

Kubernetes
Threat Model
June 28, 2019

Prepared For:
Kubernetes Security WG | ​Kubernetes

Prepared By:
Stefan Edwards | ​Trail of Bits
stefan.edwards@trailofbits.com

mailto:stefan.edwards@trailofbits.com

Introduction
The Cloud Native Computing Foundation (CNCF) tasked Trail of Bits to conduct a
component-focused threat model of the Kubernetes system. This threat model reviewed
Kubernetes’ components across six control families:

● Networking
● Cryptography
● Authentication
● Authorization
● Secrets Management
● Multi-tenancy

Kubernetes itself is a large system, spanning from API gateways to container orchestration
to networking and beyond. In order to contain scope creep and keep a reasonable timeline
for threat modeling, the CNCF selected eight components within the larger Kubernetes
ecosystem for evaluation:

● kube-apiserver
● etcd
● kube-scheduler
● kube-controller-manager
● cloud-controller-manager
● kubelet
● kube-proxy
● Container Runtime

In total, the assessment team found 17 issues across the various components, ranging in
severity from Medium to Informational.

Key Findings

Kubernetes allows users to define policies at multiple levels of the cluster. This can impact
items from network filtering through to how Pods interact with the underlying host.
However, many of these policies are not applied without the correct components installed
and enabled; this, unto itself, is fine. However, Kubernetes does not warn users that these
policies are not applied due to missing components. This may lead to a situation wherein a
user assumes they have applied a security control, when it is in fact missing. Warning users
when security controls are missing or unapplied would allow them to respond by either
enabling the correct components or mitigate the issue in another way. More generally,
Kubernetes does not readily provide auditing information to users in a unified fashion.
Components may or may not collect auditing information sufficient to track a user’s path

through the system. Providing more feedback to users, administrators, and incident
responders will help not only to increase the general security of Kubernetes, but also to
give users a more consistent and friendly User Experience as well.

Kubernetes is also a highly networked system, with multiple communications protocols.
Many of these protocols traffic in sensitive information, such as cluster secrets or
credentials, and yet do not use the strongest TLS configurations possible or even use it at
all. While it is difficult for attackers to intercept communications between components, it is
possible in certain configurations. Therefore, always enforcing HTTPS, providing ingress
and egress filtering for clusters, and using the strongest cryptographic controls possible will
provide users with a secure baseline that must be modified to be insecure, rather than the
other way around.

Furthermore, it must rely on traditional operating systems to do the heavy lifting of
running containers and cluster services. However, it generally assumes those operating
systems to be trustworthy, and that sensitive data may be exposed to the operating system
freely. However, Hosts (called “Node” in the Kubernetes ontology if running a kubelet)
should be treated as a separate security domain from the cluster itself: systems
administrators for Hosts may not be the same systems administrators for the cluster.
Sensitive data exposed to a Host could allow Internal Attackers or Malicious Internal Users
to parlay their access to a single Host into wider cluster access, simply by viewing logs,
processes, or environmental data. There are two general directions that Kubernetes can
take:

1. Hosts must be “closed,” and all systems administrators for Hosts should be treated
as privileged enough to view the data shared via IPC and environment variables.

2. Move away from exposing sensitive data to systems, and towards a model similar to
a Vault or Key Management System/Hardware Security Module, wherein the system
provides APIs that do not expose secrets to any other processes or persons under
normal circumstances.

Either choice would be a reasonable direction for Kubernetes, however, a choice must be
made. Choosing one direction or the other will ensure that controls and designs can be
made that satisfy the chosen direction, and that all components understand and can
adhere to this direction. A similar issue exists with Multi-tenancy: many components do
not have a notion of Multi-tenancy, which is relatively loosely defined at the time of this
assessment. Choosing a direction, and providing developers with guidance as to how to
achieve this direction. This will strengthen the core of Kubernetes, and remove many of
the current issues, wherein components do not have an answer for certain aspects of the
system, because they are ill-defined.

Report Position
Kubernetes is a large, intricate system, with many security controls and design decisions
having arisen from organic decisions that made sense in situ to diverse and distributed
teams. This report attempts to catalog many of the discussions captured within the Rapid
Risk Assessment processes. However, the raw Rapid Risk Assessment documents will be
provided upon release of this report, so that the community as a whole may see the
discussions and notes made during meetings.

The remainder of this report analyzes components, trust zones, data flows, threat actors,
controls, and findings of the Kubernetes threat model. This was a point-in-time
assessment, and reflects the state of Kubernetes, specifically version 1.13.4, at the time of
the assessment, rather than any current or future state.

Introduction 2
Key Findings 2
Report Position 4

Methodology 7

Components 8
Planes 10

Trust Zones 11
Trust Zone Connections 12

Threat Actors 14

Dataflow 16

Control Summary 17
kube-apiserver 19
etcd 21
Kube-scheduler 22
kube-controller-manager and cloud-controller-manager 23
kubelet 24
kube-proxy 25
Container Runtime 26

Kubernetes-wide findings 27
1. Policies may not be applied 28
2. Insecure TLS by default 30
3. Most components accept inbound HTTP 31
4. Most components do not enforce outbound HTTPS 32
5. Credentials exposed in environment variables and command-line arguments 33
6. Names of secrets are leaked in logs 34

kube-apiserver findings 35
7. No non-repudiation or audit of user actions by default 36
8. Secrets not encrypted at rest by default 37

etcd findings 38
9. Write-Ahead Log does not use signatures for integrity checking 39
10. Two-way TLS is not the default 40

kube-scheduler findings 41
11. Anti-affinity scheduling can be used to claim disproportionate resources 42
12. No back-off process for scheduling 43

KCM and CCM findings 44
13. Separate out controllers based on principle of least authority 45

kubelet findings 46
14. kubelet hosts unauthenticated ports that leak Pod spec information 47
15. Bootstrap certificate is long-lived and not removed by default 48

kube-proxy findings 49
User space proxy 49
iptables 50
ipvs 50
Networking Concerns 50
16. Race condition in Pod IP reuse 51

Container Runtime findings 52
17. Search space for single-use token is too small 53

A. RRA Template 54

Overview 54

Service Notes 54
How does the service work? 54
Are there any subcomponents or shared boundaries? 54
What communications protocols does it use? 54
Where does it store data? 54
What is the most sensitive data it stores? 54
How is that data stored? 54

Data Dictionary 55

Control Families 55

Threat Scenarios 56
Networking 56
Cryptography 56
Secrets Management 56
Authentication 56
Authorization 56
Multi-tenancy Isolation 56
Summary 57

Recommendations 57

Methodology
This document is the result of several person-weeks worth of effort from members of the
community, the Security Working Group, and the assessment team, across diagrams,
documents, RRAs, Manning’s ​Kubernetes in Action​ book, and Kubernetes’ own
documentation. It is a control-focused threat model, with a review of each component
vis-a-vis the controls selected by the Security Working Group. The RRA template is
provided in ​Appendix A: RRA Template​.

Performing a threat model and architecture review of a system as large as Kubernetes
proved challenging. First, we designed a dataflow for the selected components, and
modified Mozilla’s Rapid Risk Assessment (RRA)​ document to focus on the selected
controls. Next, we pre-filled sections of the documents for each component, based on our
understanding of the component and online documentation. Then, we polled the
community for feedback, and held remote meetings with members of the community to
correct any gaps in the RRA documents and to discuss the impact of each control within the
selected component. Once the RRA had been filled out by a group of community members,
a different group of community members was selected to peer review the document for
accuracy.

