
attempting to keep the state of the cluster consistent. This 
works by way of a call-back listener loop, and comparison of 
current cluster state with the desired state of the cluster as 
described by developers and administrators. 

cloud-controller-manager 
 
 

A daemon with similar purpose to kube-controller-manager, 
but instead of focusing on generic components within 
Kubernetes, it focuses on maintaining consistency with 



cloud-platform-specific components that back a Kubernetes 
cluster. 

kubelet  A worker component tasked with all aspects of node 
operations within a worker. It interacts with the Container 
Runtime, listens for Pod scheduling and related events on 
the API server, and updates the API server as to Pod 
availability, resource usage, and general status. It is also the 
endpoint the API server reaches out to for logs and other 
updates from nodes and Pods within the cluster. 

kube-proxy  A component to help, along with the Container Networking 
Interface (CNI), facilitate Kubernetes’ transparent model of 
networking. Kubernetes requires that all Nodes and Pods be 
able to communicate without a (visible) Network Address 
Translation (NAT). kube-proxy utilizes items such as iptables 
and also serves to proxy or pass-thru traffic in order to 
ensure that all containers, Pods, and nodes are able to 
communicate with one another as if they were on a single 
network. 

Container Runtime  A group of components that allow for the direct execution of 
containers within a cluster. This includes the necessary 
operating system integrations (such as control groups on 
Linux), configuration settings, and Kubernetes interfaces to a 
container system, e.g. Docker, cri-o, containerd, ... 

   



Planes 
Kubernetes itself is divided (roughly) into two “planes,” or groupings of components. The 
following table describes each plane, and groups the aforementioned components: 
 

Plane  Description  Components 

Control Plane 
 
 

The Control Plane (CP) controls the state of 
the cluster and ensures that the desired 
components are running as specified by the 
end user. Generally, these are grouped as 
Masters (technically, API server, etcd, and 
related components) as well as the kubelet 
(which, whilst part of the CP, actually runs 
on every  Node). 

kube-apiserver, 
kube-scheduler, 
kube-controller-manager, 
cloud-controller-manager
, 
kubelet, 
etcd 

Data Plane  The worker, on the other hand, executes 
the actual Pods and containers that make 
up a client’s applications. These 
components focus on running and 
networking Pods and their associated 
containers. 

Kube-proxy, 
CNI, 
CRI, 
Pods 

   



Trust Zones 
Systems include logical “trust boundaries” or “zones” in which components may have 
different criticality or sensitivity. Therefore, in order to further analyze the system, we 
decompose components into zones based on shared criticality, rather than physical 
placement in the system. Trust zones capture logical boundaries where controls should or 
could be enforced by the system, and allow designers to implement interstitial controls and 
policies between zones of components as needed. 
 

Zone  Description  Included Components 

Internet  The externally facing, wider internet 
zone. 

kubectl, 
application clients 

API Server  The central coordinator for the 
system, exposed only as much as 
needed for access from 
administrators with kubectl. 

kube-apiserver 

Master Components  Internal portions of the Master 
node that work via callbacks and 
subscriptions to the API server. 

kube-controller-manager 
cloud-controller-manager 

Master Data  The data layer of the API server and 
master server(s) themselves. This 
boundary contains items such as 
Consul or etcd, and is tantamount 
to “root” or administrative access to 
the cluster when accessed in an 
uncontrolled fashion. 

etcd 

Worker  The worker zone within a cluster 
includes all the components 
required to run and network 
containers. 

kubelet, 
kubeproxy 
 

Container  The container zone includes the 
actualLinux containers. 

Container Runtime 
 
 

   



Trust Zone Connections 
Trust zones are only useful when we understand the data that flows between zones, and 
why. 
 

Originating 
Zone 

Destination 
Zone 

Data Description  Connection 
Type 

Authentication 
Type 

Internet 
 
 

API Server 
 

kubectl 
administration 
functionality, which 
could be a VPN or 
other bastion host 
with direct access to 
the API server. 

HTTPS 
 
 

Verified and 
possibly 
two-way TLS 
 
 

Internet  Container  Clients of the actual 
applications within 
the Kubernetes 
Worker Nodes. 

Various (based 
on application) 
 
 

N/A 
 
 

API Server 
 

Master Data 
 
 

kube-apiserver 
retrieving and storing 
data from a 
key-value store such 
as etcd or Consul. 

HTTPS 
 
 

Verified 
 
 

Master 
Components 

API Server 
 

Items such as the 
Scheduler, Controller 
Managers, 
Replication Manager, 
retrieving and 
updating items 
managed by the API 
server. 

HTTPS/Internal 
Callbacks 
 
 

Verified 
 
 

API Server 
 
 

Worker 
 
 

Log and status 
retrieval from the API 
server to the 
individual Worker 
Node’s kubelet. 

HTTP 
 
 

Unverified 

Worker   API Server 
 
 

Worker nodes’ kublet 
must communicate 
with the API server 
for new Pod 

HTTPS 
 
 

Verified and 
possibly 
two-way TLS 
 



allocations, to 
update status Pods, 
and so on. 

 

Worker  Container  Scheduling 
containers for 
execution, handled 
by the kubelet, within 
a host node. 

Interprocess 
Communications 
 

N/A 
 
 

   



Threat Actors 
Similarly to Trust Zones, defining malicious actors ahead of time is useful in determining 
which protections, if any, are necessary to mitigate or remediate a vulnerability. 
We will use these actors in all subsequent findings from the threat model. Additionally, we 
define other “users” of the system, who may be impacted by, or enticed 
to undertake, an attack. For example, a Confused Deputy attack such as Cross-Site Request 
Forgery would have a normal user as both the victim and the potential direct attacker, 
even though a secondary attacker enticed the user to undertake the action. 
 

Actor  Description 

Malicious Internal User  A user, such as an administrator or developer, who uses their 
privileged position maliciously against the system, or stolen 
credentials used for the same. 

Internal Attacker  An attacker who had transited one or more trust boundaries, 
such as an attacker with container access. 

External Attacker  An attacker who is external to the cluster and is 
unauthenticated. 

Administrator  An actual administrator of the system, tasked with operating 
and maintaining the cluster as a whole. 

Developer  An application developer who is deploying an application to a 
cluster, either directly or via another user (such as an 
Administrator). 

End User  An external user of an application hosted by a cluster. 

 
   



Additionally, defining attackers’ paths through the various zones is useful when analyzing 
potential controls, remediations, and mitigations that exist within the current architecture: 
 

Actor  Originating 
Zone 

Destination 
Zone(s) 

Description 

Malicious 
Internal User 
 
 

Any  Any  Malicious Internal Users are often 
privileged and have access to a wide 
range of resources. Therefore, 
controls must be in place to ensure 
users are authorized to undertake an 
action and log all actions within the 
system, for strong non-repudiation of 
actions. 

Internal 
Attacker 

Container  Containers in 
another 
namespace, 
Worker, 
API Server, 
Master 
Components, 
Master Data 

Attackers who transit external 
boundaries and attain position on an 
internal container will seek to 
escalate privileges by accessing items 
in the API Server or Master Data 
zones, or parlay their access to other 
internal components of other Worker 
nodes. 

External 
Attacker 
 
 

Internet  Container, 
Worker, 
API Server 
 
 

External Attackers will seek to transit 
network edges in order to become 
Internal Attackers, or use exposed 
API Server functionality to escalate 
privileges. 
 
