

Kubernetes
Security Whitepaper
June 17, 2019

Prepared For:
Kubernetes Security WG | ​Kubernetes

Prepared By:
Stefan Edwards | ​Trail of Bits
stefan.edwards@trailofbits.com

Dominik Czarnota | ​Trail of Bits
dominik.czarnota@trailofbits.com

Robert Tonic | ​Trail of Bits
robert.tonic@trailofbits.com

Ben Perez | ​Trail of Bits
benjamin.perez@trailofbits.com

mailto:stefan.edwards@trailofbits.com
mailto:dominik.czarnota@trailofbits.com
mailto:robert.tonic@trailofbits.com
mailto:benjamin.perez@trailofbits.com

Introduction

Kubernetes overview
Components
Communications and protocols
Abstractions and objects

Infrastructure and cluster composition
Infrastructure management
Object composition
Health detection and failures
Host and cluster multi-tenancy

Kubernetes and cryptography
Encryption in etcd
Certificates
HTTPS Connections

Positioning Threat Actors within a Kubernetes cluster
Internal and External Network Access
Host Access
Pod Access
Cluster Access

Recommendations for cluster administrators
Attribute Based Access Controls vs Role Based Access Controls
RBAC best practices
Node-host configurations and permissions
Default settings and backwards compatibility
Networking
Environment considerations
Logging and alerting

Recommendations for developers
Avoid hardcoding paths to dependencies
File permissions checking
Monitoring processes on Linux
Moving processes to a cgroup
Future cgroup considerations for Kubernetes
Future process handling considerations for Kubernetes
Best practices for spawning processes

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 1

Introduction
This document is one of the artifacts produced following Trail of Bits’ March 11th to May
10th, 2019 assessment of the security of the open source Kubernetes system. It provides a
reference on different aspects of securing Kubernetes, based on the audit team’s
observations. The white paper defines the key aspects of the Kubernetes attack surface
and security architecture.

The assessment yielded a significant amount of knowledge pertaining to the operation and
internals of a Kubernetes cluster. This document presents that knowledge in a format
useful to the community. We address key aspects of the Kubernetes attack surface and
security architecture, enabling administrators, operators, and developers to make sound
design and implementation decisions.

In order to provide background for best practice recommendations and guidelines, we
describe the components of a cluster, how these components communicate, their internal
abstractions, and, at a high level, how these components are hosted on the underlying
infrastructure. We also detail the use of cryptography, and the potential threats a
Kubernetes cluster could face. Next, we propose and discuss a set of best practices and
guideline recommendations.

Throughout many of the topics discussed, multi-tenancy is relevant. To help provide
context to the affected tenants, we use these terms:

● Cluster administrators are tenants with access to the underlying hosts, and who
have elevated permissions on a cluster.

● Cluster operators are tenants who have limited administrative access to a cluster, to
perform operations such as the creation, deletion, and management of cluster
workloads.

● Workloads are applications, tasks, or jobs which can be executed and managed by
Kubernetes.

As a whole, this document is a summation of thoughts from the assessment team, covering
security-adjacent issues uncovered throughout our assessment of Kubernetes. This
content presents both general and specific recommendations from a team intimately
aware of Kubernetes’ internals and wider cloud- and distributed-systems configurations.
Additionally, guidance is included to promote further assessments and discussion of
Kubernetes from the varied perspectives of administrators, security researchers, and
developers.

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 2

Kubernetes overview

Components
A Kubernetes cluster requires several base components to operate, specifically: the
kubelet, kube-apiserver, kube-scheduler, kube-controller-manager, and a kube-apiserver
storage backend. Other components such as controllers and schedulers provide features
related to networking, scheduling, or environment management. While these features may
be required for certain workloads, they complement and extend the functionality of the
base components.

Communications and protocols
The base components of Kubernetes use HTTP API endpoints for state-related
communications. The core component of these state communications is the
kube-apiserver. The kube-apiserver is the middle-man between the storage backend and
the cluster components, allowing reads and modification of cluster state. Other
components, such as the kubelet, use the kube-apiserver’s API to perform tasks such as
retrieving information about which Pods their node should be currently running, or which
service ports to configure on a node’s host.

Similar to the kube-apiserver, the kubelet also interacts with external services. In order for
Pods to execute, the kubelet must interact with a container runtime through a specified
container runtime interface (CRI). Supported CRIs can be communicated with through a
variety of protocols. Local to the node, standard TCP and sock communications can be
used. Remotely, TCP communications are typically used.

Beyond the scheduling and execution of Pods, most cluster workloads require external
interaction with Pods. The kube-proxy, CNI, and kubelet are used to route ingress and
egress TCP, UDP, and SCTP traffic from the host node to Pod based on service states
returned by the kube-apiserver. Without this, Pods could be limited to egress
communication abilities, using the underlying node’s host networking configuration. To
allow ingress traffic, kube-proxy typically uses iptables (or similar tools such as ipvs-adm) 1

to configure the node’s host to forward traffic from an external source to an internal Pod.