We would like to thank all of the members of the community who came together to donate
their time to us, in order to discuss and review areas of Kubernetes’ design, and provide
holistic information that can make Kubernetes as a whole better.

https://www.manning.com/books/kubernetes-in-action
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html

Components
The Kubernetes architecture is composed of multiple components, many of which are
stand-alone binaries written in Go. The following table describes the eight selected
Kubernetes components:

Component Description

kube-apiserver A RESTful web server that handles coördination of all aspects
of a cluster. Specifically, it accepts client requests for
updating all other components within a cluster. These
requests are authenticated, authorized, processed, and then
stored within etcd for further processing and use. Clients
may subscribe to topics in order to be notified of changes
that are relevant to their interests; for example, a kubelet
may listen for Pod scheduling events that require the
kubelet’s action.

etcd A key-value store that leverages gPRC and TLS (potentially
with two-way, or client-authenticated TLS), used to store the
most sensitive data within a cluster. Access to etcd should be
restricted to as few users as possible. Generally,
unrestrained access to etcd is considered “root” (or
administrative) access to the cluster itself.

kube-scheduler A component that reads from Pod descriptions and
schedules the Pods to nodes based on a scheduling
algorithm and resource constraints. In practice, this means
the scheduler “listens” to new Pod creation on the API server,
reviews the node list for potential resource allocation and
rules, and updates the Pod to be assigned to a specific node
within the API server. A further process, namely the kubelet,
will actually handle the task of instructing the container
runtime to run and execute the Pod.

kube-controller-manager

A daemon that listens for specific updates within the API
server, taking action, and storing its own updates within the
API server itself. The purpose of the daemon is to run
“controllers” within an infinite loop, with each controller
attempting to keep the state of the cluster consistent. This
works by way of a call-back listener loop, and comparison of
current cluster state with the desired state of the cluster as
described by developers and administrators.

cloud-controller-manager

A daemon with similar purpose to kube-controller-manager,
but instead of focusing on generic components within
Kubernetes, it focuses on maintaining consistency with

cloud-platform-specific components that back a Kubernetes
cluster.

kubelet A worker component tasked with all aspects of node
operations within a worker. It interacts with the Container
Runtime, listens for Pod scheduling and related events on
the API server, and updates the API server as to Pod
availability, resource usage, and general status. It is also the
endpoint the API server reaches out to for logs and other
updates from nodes and Pods within the cluster.

kube-proxy A component to help, along with the Container Networking
Interface (CNI), facilitate Kubernetes’ transparent model of
networking. Kubernetes requires that all Nodes and Pods be
able to communicate without a (visible) Network Address
Translation (NAT). kube-proxy utilizes items such as iptables
and also serves to proxy or pass-thru traffic in order to
ensure that all containers, Pods, and nodes are able to
communicate with one another as if they were on a single
network.

Container Runtime A group of components that allow for the direct execution of
containers within a cluster. This includes the necessary
operating system integrations (such as control groups on
Linux), configuration settings, and Kubernetes interfaces to a
container system, e.g. Docker, cri-o, containerd, ...

Planes
Kubernetes itself is divided (roughly) into two “planes,” or groupings of components. The
following table describes each plane, and groups the aforementioned components:

Plane Description Components

Control Plane

The Control Plane (CP) controls the state of
the cluster and ensures that the desired
components are running as specified by the
end user. Generally, these are grouped as
Masters (technically, API server, etcd, and
related components) as well as the kubelet
(which, whilst part of the CP, actually runs
on every Node).

kube-apiserver,
kube-scheduler,
kube-controller-manager,
cloud-controller-manager
,
kubelet,
etcd

Data Plane The worker, on the other hand, executes
the actual Pods and containers that make
up a client’s applications. These
components focus on running and
networking Pods and their associated
containers.

Kube-proxy,
CNI,
CRI,
Pods

Trust Zones
Systems include logical “trust boundaries” or “zones” in which components may have
different criticality or sensitivity. Therefore, in order to further analyze the system, we
decompose components into zones based on shared criticality, rather than physical
placement in the system. Trust zones capture logical boundaries where controls should or
could be enforced by the system, and allow designers to implement interstitial controls and
policies between zones of components as needed.

Zone Description Included Components

Internet The externally facing, wider internet
zone.

kubectl,
application clients

API Server The central coordinator for the
system, exposed only as much as
needed for access from
administrators with kubectl.

kube-apiserver

Master Components Internal portions of the Master
node that work via callbacks and
subscriptions to the API server.

kube-controller-manager
cloud-controller-manager

Master Data The data layer of the API server and
master server(s) themselves. This
boundary contains items such as
Consul or etcd, and is tantamount
to “root” or administrative access to
the cluster when accessed in an
uncontrolled fashion.

etcd

Worker The worker zone within a cluster
includes all the components
required to run and network
containers.

kubelet,
kubeproxy

Container The container zone includes the
actualLinux containers.

Container Runtime

Trust Zone Connections
Trust zones are only useful when we understand the data that flows between zones, and
why.

Originating
Zone

Destination
Zone

Data Description Connection
Type

Authentication
Type

Internet

API Server

kubectl
administration
functionality, which
could be a VPN or
other bastion host
with direct access to
the API server.

HTTPS

Verified and
possibly
two-way TLS

Internet Container Clients of the actual
applications within
the Kubernetes
Worker Nodes.

Various (based
on application)

N/A

API Server

Master Data

kube-apiserver
retrieving and storing
data from a
key-value store such
as etcd or Consul.

HTTPS

Verified

Master
Components

API Server

Items such as the
Scheduler, Controller
Managers,
Replication Manager,
retrieving and
updating items
managed by the API
server.

HTTPS/Internal
Callbacks

Verified

API Server

Worker

Log and status
retrieval from the API
server to the
individual Worker
Node’s kubelet.

HTTP

Unverified

Worker API Server

Worker nodes’ kublet
must communicate
with the API server
for new Pod

HTTPS

Verified and
possibly
two-way TLS

allocations, to
update status Pods,
and so on.

Worker Container Scheduling
containers for
execution, handled
by the kubelet, within
a host node.

Interprocess
Communications

N/A

Threat Actors
Similarly to Trust Zones, defining malicious actors ahead of time is useful in determining
which protections, if any, are necessary to mitigate or remediate a vulnerability.
We will use these actors in all subsequent findings from the threat model. Additionally, we
define other “users” of the system, who may be impacted by, or enticed
to undertake, an attack. For example, a Confused Deputy attack such as Cross-Site Request
Forgery would have a normal user as both the victim and the potential direct attacker,
even though a secondary attacker enticed the user to undertake the action.

Actor Description

Malicious Internal User A user, such as an administrator or developer, who uses their
privileged position maliciously against the system, or stolen
credentials used for the same.

Internal Attacker An attacker who had transited one or more trust boundaries,
such as an attacker with container access.

External Attacker An attacker who is external to the cluster and is
unauthenticated.

Administrator An actual administrator of the system, tasked with operating
and maintaining the cluster as a whole.

Developer An application developer who is deploying an application to a
cluster, either directly or via another user (such as an
Administrator).

End User An external user of an application hosted by a cluster.

Additionally, defining attackers’ paths through the various zones is useful when analyzing
potential controls, remediations, and mitigations that exist within the current architecture:

Actor Originating
Zone

Destination
Zone(s)

Description

Malicious
Internal User

Any Any Malicious Internal Users are often
privileged and have access to a wide
range of resources. Therefore,
controls must be in place to ensure
users are authorized to undertake an
action and log all actions within the
system, for strong non-repudiation of
actions.

Internal
Attacker

Container Containers in
another
namespace,
Worker,
API Server,
Master
Components,
Master Data

Attackers who transit external
boundaries and attain position on an
internal container will seek to
escalate privileges by accessing items
in the API Server or Master Data
zones, or parlay their access to other
internal components of other Worker
nodes.

External
Attacker

Internet Container,
Worker,
API Server

External Attackers will seek to transit
network edges in order to become
Internal Attackers, or use exposed
API Server functionality to escalate
privileges.

Dataflow

Control Summary
Committee on National Security Systems (CNSS) Instruction (CNSSI 4009​ defines “security
control” as: ​The management, operational, and technical controls (i.e.,
safeguards or countermeasures) prescribed for an information system to

protect the confidentiality, integrity, and availability of the system and

its information.​ Controls are grouped by type or ​family​, which collect controls along
logical groupings, such as Authentication or Cryptography. This assessment will focus on
six primary control families, per the request of the Security Working Group:

Family Name Description

Authorization Related to authorization of users and assessment of rights.