 

 
   



Dataflow

 



Control Summary 
Committee on National Security Systems (CNSS) Instruction (CNSSI 4009​ defines “security 
control” as: ​The management, operational, and technical controls (i.e., 
safeguards or countermeasures) prescribed for an information system to 

protect the confidentiality, integrity, and availability of the system and 

its information.​ Controls are grouped by type or ​family​, which collect controls along 
logical groupings, such as Authentication or Cryptography. This assessment will focus on 
six primary control families, per the request of the Security Working Group: 
 

Family Name  Description 

Authorization  Related to authorization of users and assessment of rights. 

Authentication  Related to the identification of users. 

Cryptography  Related to protecting the privacy or integrity of data. 

Secrets Management  Related to the handling of sensitive application secrets such as 
passwords. 

Networking  Related to the protocols and connections between cluster and 
application components. 

Multi-tenancy  Related to the safe handling of two or more separate 
organizational groups within a cluster. 

 
Additionally, we will keep the following families in mind throughout our review: 
 

Family Name  Description 

Auditing and Logging  Related to auditing of actions or logging of potential security 
events. 

Configuration 
 

Related to secure configurations of servers, devices or software. 

Data Exposure  Related to unintended exposure of sensitive information. 

Data Validation 
 

Related to improper reliance on the structure or values of data. 

Denial of Service  Related to causing system failure. 

Error Reporting  Related to the reporting of error conditions in a secure fashion. 

https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf


Patching 
 

Related to keeping software up to date. 

Session Management  Related to the identification of authenticated users. 

Timing  Related to race conditions, locking or order of operations. 

Undefined Behavior  Related to undefined behavior triggered by the program. 

 
Our review assessed the controls along the following criteria: 
 
● Strong: controls were well implemented, centrally located, non-bypassable, and 

robustly designed. 
● Satisfactory: controls were well implemented, but may be weakened by 

vulnerabilities or are diffuse in location. 
● Adequate: controls were implemented to industry-standard best practice guidelines. 
● Weak: controls were either partially unimplemented, applied, or contained flaws in 

their design or location. 
● Missing: an entire family of control was missing from a component. 
● Not Applicable: this control family is not needed for protecting the current 

component. 
   



kube-apiserver 

Control Family  Strength  Description 

Authorization 
 
 

Satisfactory 
 
 

kube-apiserver authorizes requests as a part of the 
normal request pipeline, in a centralized fashion. So 
long as outdated modes of authorization, namely 
ABAC, are not used, the authorization controls within 
this core component are relatively strong. One other 
central concern aside from ABAC’s inclusion is the 
presence of webhooks, which may reach out to other, 
third-party components without much visibility to the 
kube-apiserver itself.  

Authentication 
 
 

Strong  kube-apiserver authenticates requests as part of the 
normal request pipeline, in a centralized fashion. So 
long as outdated modes of authentication are not 
used, the authentication controls within its core and 
critical subcomponents are relatively strong. 

Cryptography  Adequate 
 
 

kube-apiserver employs many cryptographic systems: 
from TLS connections all the way through to being 
the root Certificate Authority for at least two Public 
Key Infrastructures within a cluster. However, 
multiple connections within the system avoid using 
TLS for communication secrecy by default and some 
services do not authenticate their connections when 
they do so. For example, by default kubelet’s 
connections do not utilize a certificate generated by 
the kube-apiserver, but rather an unvalidated 
self-signed one. 

Secrets 
Management 
 

Adequate  kube-apiserver is the heart of all information flow 
within a cluster: all information must be passed 
through and processed by the kube-apiserver. For 
the most part, secrets are safely handed by the 
kube-apiserver to etcd in a secure fashion. However, 
encryption of secrets is not a default action of the 
server, and must be configured by a command line 
switch, providing the perception of security, rather 
than actual security to the system. 

Networking 
 
 

Weak  kube-apiserver is a highly-networked component: all 
other components within the cluster communicate 
with it, and it must communicate with external 
services, like webhooks and components’ own health 



reporters. However, there are no controls limiting 
egress and ingress to the kube-apiserver itself, and 
ancillary protections must be used in order to ensure 
that it is not communicating with external third 
parties in a fashion unintended by cluster 
administrators. 

Multi-tenancy 
 
 

Satisfactory 
 
 

kube-apiserver is the arbiter of tenant interactions 
within a cluster. However, the general consensus of 
teams during the assessment was that isolation was 
strong enough for intra-organizational segmentation, 
but not for true multi-tenant situations. For example, 
minimal protections are in place for “noisy neighbor” 
and similar scenarios within a cluster. 

   



etcd 

Control Family  Strength  Description 

Authorization 
 
 

Not Applicable 
 
 

etcd, as deployed by Kubernetes, does not support 
authorization to separate out user actions. It 
should only be accessed by kube-apiserver and 
components of similar sensitivity. 

Authentication  Satisfactory  etcd can be configured to use two-way (or 
client-side) TLS as an authentication mechanism. 
However, as it is intended to be run from its own 
cluster accessible only to kube-apiserver(s), minimal 
authentication requirements are needed other than 
network segmentation. 

Cryptography  Not Applicable 
 
 

etcd does not store data encrypted at rest, and 
instead relies on kube-apiserver to enforce 
cryptographic constraints. However, 
recommendations are made within the report to 
strengthen cryptographically-secure hashing 
operations within file system operations, such as 
the Write-Ahead Log (WAL). 

Secrets 
Management 
 
 

Not Applicable 
 
 

While etcd stores secrets for the cluster, etcd only 
processes credentials sufficient to communicate 
with kube-apiserver. All other secrets are handled 
by kube-apiserver itself, and merely stored within 
etcd. 

Networking 
 
 

Not Applicable  Any etcd process is intended to be segmented by 
network and security controls from the rest of the 
Kubernetes cluster. These controls are external to 
etcd, and thus outside of the scope of this review. 

Multi-tenancy 
 
 

Not Applicable 
 
 

etcd maintains no awareness of multiple tenants 
within the system, which is instead handled by 
kube-apiserver. 

   



Kube-scheduler 

Control Family  Strength  Description 

Authorization 
 
 

Not Applicable 
 
 

kube-scheduler includes concepts that must be 
restricted by role or attribute to specific users. 
However, enforcement is the domain of the 
kube-apiserver, rather than kube-scheduler. 

Authentication 
 
 

Not Applicable 
 
 

kube-scheduler does not handle authentication 
directly, but rather relies on kube-apiserver to be 
the arbiter of authentication. The sole item of 
authentication is the handling of client credentials, 
which are handled in the standard way: credentials 
are passed in via command line argument to the 
kube-scheduler binary on initial execution. 

Cryptography 
 
 

Not Applicable 
 
 

kube-scheduler does not handle cryptography 
directly, but rather relies on kube-apiserver to be 
the arbiter of cryptography. 

Secrets 
Management 
 
 

Not Applicable 
 
 

kube-scheduler does not handle secrets directly, 
but rather relies on kube-apiserver to be the arbiter 
for their correct storage. The sole exception is 
authentication credentials, which are passed in via 
command line argument to the binary on initial 
execution, and is a general finding in Kubernetes as 
a whole, rather than specific to kube-scheduler. 

Networking 
 
 

Adequate 
 
 

kube-scheduler should mainly communicate with 
kube-apiserver, and thus minimal controls are 
required. However, ingress and egress controls are 
maintained externally to kube-scheduler. Attackers 
may be able to access health reporting and related 
information from internal positions within the 
cluster. 