As a whole, Kubernetes attempts to orchestrate and abstract existing systems to allow for
large-scale container deployments through an easy-to-use declarative interface. Because of
this, there is significant interaction between Kubernetes components and external systems.

1 Kube-proxy configuration of iptables,
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/#is-kube-proxy-writing-ipt
ables-rules

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 3

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/#is-kube-proxy-writing-iptables-rules
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/#is-kube-proxy-writing-iptables-rules

Without this interaction, Kubernetes would not be able to achieve expected functionality
for supported workloads.

Abstractions and objects
Once a base Kubernetes cluster has been provisioned and configured, Kubernetes clusters
are controlled via operator-defined objects. These objects are abstractions for cluster
operations such as service discovery, replica management, port configuration, and the like . 2

The kube-apiserver derives how the state of the cluster should be mutated to reflect these
objects. The other components of Kubernetes query the kube-apiserver for the state to
maintain and adhere to.

Through the use of the operator-defined objects, Kubernetes alleviates traditionally
complex tasks related to system administration and task management. Component
configuration is mostly agnostic of the workloads running atop the cluster, preventing
reconfiguration of the underlying Kubernetes components and promoting configuration
portability. However, component configuration does impact the effects of certain object
definitions.

To provide ease of configuration and portability, many of these abstractions have the
requirement of being state- and component-agnostic, adding operational complexity of a
different type. Many objects within Kubernetes are composed with other objects. This type
of compositional approach allows for the creation of complex configurations, where
considerations must account for both cluster-component capabilities, and object presence.
Detailed discussions have been included in ​Infrastructure and cluster composition:
Infrastructure management​ and ​Infrastructure and cluster composition: Object
composition​.

2 Understanding Kubernetes Objects,
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 4

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Infrastructure and cluster composition

Infrastructure management
While Kubernetes facilitates high-availability workload deployments, the underlying hosts,
components, and environment of a Kubernetes cluster must be configured and managed.
This management has a direct impact on the capabilities of the cluster, and affects the
behavior of an operator’s composed objects. With this in mind, the options available for
configuring components of Kubernetes often fluctuate significantly in supported versions,
and vary in their approach to default settings. This leads to a non-trivial amount of
configuration required by an administrator to stand-up a functional cluster for a given
workload. More effort must then be spent maintaining the cluster to abide by these
settings, especially when planning and executing upgrades of Kubernetes components.

The impact of Kubernetes on the underlying node hosts must also be kept in mind.
Kubernetes workloads may have operations or dependencies which use host resources,
such as network interfaces, volumes, and applications. These types of operations impact
the underlying node host in regards to file permissions, volume access, and resource
consumption. For example, if an operator is able to schedule privileged Pods, they may
have access to administrator resources in the underlying node hosts across the cluster,
depending on the access controls in place on each node host. Furthermore, this can have
an inverse effect on the security of the cluster, since a privileged process on a node host
could gain access to sensitive cluster configuration information such as secrets and
certificates.

Configuration of Kubernetes components can also be made more complex due to
Kubernetes’ ability to partially manage itself. kubelet is able to run Pods specified in static
manifest files within a manifest directory, as well as from a specified remote 3

kube-apiserver, at the same time. This allows cluster administrators to run certain cluster
components in a kubelet-managed way. As an example, the kube-apiserver can be defined
as a Pod in a static manifest, and the managing kubelet can be configured to point to the
Pod (via ​--pod-manifest-path​ flag). Once the kube-apiserver Pod is started from the static
manifest and reachable by the kubelet, the kubelet will begin pulling Pod specifications
from the kube-apiserver to execute. This type of configuration fundamentally changes the
security considerations that must be made when deploying a Kubernetes cluster, since the
execution environment of the cluster components changes from running directly on the
host to running within a container runtime managed by the kubelet.

3 Kubernetes Static Pods, ​https://kubernetes.io/docs/tasks/administer-cluster/static-pod/

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 5

https://kubernetes.io/docs/tasks/administer-cluster/static-pod/

To help manage the complexity of configuration and management, various projects have
been formed to help configure and manage the underlying hosts and environments of a
Kubernetes cluster. Projects such as Kubespray , Kops , Rancher , and many others aim to 4 5 6

provide clusters which an administrator can further configure and better maintain. Despite
many of these projects aiming to provide “production-ready” clusters, even these have
differences in configuration, management, and operation. Furthermore, if extra
functionality is required of the cluster, complexity of management increases.

Object composition
In order to use Kubernetes, operators must define objects for the cluster to derive state
from. Nearly every aspect of the Kubernetes cluster is controllable through these objects,
such as access controls (role based access controls, Pod security policies, etc),
deployments, Pods, and volumes.