Authentication Related to the identification of users.

Cryptography Related to protecting the privacy or integrity of data.

Secrets Management Related to the handling of sensitive application secrets such as
passwords.

Networking Related to the protocols and connections between cluster and
application components.

Multi-tenancy Related to the safe handling of two or more separate
organizational groups within a cluster.

Additionally, we will keep the following families in mind throughout our review:

Family Name Description

Auditing and Logging Related to auditing of actions or logging of potential security
events.

Configuration

Related to secure configurations of servers, devices or software.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation

Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

https://rmf.org/wp-content/uploads/2017/10/CNSSI-4009.pdf

Patching

Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking or order of operations.

Undefined Behavior Related to undefined behavior triggered by the program.

Our review assessed the controls along the following criteria:

● Strong: controls were well implemented, centrally located, non-bypassable, and

robustly designed.
● Satisfactory: controls were well implemented, but may be weakened by

vulnerabilities or are diffuse in location.
● Adequate: controls were implemented to industry-standard best practice guidelines.
● Weak: controls were either partially unimplemented, applied, or contained flaws in

their design or location.
● Missing: an entire family of control was missing from a component.
● Not Applicable: this control family is not needed for protecting the current

component.

kube-apiserver

Control Family Strength Description

Authorization

Satisfactory

kube-apiserver authorizes requests as a part of the
normal request pipeline, in a centralized fashion. So
long as outdated modes of authorization, namely
ABAC, are not used, the authorization controls within
this core component are relatively strong. One other
central concern aside from ABAC’s inclusion is the
presence of webhooks, which may reach out to other,
third-party components without much visibility to the
kube-apiserver itself.

Authentication

Strong kube-apiserver authenticates requests as part of the
normal request pipeline, in a centralized fashion. So
long as outdated modes of authentication are not
used, the authentication controls within its core and
critical subcomponents are relatively strong.

Cryptography Adequate

kube-apiserver employs many cryptographic systems:
from TLS connections all the way through to being
the root Certificate Authority for at least two Public
Key Infrastructures within a cluster. However,
multiple connections within the system avoid using
TLS for communication secrecy by default and some
services do not authenticate their connections when
they do so. For example, by default kubelet’s
connections do not utilize a certificate generated by
the kube-apiserver, but rather an unvalidated
self-signed one.

Secrets
Management

Adequate kube-apiserver is the heart of all information flow
within a cluster: all information must be passed
through and processed by the kube-apiserver. For
the most part, secrets are safely handed by the
kube-apiserver to etcd in a secure fashion. However,
encryption of secrets is not a default action of the
server, and must be configured by a command line
switch, providing the perception of security, rather
than actual security to the system.

Networking

Weak kube-apiserver is a highly-networked component: all
other components within the cluster communicate
with it, and it must communicate with external
services, like webhooks and components’ own health

reporters. However, there are no controls limiting
egress and ingress to the kube-apiserver itself, and
ancillary protections must be used in order to ensure
that it is not communicating with external third
parties in a fashion unintended by cluster
administrators.

Multi-tenancy

Satisfactory

kube-apiserver is the arbiter of tenant interactions
within a cluster. However, the general consensus of
teams during the assessment was that isolation was
strong enough for intra-organizational segmentation,
but not for true multi-tenant situations. For example,
minimal protections are in place for “noisy neighbor”
and similar scenarios within a cluster.

etcd

Control Family Strength Description

Authorization

Not Applicable

etcd, as deployed by Kubernetes, does not support
authorization to separate out user actions. It
should only be accessed by kube-apiserver and
components of similar sensitivity.

Authentication Satisfactory etcd can be configured to use two-way (or
client-side) TLS as an authentication mechanism.
However, as it is intended to be run from its own
cluster accessible only to kube-apiserver(s), minimal
authentication requirements are needed other than
network segmentation.

Cryptography Not Applicable

etcd does not store data encrypted at rest, and
instead relies on kube-apiserver to enforce
cryptographic constraints. However,
recommendations are made within the report to
strengthen cryptographically-secure hashing
operations within file system operations, such as
the Write-Ahead Log (WAL).

Secrets
Management

Not Applicable

While etcd stores secrets for the cluster, etcd only
processes credentials sufficient to communicate
with kube-apiserver. All other secrets are handled
by kube-apiserver itself, and merely stored within
etcd.

Networking

Not Applicable Any etcd process is intended to be segmented by
network and security controls from the rest of the
Kubernetes cluster. These controls are external to
etcd, and thus outside of the scope of this review.

Multi-tenancy

Not Applicable

etcd maintains no awareness of multiple tenants
within the system, which is instead handled by
kube-apiserver.

Kube-scheduler

Control Family Strength Description

Authorization

Not Applicable

kube-scheduler includes concepts that must be
restricted by role or attribute to specific users.
However, enforcement is the domain of the
kube-apiserver, rather than kube-scheduler.

Authentication

Not Applicable

kube-scheduler does not handle authentication
directly, but rather relies on kube-apiserver to be
the arbiter of authentication. The sole item of
authentication is the handling of client credentials,
which are handled in the standard way: credentials
are passed in via command line argument to the
kube-scheduler binary on initial execution.

Cryptography

Not Applicable

kube-scheduler does not handle cryptography
directly, but rather relies on kube-apiserver to be
the arbiter of cryptography.

Secrets
Management

Not Applicable

kube-scheduler does not handle secrets directly,
but rather relies on kube-apiserver to be the arbiter
for their correct storage. The sole exception is
authentication credentials, which are passed in via
command line argument to the binary on initial
execution, and is a general finding in Kubernetes as
a whole, rather than specific to kube-scheduler.

Networking

Adequate

kube-scheduler should mainly communicate with
kube-apiserver, and thus minimal controls are
required. However, ingress and egress controls are
maintained externally to kube-scheduler. Attackers
may be able to access health reporting and related
information from internal positions within the
cluster.

Multi-tenancy Satisfactory

kube-scheduler makes heavy use of namespaces
and other multi-tenant items (such as Pods for
isolation boundaries, and RBAC for authorization
controls) when scheduling cluster workloads.
However, attackers may be able to abuse items
such as anti-affinity within the cluster to control
more than their fair share of cluster resources.

kube-controller-manager and cloud-controller-manager

Control Family Strength Description

Authorization Adequate KCM and CCM are actually a passel of components
with various levels of authority. Items such as
service account controller have permission to write
to their policies, which may be used to escalate
privileges. Additionally, further segmentation
should be added to separate out sensitive
functionality from functionality at a lower privilege
level, so as to ensure that sensitive functions are
not maliciously or mistakenly interacted with by
other components.

Authentication Not Applicable KCM and CCM do not handle authentication directly,
but rather rely on kube-apiserver to be the arbiter
of authentication.

Cryptography

Not Applicable KCM and CCM do not handle cryptography directly,
but rather rely on kube-apiserver to be the arbiter
of cryptography.

Secrets
Management

Weak KCM and CCM handle a wide number of secrets,
which may be shared with the KCM and CCM
systems by various means. These include
environment variables, command-line arguments,
and Kubernetes secrets. However, controls are
diffuse, being written in situ for each KCM or CCM
component.

Networking Adequate KCM and CCM must be able to talk to a large
number of external-to-the-cluster components,
such as cloud providers’ infrastructure. However,
controls themselves are diffuse, and implemented
in situ within each KCM or CCM module.

Multi-tenancy Not Applicable KCM and CCM do not directly handle multi-tenant
isolation. This could be problematic going forward,
as KCM and CCM components could interact with
namespaces that were not intended to have access
to cloud or other provider boundaries.

kubelet

Control Family Strength Description

Authorization Strong Unless configured improperly, kubelet delegates all
authorization requests to the kube-apiserver(s) of
the cluster. This allows all requests that must
access privileged information served by the
kubelet’s HTTP(S) servers to be authorized by the
central authority within the system.