Multi-tenancy  Satisfactory 
 

kube-scheduler makes heavy use of namespaces 
and other multi-tenant items (such as Pods for 
isolation boundaries, and RBAC for authorization 
controls) when scheduling cluster workloads. 
However, attackers may be able to abuse items 
such as anti-affinity within the cluster to control 
more than their fair share of cluster resources. 

 
 



kube-controller-manager and cloud-controller-manager 

Control Family  Strength  Description 

Authorization  Adequate  KCM and CCM are actually a passel of components 
with various levels of authority. Items such as 
service account controller have permission to write 
to their policies, which may be used to escalate 
privileges. Additionally, further segmentation 
should be added to separate out sensitive 
functionality from functionality at a lower privilege 
level, so as to ensure that sensitive functions are 
not maliciously or mistakenly interacted with by 
other components. 

Authentication  Not Applicable  KCM and CCM do not handle authentication directly, 
but rather rely on kube-apiserver to be the arbiter 
of authentication. 

Cryptography 
 

Not Applicable  KCM and CCM do not handle cryptography directly, 
but rather rely on kube-apiserver to be the arbiter 
of cryptography. 

Secrets 
Management 

Weak  KCM and CCM handle a wide number of secrets, 
which may be shared with the KCM and CCM 
systems by various means. These include 
environment variables, command-line arguments, 
and Kubernetes secrets. However, controls are 
diffuse, being written in situ for each KCM or CCM 
component. 

Networking  Adequate  KCM and CCM must be able to talk to a large 
number of external-to-the-cluster components, 
such as cloud providers’ infrastructure. However, 
controls themselves are diffuse, and implemented 
in situ within each KCM or CCM module.  

Multi-tenancy  Not Applicable  KCM and CCM do not directly handle multi-tenant 
isolation. This could be problematic going forward, 
as KCM and CCM components could interact with 
namespaces that were not intended to have access 
to cloud or other provider boundaries. 

 



kubelet 

Control Family  Strength  Description 

Authorization  Strong  Unless configured improperly, kubelet delegates all 
authorization requests to the kube-apiserver(s) of 
the cluster. This allows all requests that must 
access privileged information served by the 
kubelet’s HTTP(S) servers to be authorized by the 
central authority within the system. 

Authentication  Strong  Unless configured improperly, kubelet also 
delegates all authentication requests to the 
kube-apiserver(s) of the cluster. This allows all 
requests that must access privileged information 
served by the kubelet’s HTTP(S) servers to be 
authenticated by the central authority within the 
system. 

Cryptography  Not Applicable 
 

kubelet does not handle cryptography directly, but 
rather relies on kube-apiserver to be the arbiter of 
cryptography. 

Secrets 
Management 
 
 

Adequate  kubelet is, like kube-apiserver, uniquely privileged 
within the system to see a large amount of secret 
information in an unencrypted form. For the most 
part, this information is handled safely with strong 
controls. However, bootstrap certificates are 
written unencrypted to the file system, and are not 
removed automatically. 

Networking  Weak  kubelet includes a large number of services that are 
neither ingress-restricted nor controlled by 
delegated authentication. This is problematic as 
these services reveal information such as Pod 
specifications to any attacker capable of accessing 
the port. 

Multi-tenancy 
 
 

Not Applicable 
 

kubelet does not handle multi-tenancy directly, but 
rather relies on kube-apiserver to be the arbiter of 
multi-tenant isolation. 

   



kube-proxy 

Control Family  Strength  Description 

Authorization 
 
 

Not Applicable 
 
 

kube-proxy does not handle authorization directly, 
but rather relies on kube-apiserver to be the arbiter 
of authorization. 

Authentication 
 
 

Not Applicable 
 
 

kube-proxy does not handle authentication directly, 
but rather relies on kube-apiserver to be the arbiter 
of authentication. 

Cryptography  Not Applicable 
 
 

kube-proxy does not handle cryptography directly, 
nor does it need access to sensitive information in 
general. 

Secrets 
Management 
 

Not Applicable 
 
 

kube-proxy does not handle secrets directly, but 
rather relies on kube-apiserver to be the arbiter for 
their correct storage. The sole exception is 
authentication credentials, which are passed in via 
command-line arguments to the binary on initial 
execution. This is a general finding for Kubernetes 
as a whole, rather than specific to kube-proxy. 

Networking 
 

Strong  kube-proxy has strong, centralized controls that 
ensure correct interaction with both the Linux 
kernel (via iptables or ivps) and the networking 
configuration specified by cluster clients. 

Multi-tenancy  Not Applicable 
 
 

kube-proxy does not handle multi-tenancy directly, 
but rather relies on kube-apiserver to be the arbiter 
of multi-tenant isolation. 

   



Container Runtime 

Control Family  Strength  Description 

Authorization  Not Applicable  Container Runtime does not handle authorization 
directly, but rather relies on kube-apiserver and 
kubelet to be the arbiters of authorization. 

Authentication  Satisfactory  Container Runtime largely relies on kube-apiserver 
and kubelet to be the arbiter of authentication. 
However, there is a single control that relies on a 
slightly weakened authentication mechanism with 
a short lifetime, which slightly impacts the strength 
of the authentication control. 

Cryptography  Not Applicable  Container Runtime does not handle cryptography 
directly, but rather relies on kube-apiserver and 
kubelet to be the arbiters of cryptography. 

Secrets 
Management 

Adequate  Container Runtime largely relies on kubelet to 
handle secrets. However, authenticated Pod 
repositories’ credentials are exposed to the wider 
host, despite being secret within the Pod 
specification itself.  

Networking  Adequate  Container Runtime is responsible for handling 
image retrieval within the cluster. However, it does 
not have egress filtering, which could be used to 
impact the cluster itself, especially when HTTP is 
used. 

Multi-tenancy  Not Applicable  Container Runtime does not handle multi-tenancy 
directly, but rather relies on kube-apiserver and 
kubelet to be the arbiters of multi-tenant isolation. 

   



Kubernetes-wide findings 
Findings in this section impact Kubernetes as a whole. These are generally design issues 
that are shared amongst all components, despite not sharing code for the control or 
design. Broadly, these findings trend towards information disclosure, channel security 
(cryptography and networking), and the application of user configuration.    



1. Policies may not be applied 
Severity: Medium Difficulty: Medium 
Type: Configuration Finding ID: TOB-K8S-TM01 
 
Description 
Kubernetes allows users to define policies, such as NetworkPolicy and PodSecurityPolicy, to 
restrict sensitive actions of specific components. For example, a NetworkPolicy is a YAML 
document intended to restrict the communications flow between Pods, in an effort to 
implement egress and/or ingress filtering. Users may implement such policies so as to 
enforce communication boundaries within a cluster, and ensure that Pods cannot 
communicate across sensitivity levels or tenants.  
 
However, policies are not always enforced, and may fail silently. Kubernetes does not warn 
users when policies are applied which may not be enforced without further configuration 
changes or components. For example, PodSecurityPolicy requires an additional Admissions 
Controller to be configured for execution, and NetworkPolicy requires a Container 
Networking Interface (CNI) that can actually process and accept policies as configuration. 
Neither object will warn the user that the policy has not been applied, leading to a false 
sense of security. 
 
Justification 
The difficulty is medium for the following reasons: 

● A user must intend to use one of the following policies without ancillary controls in 
place (such as external firewalls to restrict Pod communication). 