When defining objects, operators may compose complex objects through references to
other objects. At the time of object creation, another referenced object does not need to
exist. This allows for trivial state-agnostic configuration, since once a referenced object
exists, the cluster state will update and reflect its existence.

While composing objects in a state-agnostic way makes complex-object composition
easier—since it is no longer order-dependent—it can be tough for an operator to detect
misconfigurations. Because some objects can be successfully created without the presence
of an object that may be depended on, expected functionality must be tested to ensure the
state properly reflects the operator’s intent and configuration. This is especially concerning
when considering the impact a misconfiguration could have on a critical control such as
Role Based Access Controls (RBAC) . To use RBAC, policies are defined through roles and 7

role bindings. Because roles and role bindings can be created and maintained separately,
this could cause misconfigurations by an administrator who assumed a role or binding was
created and applied successfully, but in fact was not applied as expected.

Furthermore, the objects an operator can define on the cluster can be impacted by the
underlying configuration of the cluster. Similar to how an object will be created even if a
reference does not exist, Kubernetes allows objects to be created even if the component
which would use its configuration does not exist or is disabled. For example, an operator
can define a PodSecurityPolicy (PSP) even if the PSP admission controller is not enabled on

4 Kubespray, ​https://github.com/kubernetes-sigs/kubespray
5 Kops, ​https://github.com/kubernetes/kops
6 Rancher, ​https://rancher.com/
7 Role Based Access Control Overview for Kubernetes,
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#api-overview

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 6

https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes/kops
https://rancher.com/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#api-overview

the kube-apiserver , resulting in a policy which will not be enforced, even if it is bound to a 8

role.

Health detection and failures
One of Kubernetes’ many goals is to facilitate high-availability, fault-tolerant service
management. To achieve this, health detection and fault tolerance is required on multiple
layers of the Kubernetes stack.

On the lowest layer, base Kubernetes components contain health checks to ensure they
are responsive and healthy, managing unhealthy components through eviction periods and
timeouts. This allows the cluster components to regulate workloads based on the status of
underlying components.

On the workload layer, Kubernetes supports the ability to define both liveness and
readiness checks . The readiness checks allow the kubelet to determine when a Pod is 9

ready to perform work. The liveness checks allow the kubelet to determine if a Pod is
continuously suitable for work. Both of these checks support three probing methods of
checking a Pod’s status: TCP, HTTP, and Executor. When performing the TCP and HTTP(S)
status checks, the kubelet will attempt to contact a specified host and port based on the
Pod’s specification. If a connection is successfully established (TCP) or an acceptable
response status (HTTP(S)) has been returned, the check will succeed. In the case of the
Executor, the kubelet will attempt to execute a command within the specified Pod. If the
command returns a successful status code, the check will succeed.

Regardless of layer, Kubernetes will attempt to mitigate the impact of a workload or node
which fails its status checks . For both, eviction and timeout policies are typically used. If a 10

kubelet node is no longer passing its status checks, eviction policies may take effect,
evicting a node from the cluster and triggering Pods to be rescheduled away from the
evicted node. If a Pod is no longer passing its status checks, it may be restarted on the
same node, or rescheduled to another node in an attempt to get the status check to
succeed.

When configuring and securing a cluster and its workloads, all aspects of this functionality
must be considered. If an attacker gains access to a container, the attacker must do so in a
way that does not disrupt a Pod’s health checks. If an attacker causes a Pod to fail health
checks, this could lead to the container being terminated and started elsewhere.
Furthermore, outside constraints such as cgroups could lead to a Pod container’s

8 The PodSecurityPolicy admission controller,
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
9 Liveness and Readiness checks in Kubernetes,
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
10 Node conditions, ​https://kubernetes.io/docs/concepts/architecture/nodes/#condition

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 7

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-security-policies
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/concepts/architecture/nodes/#condition

termination if resource allocations are exceeded, limiting an attacker’s ability to use
available resources.

Beyond avoiding health check disruption, an attacker with the ability to schedule Pods
could also use liveness and readiness checks to find out information about a node’s host
environment. Using the fact that the kubelet performs probes from the host, an arbitrary
host and port can be specified for a TCP and HTTP(S) status probe, allowing an attacker to
enumerate host ports on the networks available to the underlying node host’s interfaces.

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 8

Host and cluster multi-tenancy
Because Kubernetes can be used for such a wide variety of workloads, it is important to
consider the impact and potential effects of multi-tenant cluster operators, cluster
workloads, and cluster node hosts.

Multi-tenant node hosts present a unique challenge to the security of a Kubernetes cluster.
Underlying host resources can be consumed by other users of the system, resulting in
reduced workload capacity. For example, resources such as CPU, memory, ports, and disk
space are directly influenced by a multi-tenant node host. Depending on the size of the
cluster and the type of workload, sudden node-host resource-availability changes could
result in workload-availability issues. From an attacker’s perspective, even if direct access to
the cluster is not possible, resource exhaustion attacks on multi-tenant hosts still present a
potential method of interfering with cluster operations. While this is not the fault of
Kubernetes, it requires consideration when designing where node clusters should run.