Authentication Strong Unless configured improperly, kubelet also
delegates all authentication requests to the
kube-apiserver(s) of the cluster. This allows all
requests that must access privileged information
served by the kubelet’s HTTP(S) servers to be
authenticated by the central authority within the
system.

Cryptography Not Applicable

kubelet does not handle cryptography directly, but
rather relies on kube-apiserver to be the arbiter of
cryptography.

Secrets
Management

Adequate kubelet is, like kube-apiserver, uniquely privileged
within the system to see a large amount of secret
information in an unencrypted form. For the most
part, this information is handled safely with strong
controls. However, bootstrap certificates are
written unencrypted to the file system, and are not
removed automatically.

Networking Weak kubelet includes a large number of services that are
neither ingress-restricted nor controlled by
delegated authentication. This is problematic as
these services reveal information such as Pod
specifications to any attacker capable of accessing
the port.

Multi-tenancy

Not Applicable

kubelet does not handle multi-tenancy directly, but
rather relies on kube-apiserver to be the arbiter of
multi-tenant isolation.

kube-proxy

Control Family Strength Description

Authorization

Not Applicable

kube-proxy does not handle authorization directly,
but rather relies on kube-apiserver to be the arbiter
of authorization.

Authentication

Not Applicable

kube-proxy does not handle authentication directly,
but rather relies on kube-apiserver to be the arbiter
of authentication.

Cryptography Not Applicable

kube-proxy does not handle cryptography directly,
nor does it need access to sensitive information in
general.

Secrets
Management

Not Applicable

kube-proxy does not handle secrets directly, but
rather relies on kube-apiserver to be the arbiter for
their correct storage. The sole exception is
authentication credentials, which are passed in via
command-line arguments to the binary on initial
execution. This is a general finding for Kubernetes
as a whole, rather than specific to kube-proxy.

Networking

Strong kube-proxy has strong, centralized controls that
ensure correct interaction with both the Linux
kernel (via iptables or ivps) and the networking
configuration specified by cluster clients.

Multi-tenancy Not Applicable

kube-proxy does not handle multi-tenancy directly,
but rather relies on kube-apiserver to be the arbiter
of multi-tenant isolation.

Container Runtime

Control Family Strength Description

Authorization Not Applicable Container Runtime does not handle authorization
directly, but rather relies on kube-apiserver and
kubelet to be the arbiters of authorization.

Authentication Satisfactory Container Runtime largely relies on kube-apiserver
and kubelet to be the arbiter of authentication.
However, there is a single control that relies on a
slightly weakened authentication mechanism with
a short lifetime, which slightly impacts the strength
of the authentication control.

Cryptography Not Applicable Container Runtime does not handle cryptography
directly, but rather relies on kube-apiserver and
kubelet to be the arbiters of cryptography.

Secrets
Management

Adequate Container Runtime largely relies on kubelet to
handle secrets. However, authenticated Pod
repositories’ credentials are exposed to the wider
host, despite being secret within the Pod
specification itself.

Networking Adequate Container Runtime is responsible for handling
image retrieval within the cluster. However, it does
not have egress filtering, which could be used to
impact the cluster itself, especially when HTTP is
used.

Multi-tenancy Not Applicable Container Runtime does not handle multi-tenancy
directly, but rather relies on kube-apiserver and
kubelet to be the arbiters of multi-tenant isolation.

Kubernetes-wide findings
Findings in this section impact Kubernetes as a whole. These are generally design issues
that are shared amongst all components, despite not sharing code for the control or
design. Broadly, these findings trend towards information disclosure, channel security
(cryptography and networking), and the application of user configuration.

1. Policies may not be applied
Severity: Medium Difficulty: Medium
Type: Configuration Finding ID: TOB-K8S-TM01

Description
Kubernetes allows users to define policies, such as NetworkPolicy and PodSecurityPolicy, to
restrict sensitive actions of specific components. For example, a NetworkPolicy is a YAML
document intended to restrict the communications flow between Pods, in an effort to
implement egress and/or ingress filtering. Users may implement such policies so as to
enforce communication boundaries within a cluster, and ensure that Pods cannot
communicate across sensitivity levels or tenants.

However, policies are not always enforced, and may fail silently. Kubernetes does not warn
users when policies are applied which may not be enforced without further configuration
changes or components. For example, PodSecurityPolicy requires an additional Admissions
Controller to be configured for execution, and NetworkPolicy requires a Container
Networking Interface (CNI) that can actually process and accept policies as configuration.
Neither object will warn the user that the policy has not been applied, leading to a false
sense of security.

Justification
The difficulty is medium for the following reasons:

● A user must intend to use one of the following policies without ancillary controls in
place (such as external firewalls to restrict Pod communication).

● An attacker must have position sufficient to exploit the missing policy.

The severity is medium, for the following reasons:

● An attacker must have a secondary exploit in order to impact the cluster.
● Users are not alerted to the missing policy, meaning they cannot effectively monitor

for situations that may arise from missing policies.

Recommendation
Short term, clearly document all locations within a Kubernetes cluster that may accept a
policy or configuration that is not applied. This will impact at least kube-apiserver and CNI.

Long term, alert users to situations wherein policies may not be applied. Wherever
possible, do not apply configurations, such as Pod specifications, when security-related
policies cannot be applied. This will directly alert users to situations that fail to apply
security controls they expect, and allow them to take the appropriate configuration action
as needed to apply the desired control.

References

● NetworkPolicy Prerequisites
● PodSecurityPolicy “Enabling Pod Security Policies” and “Authorizing Policies” sections

https://kubernetes.io/docs/concepts/services-networking/network-policies/#prerequisites
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies

2. Insecure TLS by default
Severity: Medium Difficulty: Medium
Type: Cryptography Finding ID: TOB-K8S-TM02

Description
Kubernetes allows components to communicate via Transport Layer Security (TLS), with
kube-apiserver serving as the root Certificate Authority (CA) for multiple Public Key
Infrastructures (PKIs) within a cluster. However, multiple components within the system do
not use secure TLS configurations and instead disable certificate verification and use
self-signed certificates. Attackers may utilize these insecure defaults to man-in-the-middle
(MITM) connections between cluster components, without the knowledge of either cluster
components or administrators.

Justification
The difficulty is high for the following reasons:

● An attacker must have sufficient position to MITM connections.
● Clusters will generally have other ancillary controls, such as cloud-hosting providers

or edge firewalls, to prevent the most eager attackers from affecting this attack.
● MITM attacks tend to be noisy, or cause other failures within a system, limiting the

ease with which an attacker may keep this position.

The severity is medium, for the following reasons:

● Attackers can only MITM connections that do not verify certificates.
● By default, all communications with kube-apiserver are verified, leaving only

communications between components (such as kube-apiserver to kubelet) open for
MITM.

Recommendation
Short term, change the default for kubelet to use verified TLS for all communications, as
opposed to the default use of self-signed certificates.

Long term, ensure that all components within the cluster use kube-apiserver-generated
certificates, and verify all connections between components. This will ensure that all data
shared throughout the cluster is shared only with intended parties, and connections will fail
should any MITM be detected.

References

● Kubelet configuration options​ which mention the self-signed certificate bootstrap.

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#options

3. Most components accept inbound HTTP
Severity: Medium Difficulty: Medium
Type: Cryptography Finding ID: TOB-K8S-TM03

Description
Many components in Kubernetes may have changes in state, health, or general status
information that should be reported. In order to handle this, Kubernetes uses HTTP as a
universal mechanism for data collection: components serve standard HTTP routes which
serve data in standard formats consumable by kube-apiserver. However, sensitive
information is also presented by at least one component (kubelet), and all others present
information over unencrypted, unauthenticated interfaces. An Internal Attacker with
sufficient position could sniff traffic or more easily man-in-the-middle requests between
components.