● An attacker must have position sufficient to exploit the missing policy.  
 
The severity is medium, for the following reasons: 

● An attacker must have a secondary exploit in order to impact the cluster. 
● Users are not alerted to the missing policy, meaning they cannot effectively monitor 

for situations that may arise from missing policies. 
 
Recommendation 
Short term, clearly document all locations within a Kubernetes cluster that may accept a 
policy or configuration that is not applied. This will impact at least kube-apiserver and CNI.  
 
Long term, alert users to situations wherein policies may not be applied.  Wherever 
possible, do not apply configurations, such as Pod specifications, when security-related 
policies cannot be applied. This will directly alert users to situations that fail to apply 
security controls they expect, and allow them to take the appropriate configuration action 
as needed to apply the desired control. 
 
References 



● NetworkPolicy Prerequisites  
● PodSecurityPolicy “Enabling Pod Security Policies” and “Authorizing Policies” sections 

   

https://kubernetes.io/docs/concepts/services-networking/network-policies/#prerequisites
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies


2. Insecure TLS by default 
Severity: Medium Difficulty: Medium 
Type: Cryptography Finding ID: TOB-K8S-TM02 
 
Description 
Kubernetes allows components to communicate via Transport Layer Security (TLS), with 
kube-apiserver serving as the root Certificate Authority (CA) for multiple Public Key 
Infrastructures (PKIs) within a cluster. However, multiple components within the system do 
not use secure TLS configurations and instead disable certificate verification and use 
self-signed certificates. Attackers may utilize these insecure defaults to man-in-the-middle 
(MITM) connections between cluster components, without the knowledge of either cluster 
components or administrators. 
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must have sufficient position to MITM connections. 
● Clusters will generally have other ancillary controls, such as cloud-hosting providers 

or edge firewalls, to prevent the most eager attackers from affecting this attack. 
● MITM attacks tend to be noisy, or cause other failures within a system, limiting the 

ease with which an attacker may keep this position. 
 
The severity is medium, for the following reasons: 

● Attackers can only MITM connections that do not verify certificates. 
● By default, all communications with kube-apiserver are verified, leaving only 

communications between components (such as kube-apiserver to kubelet) open for 
MITM. 

 
Recommendation 
Short term, change the default for kubelet to use verified TLS for all communications, as 
opposed to the default use of self-signed certificates. 
 
Long term, ensure that all components within the cluster use kube-apiserver-generated 
certificates, and verify all connections between components. This will ensure that all data 
shared throughout the cluster is shared only with intended parties, and connections will fail 
should any MITM be detected. 
 
References 

● Kubelet configuration options​ which mention the self-signed certificate bootstrap. 
   

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#options


3. Most components accept inbound HTTP 
Severity: Medium Difficulty: Medium 
Type: Cryptography Finding ID: TOB-K8S-TM03 
 
Description 
Many components in Kubernetes may have changes in state, health, or general status 
information that should be reported. In order to handle this, Kubernetes uses HTTP as a 
universal mechanism for data collection: components serve standard HTTP routes which 
serve data in standard formats consumable by kube-apiserver. However, sensitive 
information is also presented by at least one component (kubelet), and all others present 
information over unencrypted, unauthenticated interfaces. An Internal Attacker with 
sufficient position could sniff traffic or more easily man-in-the-middle requests between 
components.  
 
Justification 
The difficulty is medium for the following reasons: 

● Attackers must either have sufficient position or have discovered missing secondary 
controls to affect the attack. 

● Internal attackers, or External Attackers in a misconfigured cluster, can easily 
request data. 

 
The severity is medium for the following reasons: 

● Sensitive data is rarely stored unencrypted within podspecs. 
● Data is read only, even if it exposes secrets or allows attackers to transit trust 

boundaries (such as an Internal Attacker suddenly being able to see Pod specs). 
 
Recommendation 
Short term, move all components to HTTPS, and disable HTTP unless specifically requested 
by cluster administrators. 
 
Long term, do not leak sensitive information without delegated authentication from 
kube-apiserver. This would include Pod specs and even certain types of statistics, such as 
number of Pods running on a given node. Minimizing the information given out to 
unauthenticated requests can reduce information available to attackers for lateral 
movement. 
   



4. Most components do not enforce outbound HTTPS 
Severity: Medium Difficulty: Medium 
Type: Networking Finding ID: TOB-K8S-TM04 
 
Description 
Kubernetes interacts with external resources such as Webhooks and container repositories 
for multiple resource types. Components such as kubectl, kube-apiserver, and the 
Container Runtime fetch resources all have reasonable use cases to request data from 
external resources.  
 
However, no component requires secured connections for external resources; an attacker 
with sufficient position could man-in-the-middle these connections and change the 
response, or issue requests to third-party websites which are not under the control of the 
organization. 
 
Justification 
The difficulty is medium for the following reasons: 

● Attackers must have sufficient position or privilege in order to affect this attack. 
● Minimal tooling is required, especially for Malicious Internal Users, to launch this 

attack, lowering difficulty. 
 
The severity is medium for the following reasons: 

● Attackers can launch attacks on external resources. 
● Attackers can modify resources to be executed by the cluster.  
● Attackers with this position can launch other, more fruitful attacks, lowering 

severity.  
 
Recommendation 
Short term, enforce the use of HTTPS throughout the lifecycle of a retrieval request, and 
ensure that no resources, regardless of source, are fetched from insecure communications 
channels. 
 
Long term, design egress controls that can be applied to components such as Container 
Runtime and kube-apiserver, to ensure that these resources communicate with external 
resources intended by administrators. This should include validation of remote URLs, 
hosts, and other metadata, to ensure that cluster users can only access intended 
resources.    



5. Credentials exposed in environment variables and command-line 
arguments 
Severity: Low Difficulty: High 
Type: Data Exposure Finding ID: TOB-K8S-TM05 
 
Description 
Kubernetes uses credentials and secrets throughout the cluster. These may be simple 
bootstrap credentials for components such as Container Runtime, or more complex tokens 
passed in via environment variables. Regardless, credentials are exposed to a wider 
audience than intended when supplied to components in this fashion: Internal Attackers 
with Host position or Malicious Internal Users may have position sufficient to see command 
line arguments (such as via ​ps​ or ​top​) or environment variables. Additionally, secrets 
passed as command-line arguments are much more likely to end up in world-readable 
system logs on the host, aggregated logs for the organization and sent to third party log 
service providers. This would allow an attacker with sufficient position to parlay their 
access to a Host into wider cluster access.  
 
Justification 
The difficulty is high for the following reason: 

● An Internal Attacker or Malicious Internal User must have privileged access to hosts 
in order to see all processes’ arguments and environments.  

 
The severity is low for the following reasons: 

● Attackers could parlay access to the Host into wider cluster access.  
● Attackers with this level of access could likely impact the cluster in other ways, 

lowering severity. 
 
Recommendation 
Short term, document all the ways that items are passed via command-line arguments and 
environment variables, so that end users understand their exposure. This should include 
Inter-Process Communication (IPC) mechanisms that spawn new processes, such as 
kubelet interacting with Container Runtime.  
 
Long term, move away from exposing sensitive credentials via mechanisms that may be 
revealed to unintended third parties.    