Within a cluster, there are several tenancy considerations that must be made when
building and managing a cluster. Numerous operators of a cluster can exist at the same
time, with varying levels of access. Furthermore, multiple workloads can co-exist on a
cluster, both in and outside of the same namespace. Between operator multi-tenancy and
workload multi-tenancy, there is a significant attack surface for an attacker with access to
either a workload or operator account.

Kubernetes namespaces were developed as a method to help provide workload isolation . 11

Running multiple, potentially multi-tenant, workloads in the same namespace sidesteps the
protections of namespaces, resulting in a single large and flat namespace. In an
environment with two workloads in the same namespace, an attacker with access to one
workload could possibly access the other workload without encountering
cluster-namespace restrictions. Depending on workload configuration, an attacker could
use this lateral access to move and escalate to a more privileged workload.

Compounding namespace-workload tenancy concerns, operator tenancies and privileges
directly affect the security of a cluster. If an attacker gains access to a particular tenant’s
credentials, the attacker may be able to escalate in and across namespaces and workloads
through configuration of cluster objects.

11 When to use multiple namespaces,
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-mul
tiple-namespaces

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 9

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-multiple-namespaces
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/#when-to-use-multiple-namespaces

Kubernetes and cryptography
Several core components of the Kubernetes framework require the use of cryptography. In
particular users need four features:

1. Encryption of data in etcd
2. Verifiable and tamper-proof encrypted data storage in etcd
3. Encrypted data transports
4. Verifiable component identities

In this section, we discuss how Kubernetes solves these problems and the choices
administrators have during setup.

Encryption in etcd
When administrators store information in etcd, they need to be sure that their data is both
private and tamper-resistant. Information privacy can be achieved through standard block
cipher modes such as AES-CBC. However, privacy and tamper resistance can be
accomplished simultaneously by using an authenticated encryption scheme . Kubernetes 12

supports four options when encrypting data, of which only the latter three provide
authenticated encryption:

1. AES-CBC with PKCS#7 padding
2. AES-GCM
3. Secretbox
4. KMS

In the documentation, administrators are told that KMS and AES-CBC provide the highest
level of security. While Trail of Bits believes that KMS is the best choice in general, by no
means is AES-CBC more secure or more performant than Secretbox. In particular, AES-CBC
does not provide authenticated encryption and is known to be vulnerable to padding oracle
attacks . While it is unlikely an attacker would be able to mount such a padding oracle 13

attack on the data storage component of Kubernetes, future changes to the system may
introduce such a vulnerability.

Despite authenticating encrypted data, AES-GCM is an extremely error-prone mode of
encryption. It requires administrators to supply a random nonce which, if repeated, allows
an adversary to decrypt messages and recover parts of the user’s key. To avoid reusing

12 How to choose an Authenticated Encryption mode,
https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-authenticated-encryption/
13 Padding oracle attack on CBC encryption,
https://en.wikipedia.org/wiki/Padding_oracle_attack#Padding_oracle_attack_on_CBC_encryption

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 10

https://blog.cryptographyengineering.com/2012/05/19/how-to-choose-authenticated-encryption/
https://en.wikipedia.org/wiki/Padding_oracle_attack#Padding_oracle_attack_on_CBC_encryption

nonces, administrators must frequently rotate keys. Since this process requires great care
and diligence, it is a major weakness in AES-GCM. Clusters which use AES-GCM should
instead use KMS, which uses AES-GCM as its underlying encryption algorithm but
automates key rotation. Furthermore, the user-friendly API and documentation of KMS
make it substantially less error prone than manually setting up encryption in Kubernetes
itself.

Kubernetes should depreciate AES-GCM and AES-CBC. Administrators should be instructed
to use KMS or encrypt all sensitive data with Secretbox by default.

Certificates
In order for components within a Kubernetes cluster to prove they are who they say they
are, the kube-apiserver issues each component a cryptographic certificate which proves the
component’s identity. When two components need to communicate, they verify each
other’s certificates before sending any sensitive information. If a node is taken out of a
cluster or is corrupted, administrators need a way to revoke that node’s certificate.
Currently there is no way to accomplish this in Kubernetes . 14

Perhaps the simplest solution to this problem is to have nodes maintain a certificate
revocation list (CRL). This requires all components of the cluster to periodically check with
the kube-apiserver to ensure their CRL is up-to-date. For small clusters this may be
acceptable, but the bandwidth requirements become prohibitive for larger systems. We do
note, however, that this scheme has been implemented in etcd . 15

OCSP stapling would be a more sensible alternative . In this scheme, the kube-apiserver 16

manages a revocation list. When a node needs to verify that a certificate is valid, it sends
the certificate to the kube-apiserver which subsequently sends a signed response
indicating the status of the certificate. This scheme reduces bandwidth and prevents
adversaries from taking advantage of gaps between CRL updates.