Justification
The difficulty is medium for the following reasons:

● Attackers must either have sufficient position or have discovered missing secondary
controls to affect the attack.

● Internal attackers, or External Attackers in a misconfigured cluster, can easily
request data.

The severity is medium for the following reasons:

● Sensitive data is rarely stored unencrypted within podspecs.
● Data is read only, even if it exposes secrets or allows attackers to transit trust

boundaries (such as an Internal Attacker suddenly being able to see Pod specs).

Recommendation
Short term, move all components to HTTPS, and disable HTTP unless specifically requested
by cluster administrators.

Long term, do not leak sensitive information without delegated authentication from
kube-apiserver. This would include Pod specs and even certain types of statistics, such as
number of Pods running on a given node. Minimizing the information given out to
unauthenticated requests can reduce information available to attackers for lateral
movement.

4. Most components do not enforce outbound HTTPS
Severity: Medium Difficulty: Medium
Type: Networking Finding ID: TOB-K8S-TM04

Description
Kubernetes interacts with external resources such as Webhooks and container repositories
for multiple resource types. Components such as kubectl, kube-apiserver, and the
Container Runtime fetch resources all have reasonable use cases to request data from
external resources.

However, no component requires secured connections for external resources; an attacker
with sufficient position could man-in-the-middle these connections and change the
response, or issue requests to third-party websites which are not under the control of the
organization.

Justification
The difficulty is medium for the following reasons:

● Attackers must have sufficient position or privilege in order to affect this attack.
● Minimal tooling is required, especially for Malicious Internal Users, to launch this

attack, lowering difficulty.

The severity is medium for the following reasons:

● Attackers can launch attacks on external resources.
● Attackers can modify resources to be executed by the cluster.
● Attackers with this position can launch other, more fruitful attacks, lowering

severity.

Recommendation
Short term, enforce the use of HTTPS throughout the lifecycle of a retrieval request, and
ensure that no resources, regardless of source, are fetched from insecure communications
channels.

Long term, design egress controls that can be applied to components such as Container
Runtime and kube-apiserver, to ensure that these resources communicate with external
resources intended by administrators. This should include validation of remote URLs,
hosts, and other metadata, to ensure that cluster users can only access intended
resources.

5. Credentials exposed in environment variables and command-line
arguments
Severity: Low Difficulty: High
Type: Data Exposure Finding ID: TOB-K8S-TM05

Description
Kubernetes uses credentials and secrets throughout the cluster. These may be simple
bootstrap credentials for components such as Container Runtime, or more complex tokens
passed in via environment variables. Regardless, credentials are exposed to a wider
audience than intended when supplied to components in this fashion: Internal Attackers
with Host position or Malicious Internal Users may have position sufficient to see command
line arguments (such as via ​ps​ or ​top​) or environment variables. Additionally, secrets
passed as command-line arguments are much more likely to end up in world-readable
system logs on the host, aggregated logs for the organization and sent to third party log
service providers. This would allow an attacker with sufficient position to parlay their
access to a Host into wider cluster access.

Justification
The difficulty is high for the following reason:

● An Internal Attacker or Malicious Internal User must have privileged access to hosts
in order to see all processes’ arguments and environments.

The severity is low for the following reasons:

● Attackers could parlay access to the Host into wider cluster access.
● Attackers with this level of access could likely impact the cluster in other ways,

lowering severity.

Recommendation
Short term, document all the ways that items are passed via command-line arguments and
environment variables, so that end users understand their exposure. This should include
Inter-Process Communication (IPC) mechanisms that spawn new processes, such as
kubelet interacting with Container Runtime.

Long term, move away from exposing sensitive credentials via mechanisms that may be
revealed to unintended third parties.

6. Names of secrets are leaked in logs
Severity: Low Difficulty: High
Type: Logging Finding ID: TOB-K8S-TM06

Description
Kubernetes includes logging throughout components. However, multiple components log
the names of secrets provided to them. An attacker with access to cluster logs, an Internal
Attacker with access to host logs, or a Malicious Internal User with access to aggregated
logs in a Security Information and Event Management (SIEM), could see the names of
secrets within a cluster, which could themselves be sensitive, depending on the user and
application. Furthermore, anywhere that command line arguments are logged may include
secrets or names of secrets, depending upon the component.

Justification
The difficulty is high for the following reasons:

● Attackers must have sufficient privilege or position to access logs.
● Sensitive names (such as internal projects) must be used by Developers or

Administrators.

The severity is low for the following reasons:

● In and of themselves, the names of secrets may only reveal certain aspects of a
program or application, rather than actionable details.

● Attackers with this level of access may be able to access other details of an
application that are more impactful, such as Pod configurations.

Recommendation
Short term, document all the ways in which data may be leaked within the cluster’s logs, so
that users are at least aware of these locations and may filter manually.

Long term, implement filtering akin to logging filters in Java frameworks, ​such as Simple
Logging Faces For Java (SLF4J)​. This will allow users to apply custom filters that can filter
logs in ways that the Kubernetes team cannot anticipate, without interrupting the normal
operation of logging within the cluster.

https://logback.qos.ch/manual/filters.html
https://logback.qos.ch/manual/filters.html

kube-apiserver findings
kube-apiserver is the heart of the cluster: it provides the final say on the cluster’s state, and
all updates are coordinated through watching for new resources and updating them
directly.

It works by providing a central ReST server that all other components within the system
access via HTTPS. These requests are authenticated by various Authenticators (components
run within the kube-apiserver to authenticate requests), authorized by Authorizers, and
processed by other elements, such as Admissions Controllers and Resource Validators.
Once a request has been processed by all subcomponents, it is stored in etcd, where it can
be later retrieved by other cluster components “watching” for updates. For example, a
simple flow is as follows:

1. A client updates a Pod definition via ​kubectl​, which is itself a ​POST​ request to the
kube-apiserver.

2. The scheduler watches for Pod updates via an HTTP request to retrieve new Pods.
3. The scheduler then updates the Pod list via a ​POST​ to the kube-apiserver.
4. The node's ​kubelet​ retrieves a list of Pods assigned to it via an HTTP request.
5. The node's ​kubelet​ then updates the running Pod list on the kube-apiserver.

7. No non-repudiation or audit of user actions by default
Severity: Medium Difficulty: Low
Type: Audit and Logging Finding ID: TOB-K8S-TM07

Description
The kube-apiserver is the heart of the cluster: all transactions must pass through its
handlers and be served again to other cluster components. In this way, kube-apiserver
ensures consistent cluster state across all components: creation, modification, and deletion
are all coördinated via this central service. However, kube-apiserver does not keep a log of
users’ actions without debug mode being enabled, meaning that reconstructing an
attacker’s path through the cluster is extremely difficult.

Justification
The difficulty is low for the following reasons:

● Attackers do not require special tools or privileges to interact with the
kube-apiserver.

● Internal Attackers or Malicious Internal Users already have sufficient privileges to
interact with kube-apiserver to some degree.

The severity is medium for following reasons:

● Attackers must have sufficient privileges to undertake a sensitive action, or have a
secondary exploit.

● In general, this is not vulnerability unto itself, but rather represents a location where
incident responders would not have sufficient information to properly respond to
an attack.

Recommendation
Short term, document that secondary logging mechanisms must be used in cases that need
strong non-repudiation and audit controls. This will ensure that at least users who require
this functionality will not be surprised that it is missing.

Long term, add logging sufficient to track a user’s action across the cluster. This could be as
simple as tracking events solely within kube-apiserver, or could coördinate across the
cluster as a whole. We recommend that at least all authenticated events, including
delegated authentication from kubelet, should be logged and retrievable from a central
location within the cluster. This will allow incident responders to audit from a central
location a user’s action within the cluster.