6. Names of secrets are leaked in logs 
Severity: Low Difficulty: High 
Type: Logging Finding ID: TOB-K8S-TM06 
 
Description 
Kubernetes includes logging throughout components. However, multiple components log 
the names of secrets provided to them. An attacker with access to cluster logs, an Internal 
Attacker with access to host logs, or a Malicious Internal User with access to aggregated 
logs in a Security Information and Event Management (SIEM), could see the names of 
secrets within a cluster, which could themselves be sensitive, depending on the user and 
application.  Furthermore, anywhere that command line arguments are logged may include 
secrets or names of secrets, depending upon the component. 
 
Justification 
The difficulty is high for the following reasons: 

● Attackers must have sufficient privilege or position to access logs. 
● Sensitive names (such as internal projects) must be used by Developers or 

Administrators.  
 
The severity is low for the following reasons: 

● In and of themselves, the names of secrets may only reveal certain aspects of a 
program or application, rather than actionable details.  

● Attackers with this level of access may be able to access other details of an 
application that are more impactful, such as Pod configurations. 

 
Recommendation 
Short term, document all the ways in which data may be leaked within the cluster’s logs, so 
that users are at least aware of these locations and may filter manually.  
 
Long term, implement filtering akin to logging filters in Java frameworks, ​such as Simple 
Logging Faces For Java (SLF4J)​. This will allow users to apply custom filters that can filter 
logs in ways that the Kubernetes team cannot anticipate, without interrupting the normal 
operation of logging within the cluster.  
   

https://logback.qos.ch/manual/filters.html
https://logback.qos.ch/manual/filters.html


kube-apiserver findings 
kube-apiserver is the heart of the cluster: it provides the final say on the cluster’s state, and 
all updates are coordinated through watching for new resources and updating them 
directly. 
 
It works by providing a central ReST server that all other components within the system 
access via HTTPS. These requests are authenticated by various Authenticators (components 
run within the kube-apiserver to authenticate requests), authorized by Authorizers, and 
processed by other elements, such as Admissions Controllers and Resource Validators. 
Once a request has been processed by all subcomponents, it is stored in etcd, where it can 
be later retrieved by other cluster components “watching” for updates. For example, a 
simple flow is as follows: 
 

 
 

1. A client updates a Pod definition via ​kubectl​, which is itself a ​POST​ request to the 
kube-apiserver. 

2. The scheduler watches for Pod updates via an HTTP request to retrieve new Pods. 
3. The scheduler then updates the Pod list via a ​POST​ to the kube-apiserver. 
4. The node's ​kubelet​ retrieves a list of Pods assigned to it via an HTTP request. 
5. The node's ​kubelet​ then updates the running Pod list on the kube-apiserver. 

 



7. No non-repudiation or audit of user actions by default 
Severity: Medium Difficulty: Low 
Type: Audit and Logging Finding ID: TOB-K8S-TM07 
 
Description 
The kube-apiserver is the heart of the cluster: all transactions must pass through its 
handlers and be served again to other cluster components. In this way, kube-apiserver 
ensures consistent cluster state across all components: creation, modification, and deletion 
are all coördinated via this central service. However, kube-apiserver does not keep a log of 
users’ actions without debug mode being enabled, meaning that reconstructing an 
attacker’s path through the cluster is extremely difficult. 
 
Justification 
The difficulty is low for the following reasons: 

● Attackers do not require special tools or privileges to interact with the 
kube-apiserver. 

● Internal Attackers or Malicious Internal Users already have sufficient privileges to 
interact with kube-apiserver to some degree. 

 
The severity is medium for following reasons: 

● Attackers must have sufficient privileges to undertake a sensitive action, or have a 
secondary exploit.  

● In general, this is not vulnerability unto itself, but rather represents a location where 
incident responders would not have sufficient information to properly respond to 
an attack.  

 
Recommendation 
Short term, document that secondary logging mechanisms must be used in cases that need 
strong non-repudiation and audit controls. This will ensure that at least users who require 
this functionality will not be surprised that it is missing.  
 
Long term, add logging sufficient to track a user’s action across the cluster. This could be as 
simple as tracking events solely within kube-apiserver, or could coördinate across the 
cluster as a whole. We recommend that at least all authenticated events, including 
delegated authentication from kubelet, should be logged and retrievable from a central 
location within the cluster. This will allow incident responders to audit from a central 
location a user’s action within the cluster.    



8. Secrets not encrypted at rest by default 
Severity: Low Difficulty: High 
Type: Cryptography Finding ID: TOB-K8S-TM08 
 
Description 
Kubernetes allows users to define secrets, which can be anything from authentication 
credentials to application configuration options. While secrets are only rarely exposed 
outside of etcd (such as to kubelets or to the Container Runtime), they are not by default 
encrypted at rest. An attacker with access to etcd data files, such as via a backup, will have 
full access to secrets in an unencrypted state. Furthermore, the 
--encryption-provider-config ​accepts an ​identity​ provider (the default), which does 
not actually encrypt data, but rather simply returns the secret unencrypted. Users may 
misconfigure the ordering of providers, and accidentally send unencrypted data to etcd or 
other storage locations.  
 
Justification 
The difficulty is high for the following reasons: 

● Attackers must have access to etcd data files sufficient to read secrets unencrypted. 
● etcd is segmented from the rest of the cluster, with heavily restricted file system 

permissions. 
 
The severity is low for the following reasons: 

● In and of itself, this does not increase the risk of exposure more than compromising 
kubelet or other cluster infrastructure that handles secrets. 

 
Recommendation 
Short term, document ideal configurations for various levels of security, and provide 
standard configurations for users.  
 
Long term, move towards some reasonable default for users besides the identity provider, 
and warn users when the identity provider is used either as a standalone or within a chain 
of providers. This will ensure that users cannot accidentally include the identity provider. 
 
References 

● Kubernetes cluster administration guide section on encrypting data at rest 
   

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/#providers


etcd findings 
etcd is the main storage engine of all cluster-related data. Everything that kube-apiserver 
wishes to coördinate across hosts and components eventually makes its way into etcd. 
Additionally, the documentation makes it clear: “​Access to etcd is equivalent to root 
permission in the cluster.​”  
 
etcd works as a ReST server, accepting JavaScript Object Notation (JSON) objects from 
clients, and storing these objects at a location requested by the client. Within Kubernetes, 
these objects are generally stored within the /registry route, and etcd processes all objects 
processed by kube-apiserver. In order to keep up with the demand for fast reading and 
writing similar to a traditional database, etcd may be deployed in a separate cluster. It uses 
the RAFT consensus algorithm to ensure that data is presented and available to all nodes 
within the cluster eventually.  
   

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters


9. Write-Ahead Log does not use signatures for integrity checking 
Severity: Very Low Difficulty: High 
Type: Data Validation Finding ID: TOB-K8S-TM09 
 
Description 
etcd is a high-performance key-value store used to reify all state data within a Kubernetes 
cluster. As part of this design, it uses a Write-Ahead Log (WAL) file, which is meant to serve 
as an atomic commit file for changes; should etcd fail before the changes are written to the 
main database, they can be reconstructed from the WAL file. However, the WAL file does 
not use cryptographic signatures to ensure validity of data. An attacker with access to  the 
WAL file may tamper with the file without leaving a trace. Furthermore, copying over a 
noisy or lossy connection could result in data corruption that cannot be detected until a 
later point in time. 
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must transit multiple trust boundaries to impact a single etcd node. 
● In a multi-master configuration, in order to truly impact the cluster, the attacker 

must repeat this attack across multiple nodes. 
 