HTTPS Connections
The Kubernetes system allows administrators to set up a public key infrastructure (PKI), but
often fails to authenticate TLS connections between components, negating any benefit to
using a PKI. This failure to authenticate components within the system is extremely
dangerous and should be changed to use authenticated HTTPS by default. Lack of
authentication opens up the possibility for malicious entities to trick the cluster into
believing they have privileges they do not. Until this is fixed, administrators need to be

14 Support for managing revoked certs, ​https://github.com/kubernetes/kubernetes/issues/18982
15 Support for managing revoked certs, ​https://github.com/etcd-io/etcd/issues/4034
16 Online Certificate Status Protocol, ​https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 11

https://github.com/kubernetes/kubernetes/issues/18982
https://github.com/etcd-io/etcd/issues/4034
https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

aware that much of their inter-node communications are not authenticated, and they must
manually enable HTTPS in kubelet . 17

17 TLS bootstrapping,
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 12

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-bootstrapping/

Positioning Threat Actors within a Kubernetes cluster
Understanding threat actors and their associated positions is critical to understanding the
risk of any finding: ​who​ can do ​what​ to ​whom​ from​ where​. Kubernetes is a large system, with
many attack surfaces exposed to users only at specific privilege levels. This section of the
white paper focuses on what is exposed to attackers at each level. Our assessment focused
on three main classes of attackers:

● External attackers, who did not have access to the cluster
● Internal attackers, who had transited a trust boundary, such as access to a Pod
● Malicious Internal users, who abuse their privilege within the cluster

Each threat in the threat model or finding in the technical report was rated with these three
attackers and their positions in mind.

Internal and External Network Access
Kubernetes’ components are highly networked: components retrieve configuration from
kube-apiservers via HTTP. kube-apiserver itself retrieves status from components via HTTP
servers which they themselves expose. While the kube-apiserver is protected with strong
authentication and authorization, many other components in the cluster are not. Attackers
with access to the network in an unfiltered capacity may have access to a wide range of
information, including Pod specifications (from kubelet), namespace names, and secrets’
names.

Therefore, Kubernetes must be protected by ancillary network controls. This should ensure
that cluster components are separated from the wider internet and even from themselves.
For example, Pods should rarely if ever need access to the kube-apiserver or etcd, and thus
may be segmented away from those internal components. In contrast, kubelet and
kube-proxy, which may live on the same physical host as a Pod, do need this access. The
cluster as a whole should be protected at the perimeter from unauthenticated user access.
Only direct, service-specific access should be granted to cluster-level hosted services and
Pods.

Within the cluster, care should be paid to restricting egress from core components like
kube-apiserver and from Pods to internal components, such as kubelet or kube-apiserver.
Cutting off internal ingress and egress restrictions and external access to the cluster can
frustrate most network-level attacks, or force an attacker to reach even deeper into a
cluster, requiring the compromise of core hosts or other exposed components.
Additionally, the cluster is not immune to attacks such as ARP poisoning, so normal server
hardening should be taken into account when determining network and host configuration.

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 13

Host Access
Eventually, all items within a cluster, from Pods to Kubernetes’ own components, must run
on a specific host, which may have administrators who are not active in the cluster itself.
For example, a host may have a systems-administration team that handles disk space and
network access, but does not have access to the larger cluster. Kubernetes relies on
functionality on hosts for low-level details; for example, kube-proxy and kubelet make
heavy use of the Linux routing system to accomplish their tasks. Furthermore, several
Kubernetes components rely on Unix Domain Sockets to protect access to sensitive
functionality; attackers with access to hosts could access a wider array of cluster
functionality.

Internal Attackers or Malicious Internal Users with access to a host could impact a number
of cluster components. Kube-proxy makes heavy use of iptables or ipvs for inter-Pod
routing and service connections. An attacker who could change routing tables could route
traffic to other hosts and expose sensitive cluster data to malicious hosts. Additionally,
host-level users with access to privileged accounts could theoretically impact functionality
via Unix Domain Sockets which lack further authentication. Hosts backing cluster
components should never be shared across any other functionality, and should for all
intents and purposes be considered “closed servers,” with minimal ability for host-level
users to login. Furthermore, hosts should adopt all normal hardening measures, ensuring
that Kernel Security Modules (KSMs) and heavy auditing are configured, so as to determine
if and when a malicious user undertook a specific action.