8. Secrets not encrypted at rest by default
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-K8S-TM08

Description
Kubernetes allows users to define secrets, which can be anything from authentication
credentials to application configuration options. While secrets are only rarely exposed
outside of etcd (such as to kubelets or to the Container Runtime), they are not by default
encrypted at rest. An attacker with access to etcd data files, such as via a backup, will have
full access to secrets in an unencrypted state. Furthermore, the
--encryption-provider-config ​accepts an ​identity​ provider (the default), which does
not actually encrypt data, but rather simply returns the secret unencrypted. Users may
misconfigure the ordering of providers, and accidentally send unencrypted data to etcd or
other storage locations.

Justification
The difficulty is high for the following reasons:

● Attackers must have access to etcd data files sufficient to read secrets unencrypted.
● etcd is segmented from the rest of the cluster, with heavily restricted file system

permissions.

The severity is low for the following reasons:

● In and of itself, this does not increase the risk of exposure more than compromising
kubelet or other cluster infrastructure that handles secrets.

Recommendation
Short term, document ideal configurations for various levels of security, and provide
standard configurations for users.

Long term, move towards some reasonable default for users besides the identity provider,
and warn users when the identity provider is used either as a standalone or within a chain
of providers. This will ensure that users cannot accidentally include the identity provider.

References

● Kubernetes cluster administration guide section on encrypting data at rest

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/#providers

etcd findings
etcd is the main storage engine of all cluster-related data. Everything that kube-apiserver
wishes to coördinate across hosts and components eventually makes its way into etcd.
Additionally, the documentation makes it clear: “​Access to etcd is equivalent to root
permission in the cluster.​”

etcd works as a ReST server, accepting JavaScript Object Notation (JSON) objects from
clients, and storing these objects at a location requested by the client. Within Kubernetes,
these objects are generally stored within the /registry route, and etcd processes all objects
processed by kube-apiserver. In order to keep up with the demand for fast reading and
writing similar to a traditional database, etcd may be deployed in a separate cluster. It uses
the RAFT consensus algorithm to ensure that data is presented and available to all nodes
within the cluster eventually.

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#securing-etcd-clusters

9. Write-Ahead Log does not use signatures for integrity checking
Severity: Very Low Difficulty: High
Type: Data Validation Finding ID: TOB-K8S-TM09

Description
etcd is a high-performance key-value store used to reify all state data within a Kubernetes
cluster. As part of this design, it uses a Write-Ahead Log (WAL) file, which is meant to serve
as an atomic commit file for changes; should etcd fail before the changes are written to the
main database, they can be reconstructed from the WAL file. However, the WAL file does
not use cryptographic signatures to ensure validity of data. An attacker with access to the
WAL file may tamper with the file without leaving a trace. Furthermore, copying over a
noisy or lossy connection could result in data corruption that cannot be detected until a
later point in time.

Justification
The difficulty is high for the following reasons:

● An attacker must transit multiple trust boundaries to impact a single etcd node.
● In a multi-master configuration, in order to truly impact the cluster, the attacker

must repeat this attack across multiple nodes.

The severity is very low for the following reasons:

● Attackers can only impact one etcd at a time.
● A consensus algorithm is used specifically to prevent attacks with corrupted,

incorrect, or outdated data.
● An attacker must attack a plurality of nodes within a cluster at the same time.

Recommendation
Short term, experiment with modes of adding cryptographically secure validation to the
WAL file generation. This could be as simple as hashing each entry prior to committing to
the WAL, or using something akin to ​Linked Timestamping​, wherein each entry is hashed
with the contents of the current entry and the hash of the previous entry. Furthermore,
keyed hashes could be used to ensure that a specific etcd node has created and validated
data. Then, when the WAL file is committed to both the data and snapshot files, the sum
toto of the entries contained within the WAL file may also be hashed. Balancing entry
hashing for the faster WAL files versus total file hashing for snapshots and beyond will be
key to maintaining relative performance whilst also ensuring valid data.

Long term, any added validation must be tested with larger datasets in normal clusters, to
ensure that etcd maintains performance, even with the added validation and security. We
recommend a gradual approach of adding validation to portions of larger clusters, so that
nodes with validation may be compared to nodes without it.

https://en.wikipedia.org/wiki/Linked_timestamping

10. Mutual TLS is not the default
Severity: Very Low Difficulty: High
Type: Authentication Finding ID: TOB-K8S-TM10

Description
etcd is the holder of cluster state within Kubernetes: additions, changes, and updates are
eventually stored in its data repositories. As such, authenticating who is communicating
with etcd is an important task, and while etcd supports mutual (or client-side) TLS, it is not
the default. An attacker who had transited network boundaries could interact with etcd
without further impedance.

Justification
The difficulty is high for the following reasons:

● An attacker must transit multiple trust boundaries in order to affect sufficient
position for this attack.

● etcd is specifically segmented from the rest of the cluster in order to prevent such
accesses, further increasing the difficulty for attackers.

The severity is very low for the following reasons:

● An attacker with the ability to transit multiple trust boundaries could also likely steal
authentication credentials used to secure two-way TLS.

● In and of itself, this represents defense in depth for those situations where etcd is
not completely segmented from the rest of the network or fully from the
kube-apiserver host.

Recommendation
Short term, fully document how two-way TLS may be fully enabled within etcd. ​The current
documentation provides a simple example​, but more automated or robust examples would
be helpful to users.

Long term, support mutual TLS by default, and do not allow communications with etcd that
are unauthenticated by client TLS certificates. Furthermore, do not use Basic or Digest
Authentication for this process, as these are outdated and insecure.

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#limiting-access-of-etcd-clusters
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#limiting-access-of-etcd-clusters

kube-scheduler findings
kube-scheduler is tasked with matching Pods to hosts that can execute their workloads.
This is a surprisingly complex task, as the match is based upon a variety of criteria,
including the Pod’s own specification of what it needs to execute its work.

In order to do this, kube-scheduler operates like most other components within the
cluster: it polls kube-apiserver for new Pods and any host changes reported by the various
kubelets within the system, and attempts to match new Pods to free or more free kubelets,
which then go about executing the Pod with help from the Container Runtime.

Furthermore, it should be noted that there may be multiple kube-schedulers configured for
a single cluster, each with a different name and set of parameters. kube-schedulers are
supposed to be coöperative, however they needn’t be; nothing in the system forces
kube-schedulers to only act upon Pod specs with a matching name.

11. Anti-affinity scheduling can be used to claim disproportionate resources
Severity: Low Difficulty: High
Type: Denial of Service Finding ID: TOB-K8S-TM11

Description
Kubernetes allows users to specify various mechanisms for Pods. This can be as simple as
assigning Pods to a specific node or a complex dance of determining various aspects of
nodes and Pods. Users may also specify which Pods cannot be scheduled together,
allowing a Malicious Internal User to specify that no other Pods be scheduled on the same
host, effectively commoditizing a node to the attacker’s workload alone.

Justification
The difficulty is high for the following reasons:

● An attacker must have sufficient privileges to schedule Pods.
● An attacker must know or guess other Pod names against which to claim

anti-affinity.

The severity is low for the following reasons:

● Attackers with this level of access could also simply schedule a large number of
Pods.

● Attacks that consume entire hosts are noisy and will eventually be investigated.
● Denial-of-Service attacks that consume nodes will not impact currently running

Pods, but rather impact the scheduling of future Pods.

Recommendation
Short term, document that features such as anti-affinity may be used in ways that cause
host unavailability across the cluster.

Long term, add tooling and processes to aid administrators in reviewing the state of
clusters. This will support administrators as well as incident responders to discover and
respond to resource-exhaustion events such as this. Furthermore, consider preventing
users from selecting which scheduler they can use. Reserve that as an administrative
function. This will allow administrators to handle scheduling in a safe way, and prevent
attackers from specifying which scheduler should be used.

12. No back-off process for scheduling
Severity: Informational Difficulty: Undetermined
Type: Denial of Service Finding ID: TOB-K8S-TM12

Description
Scheduling a Pod within Kubernetes is an intricate dance of state coördination across
multiple components; kube-scheduler may interact with kubelet, the Replica Set Controller,
and other processes within the system. However, there is no back-off process when
kube-scheduler determines that a kubelet is the appropriate host for a Pod, but the kubelet
itself rejects scheduling the Pod. This may create a tight-loop wherein kube-scheduler, the
Replica Set Controller, and kubelet cause a contention wherein kube-scheduler
continuously schedules a Pod that kubelet rejects.