The severity is very low for the following reasons: 

● Attackers can only impact one etcd  at a time. 
● A consensus algorithm is used specifically to prevent attacks with corrupted, 

incorrect, or outdated data. 
● An attacker must attack a plurality of nodes within a cluster at the same time.  

 
Recommendation 
Short term, experiment with modes of adding cryptographically secure validation to the 
WAL file generation. This could be as simple as hashing each entry prior to committing to 
the WAL, or using something akin to ​Linked Timestamping​, wherein each entry is hashed 
with the contents of the current entry and the hash of the previous entry. Furthermore, 
keyed hashes could be used to ensure that a specific etcd node has created and validated 
data. Then, when the WAL file is committed to both the data and snapshot files, the sum 
toto of the entries contained within the WAL file may also be hashed. Balancing entry 
hashing for the faster WAL files versus total file hashing for snapshots and beyond will be 
key to maintaining relative performance whilst also ensuring valid data. 
 
Long term, any added validation must be tested with larger datasets in normal clusters, to 
ensure that etcd maintains performance, even with the added validation and security. We 
recommend a gradual approach of adding validation to portions of larger clusters, so that 
nodes with validation may be compared to nodes without it. 

https://en.wikipedia.org/wiki/Linked_timestamping


10. Mutual TLS is not the default 
Severity: Very Low Difficulty: High 
Type: Authentication Finding ID: TOB-K8S-TM10 
 
Description 
etcd is the holder of cluster state within Kubernetes: additions, changes, and updates are 
eventually stored in its data repositories. As such, authenticating who is communicating 
with etcd is an important task, and while etcd supports mutual (or client-side) TLS, it is not 
the default. An attacker who had transited network boundaries could interact with etcd 
without further impedance.  
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must transit multiple trust boundaries in order to affect sufficient 
position for this attack. 

● etcd is specifically segmented from the rest of the cluster in order to prevent such 
accesses, further increasing the difficulty for attackers. 

 
The severity is very low for the following reasons: 

● An attacker with the ability to transit multiple trust boundaries could also likely steal 
authentication credentials used to secure two-way TLS. 

● In and of itself, this represents defense in depth for those situations where etcd is 
not completely segmented from the rest of the network or fully from the 
kube-apiserver host. 

 
Recommendation 
Short term, fully document how two-way TLS may be fully enabled within etcd. ​The current 
documentation provides a simple example​, but more automated or robust examples would 
be helpful to users. 
 
Long term, support mutual TLS by default, and do not allow communications with etcd that 
are unauthenticated by client TLS certificates. Furthermore, do not use Basic or Digest 
Authentication for this process, as these are outdated and insecure. 
   

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#limiting-access-of-etcd-clusters
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#limiting-access-of-etcd-clusters


kube-scheduler findings 
kube-scheduler is tasked with matching Pods to hosts that can execute their workloads. 
This is a surprisingly complex task, as the match is based upon a variety of criteria, 
including the Pod’s own specification of what it needs to execute its work.  
 
In order to do  this, kube-scheduler operates like most other components within the 
cluster: it polls kube-apiserver for new Pods and any host changes reported by the various 
kubelets within the system, and attempts to match new Pods to free or more free kubelets, 
which then go about executing the Pod with help from the Container Runtime.  
 
Furthermore, it should be noted that there may be multiple kube-schedulers configured for 
a single cluster, each with a different name and set of parameters. kube-schedulers are 
supposed to be coöperative, however they needn’t be; nothing in the system forces 
kube-schedulers to only act upon Pod specs with a matching name. 
   



11. Anti-affinity scheduling can be used to claim disproportionate resources 
Severity: Low Difficulty: High 
Type: Denial of Service Finding ID: TOB-K8S-TM11 
 
Description 
Kubernetes allows users to specify various mechanisms for Pods. This can be as simple as 
assigning Pods to a specific node or a complex dance of determining various aspects of 
nodes and Pods. Users may also specify which Pods cannot be scheduled together, 
allowing a Malicious Internal User to specify that no other Pods be scheduled on the same 
host, effectively commoditizing a node to the attacker’s workload alone. 
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must have sufficient privileges to schedule Pods. 
● An attacker must know or guess other Pod names against which to claim 

anti-affinity. 
 
The severity is low for the following reasons: 

● Attackers with this level of access could also simply schedule a large number of 
Pods. 

● Attacks that consume entire hosts are noisy and will eventually be investigated. 
● Denial-of-Service attacks that consume nodes will not impact currently running 

Pods, but rather impact the scheduling of future Pods. 
 
Recommendation 
Short term, document that features such as anti-affinity may be used in ways that cause 
host unavailability across the cluster.   
 
Long term, add tooling and processes to aid administrators in reviewing the state of 
clusters. This will support administrators as well as incident responders to discover and 
respond to resource-exhaustion events such as this. Furthermore, consider preventing 
users from selecting which scheduler they can use. Reserve that as an administrative 
function. This will allow administrators to handle scheduling in a safe way, and prevent 
attackers from specifying which scheduler should be used. 
   



12. No back-off process for scheduling 
Severity: Informational Difficulty: Undetermined 
Type: Denial of Service Finding ID: TOB-K8S-TM12 
 
Description 
Scheduling a Pod within Kubernetes is an intricate dance of state coördination across 
multiple components; kube-scheduler may interact with kubelet, the Replica Set Controller, 
and other processes within the system. However, there is no back-off process when 
kube-scheduler determines that a kubelet is the appropriate host for a Pod, but the kubelet 
itself rejects scheduling the Pod. This may create a tight-loop wherein kube-scheduler, the 
Replica Set Controller, and kubelet cause a contention wherein kube-scheduler 
continuously schedules a Pod that kubelet rejects.  
 
Justification 
This item is of Informational severity and as such represents a noteworthy comment within 
the system, rather than an actual vulnerability. 
 
Recommendation 
Short term, document that this issue exists, and note that developers may be able to 
accidentally or maliciously introduce a tight-loop within a cluster via this feedback failure 
loop. 
 
Long term, implement a back-off process for kube-scheduler and support graceful node 
failure. This may go so far as to include a “decay list” of nodes which are continuously 
failing to schedule Pods. Such a list can be used for further scheduling decisions within 
kube-scheduler.  
   



KCM and CCM findings 
kube-controller-manager (KCM) and cloud-controller-manager (CCM) are two core 
components of Kubernetes’ interaction with the underlying platform. Like other controllers, 
such as the Replica Set Controller, KCM and CCM attempt to move the state of the cluster 
towards the desired state. CCM itself is a reference implementation, meant to separate out 
cloud-specific controller code from other controller code. In this way, it will allow 
administrators running on one cloud provider to exclude code meant for another cloud 
provider.  
   



13. Separate out controllers based on principle of least authority 
Severity: Low Difficulty: High 
Type: Access Control Finding ID: TOB-K8S-TM13 
 
Description 
KCM and CCM run several different controllers in a “control loop,” or an infinite loop of 
feedback. KCM and CCM are packaged as single binaries, with multiple controllers 
packaged as Go-level modules within the source code used to build the binary. These 
controllers impact a wide range of items across the cluster, but are generally low-privileged 
and unable to impact much outside of the narrow slices of policy for which they are 
defined. However, some of these controllers are highly privileged (such as the Service 
Account Controller) and can access their own permissions. If an attacker or malicious 
controller were able to call these functions, they could escalate privileges across the 
cluster, potentially to administrative-level access.  
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must know or discover a vulnerability allowing them to call privileged 
functions.  