Pod Access
Pods are an abstraction level of containers within a cluster, but do not provide strong
isolation protections by themselves. As Pods run arbitrary user workloads, Internal
Attackers may be able to get an initial foothold through a vulnerable client application.
Likewise, because Pods are scheduled by users of the cluster, a Malicious Internal User may
be able to abuse Kubernetes’ functionality to consume extra resources or create various
“noisy neighbor” problems (wherein a tenant or tenants of a cluster consume far more
resources than other neighbors at a virtual machine or API level, which are difficult to
detect at a higher level) within the cluster. Lastly, Kubernetes does not yet have a strong
sense of multi-tenant isolation. Deciding on a single direction for multi-tenancy will help
foment a set of rules and understandings that may be applied more fully to the threat
profile of a given cluster.

Similarly to host access, Internal Attackers may parlay access to a Pod into wider cluster
access. At the time of this report, Kubernetes mounted default credentials in every Pod; an
Internal Attacker could use these credentials to access other resources within the cluster,
such as the kublet. From there, the Internal Attacker may be able to move laterally

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 14

throughout the cluster to wider access. For cluster administrators, care should be taken
that vulnerable applications and Pods are patched as soon as possible, so that Internal
Attackers may not gain an initial foothold within the cluster. Additionally, audit all
component logs within the system for lateral movement; this should include regular checks
of accesses of cluster components by Pods and other user workloads.

Finally, Malicious Internal Users may abuse functionality within a cluster to consume
resources and cause a denial of service. For example, if a Malicious Internal User can
schedule Pods, not only can they schedule whatever Pod they’d like, including ones with
malicious software, they may simply use an Anti-affinity scheduler to claim whole host
nodes to themselves. Monitoring and auditing the workload of a cluster is a must.
Reviewing the allocation structure of every host is as important as ensuring the correct
kube-scheduler configurations are available to minimize resource hogging.

Cluster Access
The cluster itself has functionality that may be manipulated by Malicious Internal Users.
Kubernetes is architected around a “spoke and wheel” style architecture: components
watch for their resource type from kube-apiserver, and in turn update related resources
within the kube-apiserver, leading to further changes in other components. In terms of
design, the kube-apiserver should be the central arbiter of truth and consistency within a
cluster. However, several components within the system, such as kubelet, allow users with
certain Role-Based Access Control (RBAC) roles to access functionality directly, bypassing
the kube-apiserver.

While kube-apiserver contains logs that reconstruct user actions, individual components do
not by default log with enough granularity to reconstruct a Malicious Internal User’s
actions. Restrict network access even for privileged users to the smallest amount of surface
necessary. If possible, only allow a cluster’s users access to the kube-apiserver itself, as this
will reduce the number of components a Malicious Internal User may be able to
communicate with, and will allow cluster administrators to recreate an attacker’s path via
kube-apiserver alone.

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 15

Recommendations for cluster administrators

Attribute Based Access Controls vs Role Based Access Controls
When comparing the permissions systems, Role-Based Access Controls (RBAC) are heavily
recommended over the use of Attribute-Based Access Controls (ABAC). RBAC may be
configured dynamically while a cluster is operational. In contrast, the static nature of ABAC
can increase the difficulty of ensuring proper deployment and enforcement of controls.

Clusters should not use both ABAC and RBAC. This could grant users unintended
permissions, since if one validation fails, but the other succeeds, the cluster operator will
still be able to perform the action . Administrators who are migrating off of ABAC should 18

be extremely careful of this drawback, as it could allow operators to perform actions they
are not allowed to perform during migration.

RBAC best practices
When interacting with RBAC, it is important to remember that the configuration of
Kubernetes’ components impacts the defined policies. As mentioned in the ​Kubernetes
overview: Abstractions and objects​ section, objects can be composed by referencing
objects that may not yet exist. Additionally, objects can be created even if the component
using the object does not exist. This functionality can be very dangerous when constructing
RBAC policies, since functionality must be tested to ensure the configuration works in the
expected manner. This could lead an administrator to believe that policies are in effect,
when in fact they are not. To avoid this type of mistake, administrators should test to
ensure: that policies defined on the cluster are backed by an appropriate component
configuration, that policies are properly tied to roles, and that the policies properly restrict
behavior.

Node-host configurations and permissions
When configuring a host to run Kubernetes, file permissions should be as restrictive as
possible, especially for the kubelet and control plane components. An attacker with access
to the underlying host (either through a Pod, or direct access) can use certificates, tokens,
and other sensitive information on disk to gain privileged access to the underlying host or
Kubernetes cluster.

Exposed services on the underlying host should be restricted through network policy and
authentication to prevent unauthorized access from a Pod scheduled on a node.
Kubernetes itself is composed of various components which expose themselves as services

18 RBAC Support in Kubernetes, ​https://kubernetes.io/blog/2017/04/rbac-support-in-kubernetes/

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 16

https://kubernetes.io/blog/2017/04/rbac-support-in-kubernetes/

on the underlying host to facilitate bidirectional communications. Because of this, it is
important to ensure that appropriate authentication and access controls are in place for
the cluster nodes, since an attacker with network access to a single node could use
Kubernetes components to compromise other nodes.