Justification
This item is of Informational severity and as such represents a noteworthy comment within
the system, rather than an actual vulnerability.

Recommendation
Short term, document that this issue exists, and note that developers may be able to
accidentally or maliciously introduce a tight-loop within a cluster via this feedback failure
loop.

Long term, implement a back-off process for kube-scheduler and support graceful node
failure. This may go so far as to include a “decay list” of nodes which are continuously
failing to schedule Pods. Such a list can be used for further scheduling decisions within
kube-scheduler.

KCM and CCM findings
kube-controller-manager (KCM) and cloud-controller-manager (CCM) are two core
components of Kubernetes’ interaction with the underlying platform. Like other controllers,
such as the Replica Set Controller, KCM and CCM attempt to move the state of the cluster
towards the desired state. CCM itself is a reference implementation, meant to separate out
cloud-specific controller code from other controller code. In this way, it will allow
administrators running on one cloud provider to exclude code meant for another cloud
provider.

13. Separate out controllers based on principle of least authority
Severity: Low Difficulty: High
Type: Access Control Finding ID: TOB-K8S-TM13

Description
KCM and CCM run several different controllers in a “control loop,” or an infinite loop of
feedback. KCM and CCM are packaged as single binaries, with multiple controllers
packaged as Go-level modules within the source code used to build the binary. These
controllers impact a wide range of items across the cluster, but are generally low-privileged
and unable to impact much outside of the narrow slices of policy for which they are
defined. However, some of these controllers are highly privileged (such as the Service
Account Controller) and can access their own permissions. If an attacker or malicious
controller were able to call these functions, they could escalate privileges across the
cluster, potentially to administrative-level access.

Justification
The difficulty is high for the following reasons:

● An attacker must know or discover a vulnerability allowing them to call privileged
functions.

● They must have position sufficient to use the escalated privileges, such as a
Malicious Internal User.

The severity is low for the following reasons:

● Attackers with this level of access could likely impact other items with a lower
Difficulty threshold.

● Attackers could escalate privileges across the cluster, or subtly modify resources on
the fly.

Recommendation
Short term, plan ways that privileged controllers may be separated from unprivileged ones,
and test if this is feasible within the context of both KCM and CCM.

Long term, separate out privileged controllers into their own binary or binaries. Controller
managers should not mix levels of privilege, as attackers or even just simple coding
mistakes can lead to privilege escalation.

kubelet findings
kubelet is the central orchestrator for Pods within the Kubernetes system. It runs Pods by
watching for podspecs that have been allocated to its host (by kube-scheduler), and passes
the podspec to the Container Runtime for execution. Aside from this, kubelet also handles
reporting the health status of Pods and containers to kube-apiserver, monitoring Pods
themselves for failure, working with the Container Runtime to deschedule Pods when so
requested, and reporting host status to kube-apiserver (for use by kube-scheduler). Like
kube-proxy, kubelet runs on the individual hosts, but with a different trust boundary than
Pods themselves, as it is central to the correct operation of the cluster as a whole.

14. kubelet hosts unauthenticated ports that leak pod spec information
Severity: Medium Difficulty: Medium
Type: Information Disclosure Finding ID: TOB-K8S-TM14

Description
kubelet, like most components within the Kubernetes system, uses HTTP ports for various
tasks such as reporting or task execution. Specific to kubelet, there are three main ports:

● 10250, an authenticated HTTPS server, with authentication provided by delegated
authentication from the kube-apiserver, used for task execution and kubelet
update.

● 10255, an unauthenticated HTTP server used for status information and health
information, but also includes Pod spec information.

● 10248, an unauthenticated HTTP server used for health information.

Justification
The difficulty is medium for the following reasons:

● An attacker must have sufficient position to affect the attack, such as an Internal
Attacker or Malicious Internal User.

● Minimal tooling is needed to issue an HTTP request.
● An attacker must know, or guess, the location of kubelet host and ports.

The severity is medium for the following reasons:

● Pod specs do not by default contain secrets, other than potentially ConfigMaps and
Repository authentication credentials.

● An attacker armed with this information may gain a better understanding of the
layout of a cluster’s workload, but minimal other information about the inner
workings of the cluster.

Recommendation
Short term, document the leakage of Pod spec information, and plan ways to remove it. Per
the RRA discussions, the kubelet team is already planning on removing port 10255, which is
mainly in place for cAdvisor, which is deprecated. In more recent versions of Kubernetes
than this work focused on, port 10255 is configured off by default, but can be activated
either by installers/distributions or cluster administrators.

Long term, remove the deprecated ports, and minimize the attack surface available to an
Internal Attacker. This should also include changing port 10250 to a fully bootstrapped TLS
certificate by default. In this way, kubelet will present as strong a face as possible to
internal attackers.

15. Bootstrap certificate is long-lived and not removed by default
Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-K8S-TM15

Description
Kubernetes can bootstrap certain components, such as kubelet, from certificates by
default. These certificates provide a mechanism for components to request enough access
of kube-apiserver so as to generate a Certificate Signing Request (CSR) and produce a
signed certificate that the component may use for at least client authentication. However,
the certificate is long-lived, without a Time to Live (TTL), and is not removed by default.

Justification
The difficulty is high for the following reasons:

● An attacker must transit several trust boundaries, and have host-level access to a
Worker node.

● The attacker must then have the ability either to bring up other hosts within the
cluster or create their own kubelet under their control.

The severity is low for the following reasons:

● In and of itself, a long-lived bootstrap certificate does not provide an attacker with
sufficient direct access.

● An attacker can make CSR requests to the kube-apiserver, which may provide an
attacker with access to other credentials within the cluster.

Recommendation
Short term, document that the certificate is long-lived, and must be removed by manual
processes.

Long term, issue bootstrapping certificates with an explicit-but-reasonable TTL, such as one
week. This should provide administrators plenty of time to bootstrap a cluster, but remove
the risk of a stolen bootstrapping certificate from further impacting the cluster.
Additionally, if certificate revocation is added to the cluster, bootstrap certificates may be
revoked once the CSR has been received.

References

● TLS Bootstrapping

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/#client-and-serving-certificates

kube-proxy findings
kube-proxy, much like kubelet, is a transitive component within the cluster: it straddles the
edge between two trust boundaries, namely the Worker and Container zones. kube-proxy
itself works by watching for service, endpoint, and similar network configurations on
kube-apiserver, and then implementing the networking request, in conjunction with the
Container Network Interface (CNI) in one of several modes:

● As a literal network proxy, handling networking between nodes
● As a bridge between Container Network Interface (CNI), which handles the actual

networking, and the host operating system
● iptables​ mode
● ipvsadm​ mode
● two Microsoft Windows-specific modes (not covered by the RRA)

kube-proxy itself is actually a cluster of five programs, which work to create a consistent
networking experience across Pods and services. In this way, kube-proxy manages the raw
plumbing of networking, connecting the CNI’s transport layer to Linux’s routing layer (via
third-party tools such as ​iptables​).

Userspace proxy
The original mode of operation for kube-proxy, wherein kube-proxy received and
forwarded packets for Kubernetes’ hosted services. While this mode is not often used
anymore, due to performance, the setup is the same for most other modes of kube-proxy.
Furthermore, it is a core mode that may be useful under certain circumstances.

Setup:

1. Connect to the kube-apiserver.
2. Watch the kube-apiserver for services/endpoints/&c definitions.
3. Build an in-memory caching map: for services, for every port a service maps, open a

port, write iptables rule for Virtual IP (VIP) & Virtual Port.
4. Continue with step No. 2, until the cluster is restarted or terminated.