● They must have position sufficient to use the escalated privileges, such as a 
Malicious Internal User. 

 
The severity is low for the following reasons: 

● Attackers with this level of access could likely impact other items with a lower 
Difficulty threshold. 

● Attackers could escalate privileges across the cluster, or subtly modify resources on 
the fly.  

 
Recommendation 
Short term, plan ways that privileged controllers may be separated from unprivileged ones, 
and test if this is feasible within the context of both KCM and CCM. 
 
Long term, separate out privileged controllers into their own binary or binaries. Controller 
managers should not mix levels of privilege, as attackers or even just simple coding 
mistakes can lead to privilege escalation. 
   



kubelet findings 
kubelet is the central orchestrator for Pods within the Kubernetes system. It runs Pods by 
watching for podspecs that have been allocated to its host (by kube-scheduler), and passes 
the podspec to the Container Runtime for execution. Aside from this, kubelet also handles 
reporting the health status of Pods and containers to kube-apiserver, monitoring Pods 
themselves for failure, working with the Container Runtime to deschedule Pods when so 
requested, and reporting host status to kube-apiserver (for use by kube-scheduler). Like 
kube-proxy, kubelet runs on the individual hosts, but with a different trust boundary than 
Pods themselves, as it is central to the correct operation of the cluster as a whole. 
   



14. kubelet hosts unauthenticated ports that leak pod spec information 
Severity: Medium Difficulty: Medium 
Type: Information Disclosure Finding ID: TOB-K8S-TM14 
 
Description 
kubelet, like most components within the Kubernetes system, uses HTTP ports for various 
tasks such as reporting or task execution. Specific to kubelet, there are three main ports: 
 

● 10250, an authenticated HTTPS server, with authentication provided by delegated 
authentication from the kube-apiserver, used for task execution and kubelet 
update. 

● 10255, an unauthenticated HTTP server used for status information and health 
information, but also includes Pod spec information. 

● 10248, an unauthenticated HTTP server used for health information. 
 
Justification 
The difficulty is medium for the following reasons: 

● An attacker must have sufficient position to affect the attack, such as an Internal 
Attacker or Malicious Internal User.  

● Minimal tooling is needed to issue an HTTP request.  
● An attacker must know, or guess, the location of kubelet host and ports. 

 
The severity is medium for the following reasons: 

● Pod specs do not by default contain secrets, other than potentially ConfigMaps and 
Repository authentication credentials. 

● An attacker armed with this information may gain a better understanding of the 
layout of a cluster’s workload, but minimal other information about the inner 
workings of the cluster. 

 
Recommendation 
Short term, document the leakage of Pod spec information, and plan ways to remove it. Per 
the RRA discussions, the kubelet team is already planning on removing port 10255, which is 
mainly in place for cAdvisor, which is deprecated.  In more recent versions of Kubernetes 
than this work focused on, port 10255 is configured off by default, but can be activated 
either by installers/distributions or cluster administrators. 
 
Long term, remove the deprecated ports, and minimize the attack surface available to an 
Internal Attacker. This should also include changing port 10250 to a fully bootstrapped TLS 
certificate by default. In this way, kubelet will present as strong a face as possible to 
internal attackers. 
 
 



15. Bootstrap certificate is long-lived and not removed by default 
Severity: Low Difficulty: High 
Type: Configuration Finding ID: TOB-K8S-TM15 
 
Description 
Kubernetes can bootstrap certain components, such as kubelet, from certificates by 
default. These certificates provide a mechanism for components to request enough access 
of kube-apiserver so as to generate a Certificate Signing Request (CSR) and produce a 
signed certificate that the component may use for at least client authentication. However, 
the certificate is long-lived, without a Time to Live (TTL), and is not removed by default.  
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must transit several trust boundaries, and have host-level access to a 
Worker node. 

● The attacker must then have the ability either to bring up other hosts within the 
cluster or create their own kubelet under their control. 

 
The severity is low for the following reasons: 

● In and of itself, a long-lived bootstrap certificate does not provide an attacker with 
sufficient direct access. 

● An attacker can make CSR requests to the kube-apiserver, which may provide an 
attacker with access to other credentials within the cluster.  

 
Recommendation 
Short term, document that the certificate is long-lived, and must be removed by manual 
processes. 
 
Long term, issue bootstrapping certificates with an explicit-but-reasonable TTL, such as one 
week. This should provide administrators plenty of time to bootstrap a cluster, but remove 
the risk of a stolen bootstrapping certificate from further impacting the cluster. 
Additionally, if certificate revocation is added to the cluster, bootstrap certificates may be 
revoked once the CSR has been received.   
 
References 

● TLS Bootstrapping 
 

   

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#client-and-serving-certificates


kube-proxy findings 
kube-proxy, much like kubelet, is a transitive component within the cluster: it straddles the 
edge between two trust boundaries, namely the Worker and Container zones. kube-proxy 
itself works by watching for service, endpoint, and similar network configurations on 
kube-apiserver, and then implementing the networking request, in conjunction with the 
Container Network Interface (CNI) in one of several modes: 
 

● As a literal network proxy, handling networking between nodes 
● As a bridge between Container Network Interface (CNI), which handles the actual 

networking, and the host operating system 
● iptables​ mode 
● ipvsadm​ mode 
● two Microsoft Windows-specific modes (not covered by the RRA) 

 
kube-proxy itself is actually a cluster of five programs, which work to create a consistent 
networking experience across Pods and services. In this way, kube-proxy manages the raw 
plumbing of networking, connecting the CNI’s transport layer to Linux’s routing layer (via 
third-party tools such as ​iptables​).  

Userspace proxy 
The original mode of operation for kube-proxy, wherein kube-proxy received and 
forwarded packets for Kubernetes’ hosted services. While this mode is not often used 
anymore, due to performance, the setup is the same for most other modes of kube-proxy. 
Furthermore, it is a core mode that may be useful under certain circumstances.  
 
Setup: 
 

1. Connect to the kube-apiserver. 
2. Watch the kube-apiserver for services/endpoints/&c definitions. 
3. Build an in-memory caching map: for services, for every port a service maps, open a 

port, write iptables rule for Virtual IP (VIP) & Virtual Port. 
4. Continue with step No. 2, until the cluster is restarted or terminated.  

 
When a consumer connects to the port: 
 

1. The desired service is running on a VIP:VPort pair. 
2. The Root NS lookup, which is routed by an iptables defintion, which eventually 

points to the kube-proxy port. 
3. When a connection is received, look at the src/dst port, check the map, pick a service 

on that port at random (if that fails, try another until either success or a retry count 
has exceeded). 



4. Shuffle bytes back and forth between backend service and client until termination or 
failure. 

iptables 
iptables is a common mode of operation for kube-proxy; it interacts directly with iptables in 
order to build routing rules for VIP:VPort pairs. However, this mode does not require 
kube-proxy to actually intercept or communicate with client connects. Instead, kube-proxy 
uses iptables to create rewriting rules for the intended host, and has no futher interaction 
with the system, until such time that iptables restore command sets must  be updated. 
 

1. Same initial setup as the userspace proxy, sans opening a port directly. 
2. Build an iptables restore command set, which is simple a giant string of services. 
3. Map user VIP to a random backend, rewriting packets at the kernel level, so 

kube-proxy never sees the data. 
4. At the end of the sync loop, write batches to avoid iptables contentions/ 
5. Perform no more routing table updates until service updates, from watching 

kube-apiserver or a time out. 
 