Default settings and backwards compatibility
Kubernetes contains many default settings which negatively impact the security posture of
a cluster. These settings also have conflicting usage semantics, where some use either
opt-in or opt-out specifications. The conflicting usage generally boils down to the
preservation of backwards compatibility for both workload and component configurations.
Ensuring appropriate configuration of all options requires significant attention by cluster
administrators and operators.

Cluster operators and administrators must ensure component and workload settings can
be rapidly changed and redeployed in the event of compromise or required update.
Furthermore, post-deployment tests of both workloads and components should account
for the presence of opt-in and opt-out settings to ensure implicit configuration has not
occurred.

Networking
Due to the complexity of Kubernetes networking and the impact a container-networking
interface has on a cluster’s network requirements, it is difficult to provide specific
recommendations suitable for all use cases. However, there are general guidelines that can
be followed across these different configurations.

Proper segmentation and isolation rules of the underlying cluster hosts should be defined.
Hosts tasked with executing control-plane components should be isolated to the greatest
extent possible. Any interactions with control-plane components should be whitelisted
explicitly. Next, hosts tasked with executing cluster workloads (kubelet nodes) should be as
segmented as possible. While workloads may make host segmentation difficult due to
service-discovery and -availability requirements, it is recommended to ensure host firewalls
adequately restrict all network access regardless of the cluster workloads. Finally, ensure
the container network interface is as restrictive as possible through the definition of cluster
network policies.

Environment considerations
The environment a cluster is operated in affects the security considerations that must be
made. Kubernetes contains many features which depend on cloud environments, such as
load balancers and persistent volumes. These features directly impact resources which
could be external to the hosted cluster within the operating environment. Conversely, the

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 17

security of these resources directly impacts the cluster itself. If one of these environment
resources (e.g. a persistent volume) is compromised and the cluster uses this resource, an
attacker could use this functionality to pivot into the cluster.

As a whole, it is recommended that the security of a cluster’s operating environment is
addressed. If a cluster is hosted on a cloud provider, administrators should ensure that
best-practice hardening rules are implemented. Furthermore, administrators should audit
the access controls applied to cloud resources created and used by a cluster. Resources
shared across an operating environment should be monitored closely.

Logging and alerting
Kubernetes can run in many environments, including those where underlying cluster hosts
for worker nodes are ephemeral. Furthermore, a cluster can facilitate ephemeral
workloads. Centralized logging of both workload and cluster host logs is recommended to
enable debugging and event reconstruction.

The security of centralized logs and their corresponding alerts is extremely important.
Depending on the logging levels used for components and workloads, it is possible for
sensitive information to be disclosed through logs. Limit access to these logs, and make a
best effort to filter sensitive information from logs.

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 18

Recommendations for developers

Avoid hardcoding paths to dependencies
Hardcoding paths to external resources or dependencies, especially for large, long-living
projects like Kubernetes is problematic. A path change in a dependency can go unnoticed
in the future, especially if the code using the path is rarely used or when there is a fallback
mechanism.

An example can be seen in Kubernetes' kubelet process, where a dependency on
hardcoded paths for PID files led to a race condition which could allow an attacker to
escalate privileges. These hardcoded PID file paths were intended to be used to retrieve the
PID of a running process. When they weren’t found, it fell back to an insecure version of
finding processes’ PIDs by traversing the ​/proc​ directory and checking for a process name.
This made it possible for an unprivileged user to spoof a process and potentially get more
privileged access to devices (see findings TOB-K8S-21 and TOB-K8S-22 in the ​Kubernetes
Security Assessment​).

It is important to be conservative and cautious when handling external paths. Users should
be warned if a path was not found, and have an option to specify it through a configuration
variable.

Testing all hardcoded paths during end-to-end tests and carefully reasoning about cases
where they might be different is recommended. Centralization of operator path
configurations should be considered. This could reduce operator error, since path
configuration would be less disparate.

File permissions checking
To configure components of Kubernetes, configuration files must often reside on disk.
Furthermore, many of these configuration files contain sensitive information which, if an
attacker is able to gain access to, could allow for privilege escalation on the host or cluster.
Kubernetes currently does not enforce minimum file permissions to prevent this. It is
recommended that Kubernetes support the ability to perform file permissions checking,
and enable this feature by default. This will help prevent common file permissions
misconfigurations and help promote more secure practices.

Monitoring processes on Linux
A Linux process can be uniquely identified in the user-space via a process identifier or PID.
A given PID will point to a given process as long as the process is alive. If it dies, the PID can

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 19

be reused by another spawned process. PIDs are usually assigned incrementally skipping
already taken PIDs. When they reach a maximum number they overflow and start back
from 0. The maximum PID number is defined in ​/proc/sys/kernel/pid_max​ file on Linux.
It is usually set to 32768.