When a consumer connects to the port:

1. The desired service is running on a VIP:VPort pair.
2. The Root NS lookup, which is routed by an iptables defintion, which eventually

points to the kube-proxy port.
3. When a connection is received, look at the src/dst port, check the map, pick a service

on that port at random (if that fails, try another until either success or a retry count
has exceeded).

4. Shuffle bytes back and forth between backend service and client until termination or
failure.

iptables
iptables is a common mode of operation for kube-proxy; it interacts directly with iptables in
order to build routing rules for VIP:VPort pairs. However, this mode does not require
kube-proxy to actually intercept or communicate with client connects. Instead, kube-proxy
uses iptables to create rewriting rules for the intended host, and has no futher interaction
with the system, until such time that iptables restore command sets must be updated.

1. Same initial setup as the userspace proxy, sans opening a port directly.
2. Build an iptables restore command set, which is simple a giant string of services.
3. Map user VIP to a random backend, rewriting packets at the kernel level, so

kube-proxy never sees the data.
4. At the end of the sync loop, write batches to avoid iptables contentions/
5. Perform no more routing table updates until service updates, from watching

kube-apiserver or a time out.

NOTE​: rate limited (bounded frequency) of iptables updates:

● No later than 10 minutes by default
● No sooner than 15s by default, if there are no service map updates

ipvs
1. Similar setup to iptables & userspace proxy modes.
2. Here, we use the​ ipvsadm​ and ​ipset​ commands instead of iptables
3. This does have some potentially unintended consequences:

● IP address needs a dummy adapter
● NOTE​ Any service bound to 0.0.0.0 is also bound to ​all​ adapters
● This is somewhat expected because of the binding to 0.0.0.0, but can still

lead to interesting behavior

Networking Concerns
Low-level network attacks may still impact kube-proxy, such as ARP Poisoning.
Furthermore, endpoint selection is namespace ​and​ Pod-based, so an injection could
theoretically overwrite this mapping. Additionally, further work may be needed to use only
CAP_NET_BIND​, which allows a process or containerbind to low ports, without root
permissions, for containers/pods, to alleviate concerns surrounding attacks such as ARP
Poisoning via ​CAP_NET_RAW​.

16. Race condition in Pod IP reuse
Severity: Low Difficulty: High
Type: Timing Finding ID: TOB-K8S-TM16

Description
kube-proxy coördinates with Pods, kubelet, and other components to “string the wire,” so
to speak, of communications within a cluster. This includes Pod IPs, which generally have a
larger allocation than there are Pods within a cluster by a factor of two. However, if an
attacker were able to cause a churn in Pod IPs, they could potentially win a race condition,
and trick kube-proxy into forwarding traffic to a Pod controlled by the attacker, rather than
the Pod expected by the cluster.

Justification
The difficulty is high for the following reasons:

● An attacker must have sufficient position to cause a large volume of turnover in Pod
IPs.

● The attacker must also have sufficient privileges to launch malicious Pods or have
previously compromised a Pod with the Pod IP they wish to control.

The severity is low for the following reasons:

● Attackers with position sufficient to cause Pod IP reuse could likely use other
attacks, such as ARP Poisoning, to achieve a similar effect with less work.

● The attack itself is largely theoretical, concerning a possible method by which an
attacker could win a race condition against the Pod IP assignment algorithm.

Recommendation
Short term, document the issue, so that users may be aware of a possible race condition.

Long term, determine a method for a back-off process within kube-proxy, and ways of
ensuring that tight loops cannot allow attackers to win race conditions. It is possible that
the best arbiter of routing truth may be kube-apiserver, however, this would require larger
architectural changes to the system as a whole. An achievable goal would be to simply back
off assignments when tight-loop Pod IP churn is noticed, and allow the normal network
process to reach equilibrium prior to further assignments.

Container Runtime findings
The last-but-not-least component that the team reviewed was the Container Runtime.
Container Runtime is technically an interface, like Container Networking, meant to support
multiple Linux container runtime systems (e.g. Docker) with a single API. Container Runtime
itself does not execute a container until instructed to do so by kubelet, as shown in the
process below:

1. Container Runtimes expose an IPC endpoint such as a Unix Domain Socket
2. kubelet retrieves Pods to be executed from the kube-apiserver
3. kubelet issues a request to the Container Runtime web server
4. The web server returns a URL with a single-time-use token
5. kubelet issues a request to the URL via gRPC over Unix Domain Socket
6. The Container Runtime Interface then executes the necessary commands/requests

from the actual container system (e.g. Docker) to run the Pod

17. Search space for single-use token is too small
Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-K8S-TM17

Description
Container Runtime coördinates with kubelet via two mechanisms: a TCP/IP web server, and
a gRPC server running via Unix Domain Sockets. The gRPC request is authenticated via a
single-use token issued to kubelet in response to a scheduling request. However, the token
is small, being only eight characters long, meaning an attacker could feasibly generate
many valid tokens in a short amount of time.

Justification
The difficulty is high for the following reasons:

● An attacker must have sufficient position to access the Unix Domain Socket.
● They must then generate many tokens (potentially up to 2^64).
● These tokens must be discovered before a one-minute timeout has elapsed.

The severity is low for the following reasons:

● An attacker with Host access could impact far more sensitive items than attempting
to brute force a scheduling token.

● The attack would merely stop a Pod from being scheduled, which would either
result in it being rescheduled or in another host scheduling the pod, minimizing
total impact.

Recommendation
Utilize a standard, cryptographically secure token such as a UUIDv4. This will ensure that
the search space is too large for practical searches, and utilize standard, well understood
token-generation practices.

A. RRA Template

Overview
● Component:
● Owner(s):
● SIG/WG(s) at meeting:
● Service Data Classification:
● Highest Risk Impact:

Service Notes
The portion should walk through the component and discuss connections, their relevant
controls, and generally lay out how the component serves its relevant function. For
example a component that accepts an HTTP connection may have relevant questions about
channel security (TLS and Cryptography), authentication, authorization,
non-repudiation/auditing, and logging. The questions aren't the only drivers as to what may
be discussed -- the questions are meant to drive what we discuss and keep things on task
for the duration of a meeting/call.

How does the service work?

Are there any subcomponents or shared boundaries?

What communications protocols does it use?

Where does it store data?

What is the most sensitive data it stores?

How is that data stored?

Data Dictionary

Name Classification/Sensitivity Comments

Data Goes Here

Control Families
We’re interested in these areas of controls based on the audit working group’s choices.

When we say "controls," we mean a logical section of an application or system that handles
a security requirement. Per CNSSI:

“The management, operational, and technical controls (i.e., safeguards or
countermeasures) prescribed for an information system to protect the
confidentiality, integrity, and availability of the system and its information.”

For example, a system may have authorization requirements that say:

● users must be registered with a central authority.
● all requests must be verified to be owned by the requesting user, and
● each account must have attributes associated with it to uniquely identify the user

and so on.

For this assessment, we're looking at six basic control families:

● Networking
● Cryptography
● Secrets Management
● Authentication
● Authorization (Access Control)
● Multi-tenancy Isolation

Obviously we can skip control families as "not applicable" in the event that the component
does not require it. For example, something with the sole purpose of interacting with the
local file system may have no meaningful Networking component; this isn't a weakness, it's
simply "not applicable."

For each control family we want to ask:

● What does the component do for this control?
● What sorts of data passes through that control?

○ for example, a component may have sensitive data (Secrets Management),
but that data never leaves the component's storage via Networking

● What can an attacker do with access to this component?
● What's the simplest attack against it?
● Are there mitigations that we recommend (i.e. "Always use an interstitial firewall")?
● What happens if the component stops working (via DoS or other means)?

● Have there been similar vulnerabilities in the past? What were the mitigations?

Threat Scenarios
● An External Attacker without access to the client application
● An External Attacker with valid access to the client application
● An Internal Attacker with access to cluster
● A Malicious Internal User

Networking

Cryptography

Secrets Management

Authentication

Authorization

Multi-tenancy Isolation

Summary

Recommendations