NOTE​: rate limited (bounded frequency) of iptables updates: 

● No later than 10 minutes by default 
● No sooner than 15s by default, if there are no service map updates 

ipvs 
1. Similar setup to iptables & userspace proxy modes. 
2. Here, we use the​ ipvsadm​ and ​ipset​ commands instead of iptables 
3. This does have some potentially unintended consequences: 

● IP address needs a dummy adapter 
● NOTE​ Any service bound to 0.0.0.0 is also bound to ​all​ adapters 
● This is somewhat expected because of the binding to 0.0.0.0, but can still 

lead to interesting behavior 

Networking Concerns 
Low-level network attacks may still impact kube-proxy, such as ARP Poisoning. 
Furthermore, endpoint selection is namespace ​and​ Pod-based, so an injection could 
theoretically overwrite this mapping. Additionally, further work may be needed to use only 
CAP_NET_BIND​, which allows a process or containerbind to low ports, without root 
permissions, for containers/pods, to alleviate concerns surrounding attacks such as  ARP 
Poisoning via ​CAP_NET_RAW​. 
   



16. Race condition in Pod IP reuse 
Severity: Low Difficulty: High 
Type: Timing Finding ID: TOB-K8S-TM16 
 
Description 
kube-proxy coördinates with Pods, kubelet, and other components to “string the wire,” so 
to speak, of communications within a cluster. This includes Pod IPs, which generally have a 
larger allocation than there are Pods within a cluster by a factor of two. However, if an 
attacker were able to cause a churn in Pod IPs, they could potentially win a race condition, 
and trick kube-proxy into forwarding traffic to a Pod controlled by the attacker, rather than 
the Pod expected by the cluster. 
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must have sufficient position to cause a large volume of turnover in Pod 
IPs. 

● The attacker must also have sufficient privileges to launch malicious Pods or have 
previously compromised a Pod with the Pod IP they wish to control. 

 
The severity is low for the following reasons: 

● Attackers with position sufficient to cause Pod IP reuse could likely use other 
attacks, such as ARP Poisoning, to achieve a similar effect with less work. 

● The attack itself is largely theoretical, concerning a possible method by which an 
attacker could win a race condition against the Pod IP assignment algorithm. 

 
Recommendation 
Short term, document the issue, so that users may be aware of a possible race condition. 
 
Long term, determine a method for a back-off process within kube-proxy, and ways of 
ensuring that tight loops cannot allow attackers to win race conditions. It is possible that 
the best arbiter of routing truth may be kube-apiserver, however, this would require larger 
architectural changes to the system as a whole. An achievable goal would be to simply back 
off assignments when tight-loop Pod IP churn is noticed, and allow the normal network 
process to reach equilibrium prior to further assignments.  

   



Container Runtime findings 
The last-but-not-least component that the team reviewed was the Container Runtime. 
Container Runtime is technically an interface, like Container Networking, meant to support 
multiple Linux container runtime systems (e.g. Docker) with a single API. Container Runtime 
itself does not execute a container until instructed to do so by kubelet, as shown in the 
process below: 
 

1. Container Runtimes expose an IPC endpoint such as a Unix Domain Socket 
2. kubelet retrieves Pods to be executed from the kube-apiserver 
3. kubelet issues a request  to the Container Runtime web server 
4. The web server returns a URL with a single-time-use token 
5. kubelet issues a request to the URL via gRPC over Unix Domain Socket 
6. The Container Runtime Interface then executes the necessary commands/requests 

from the actual container system (e.g. Docker) to run the Pod 
   



17. Search space for single-use token is too small 
Severity: Low Difficulty: High 
Type: Cryptography Finding ID: TOB-K8S-TM17 
 
Description 
Container Runtime coördinates with kubelet via two mechanisms: a TCP/IP web server, and 
a gRPC server running via Unix Domain Sockets. The gRPC request is authenticated via a 
single-use token issued to kubelet in response to a scheduling request. However, the token 
is small, being only eight characters long, meaning an attacker could feasibly generate 
many valid tokens in a short amount of time.  
 
Justification 
The difficulty is high for the following reasons: 

● An attacker must have sufficient position to access the Unix Domain Socket. 
● They must then generate many tokens (potentially up to 2^64). 
● These tokens must be discovered before a one-minute timeout has elapsed. 

 
The severity is low for the following reasons: 

● An attacker with Host access could impact far more sensitive items than attempting 
to brute force a scheduling token. 

● The attack would merely stop a Pod from being scheduled, which would either 
result in it being rescheduled or in another host scheduling the pod, minimizing 
total impact.  

 
Recommendation 
Utilize a standard, cryptographically secure token such as a UUIDv4. This will ensure that 
the search space is too large for practical searches, and utilize standard, well understood 
token-generation practices.  
   



A. RRA Template 

Overview 
● Component: 
● Owner(s): 
● SIG/WG(s) at meeting: 
● Service Data Classification: 
● Highest Risk Impact: 

Service Notes 
The portion should walk through the component and discuss connections, their relevant 
controls, and generally lay out how the component serves its relevant function. For 
example a component that accepts an HTTP connection may have relevant questions about 
channel security (TLS and Cryptography), authentication, authorization, 
non-repudiation/auditing, and logging. The questions aren't the only drivers as to what may 
be discussed -- the questions are meant to drive what we discuss and keep things on task 
for the duration of a meeting/call. 

How does the service work? 

Are there any subcomponents or shared boundaries? 

What communications protocols does it use? 

Where does it store data? 

What is the most sensitive data it stores? 

How is that data stored? 

Data Dictionary 

Name  Classification/Sensitivity  Comments 

Data  Goes  Here 



Control Families 
We’re interested in these areas of controls based on the audit working group’s choices. 
 
When we say "controls," we mean a logical section of an application or system that handles 
a security requirement. Per CNSSI: 
 

“The management, operational, and technical controls (i.e., safeguards or 
countermeasures) prescribed for an information system to protect the 
confidentiality, integrity, and availability of the system and its information.” 

 
For example, a system may have authorization requirements that say: 
 

● users must be registered with a central authority. 
● all requests must be verified to be owned by the requesting user, and 
● each account must have attributes associated with it to uniquely identify the user 

and so on. 
 
For this assessment, we're looking at six basic control families: 
 

● Networking 
● Cryptography 
● Secrets Management 
● Authentication 
● Authorization (Access Control) 
● Multi-tenancy Isolation 

 
Obviously we can skip control families as "not applicable" in the event that the component 
does not require it. For example, something with the sole purpose of interacting with the 
local file system may have no meaningful Networking component; this isn't a weakness, it's 
simply "not applicable." 
 
For each control family we want to ask: 
 

● What does the component do for this control? 
● What sorts of data passes through that control? 

○ for example, a component may have sensitive data (Secrets Management), 
but that data never leaves the component's storage via Networking 

● What can an attacker do with access to this component? 
● What's the simplest attack against it? 
● Are there mitigations that we recommend (i.e. "Always use an interstitial firewall")? 
● What happens if the component stops working (via DoS or other means)? 



● Have there been similar vulnerabilities in the past? What were the mitigations? 

Threat Scenarios 
● An External Attacker without access to the client application 
● An External Attacker with valid access to the client application 
● An Internal Attacker with access to cluster 
● A Malicious Internal User 

Networking 

Cryptography 

Secrets Management 

Authentication 

Authorization 

Multi-tenancy Isolation 

Summary 

Recommendations 
 
 