Process properties can be read and sometimes modified through the “proc” virtual
filesystem which contains a directory for each PID. Those directories contain significant
process metadata, such as links to the path name of the executed command, its current
working directory, environment variables, opened files and sockets, security attributes,
memory mappings and much more.

When using the “proc” virtual filesystem, it can be easy to make incorrect assumptions
about expected behaviour and errors. For example if the process binary is located in a very
long path, one can read the binary file via ​/proc/<pid>/exe​ but a readlink of it will result in
an ​ENAMETOOLONG​ error. Furthermore, when the binary itself has been deleted, it is still
possible to read its content via reading the file the link points to, but it’s readlink will return
the old path concatenated with a “(deleted)” string.

It’s also important to note that PIDs are not process handles. They can’t be operated on
directly like file descriptors. When reading multiple files from ​/proc/<pid>/​ it is important
to first grab a ​/proc/<pid>/​ directory stream or file descriptor, and then access files
through it. This prevents a race condition where a PID could be reused by another process
between reading two files from ​/proc/<pid>/​ for a given PID. This is the result of an open
directory stream pointing to the inode of the old process ​/proc/<pid>​ directory, while the
new process ​/proc/<pid>​ will have a new inode.

Moving processes to a cgroup
A process and its threads can be moved to a v1 cgroup on Linux systems by writing the 19

process’s PID to ​/sys/fs/cgroup/<controller>/<control group>/cgroup.procs​.
Because this solution also uses PIDs, it is also vulnerable to race conditions. When moving a
given process to less restricted cgroup it is necessary to validate that the process is the
correct process after performing the movement.

Future cgroup considerations for Kubernetes
Both Kubernetes and the components it uses (runc, Docker) have no support for cgroups
v2 . While this is currently not an issue as most current Linux systems come with support 20

19 Control Group v1 documentation,
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
20 Control Group v2 documentation, ​https://www.kernel.org/doc/Documentation/cgroup-v2.txt

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 20

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

for both cgroups v1 and v2 by default, it would be good to track this topic as it might 21

change in the future.

Future process handling considerations for Kubernetes
While the exact future of handling processes (or threads) on Linux is yet to be determined,
tracking and participating in it’s development is recommended. There are currently efforts
to implement a “PIDFD,” a race-free process descriptor . The main goal is to send 22 23 24

signals to processes in a race-free fashion.

Best practices for spawning processes
Many CLI programs support passing both optional and positional arguments. When
passing them programmatically it is important to be cautious with spawning them via a
shell, as this could let an attacker use the shell’s glob patterns or exploit expansions. Go
mitigates this by the fact that the ​exec​ package does not invoke shell directly to launch a
process . 25

However, there is still room for programmer error by letting users pass an optional
argument in the place of a positional argument. As an example, when we invoke ​ls DIR
and the DIR is user controlled, the user can pass either a file, directory name, or an optional
argument such as ​--help​. The latter might have tremendous consequences in some
programs. Examples of this abuse include in ​tar​, ​chown​, ​chmod​ or ​rsync . 26

In most situations these problems can be mitigated by passing “​--​” after specifying all
desired optional arguments. The “- -” is an argument supported by most parsing libraries,
informing them to stop parsing optional arguments. As a result, an invocation of “​ls --
--help​” will list a file or directory named “​--help​”.

Although the “--” mitigation can work in many cases, there are programs that do manual
parsing instead of using tested libraries that support “- -”. Therefore, it is recommended to
always check whether a given program supports “- -”. If it doesn’t, add additional validation
to the positional parameters passed from user input.

21 "cgroupv2: Linux’s new unified control group system",
https://chrisdown.name/2017/03/01/cgroupv2-linux-new-cgroup-hierarchy.html
22 Towards race free process signaling, ​https://lwn.net/Articles/773459/
23 Race-free pidfd access example
https://github.com/torvalds/linux/commit/43c6afee48d4d866d5eb984d3a5dbbc7d9b4e7bf
24 Pidfds: Process file descriptors on Linux
https://kernel-recipes.org/en/2019/talks/pidfds-process-file-descriptors-on-linux/
25 Golang docs: exec package overview, ​https://golang.org/pkg/os/exec/
26 Back To The Future: Unix Wildcards Gone Wild,
https://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt

© 2019 ​Trail of Bits Kubernetes Assessment White Paper | 21

https://chrisdown.name/2017/03/01/cgroupv2-linux-new-cgroup-hierarchy.html
https://lwn.net/Articles/773459/
https://github.com/torvalds/linux/commit/43c6afee48d4d866d5eb984d3a5dbbc7d9b4e7bf
https://kernel-recipes.org/en/2019/talks/pidfds-process-file-descriptors-on-linux/
https://golang.org/pkg/os/exec/
https://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt

