Update with structure format for README.md

This commit is contained in:
Jayesh Mahajan 2025-05-27 19:20:46 -04:00 committed by GitHub
parent ea6121e61c
commit 01cf1c41cf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 141 additions and 16 deletions

View File

@ -1,23 +1,74 @@
# TensorFlow Model Serving on Kubernetes
To expose this externally, ensure you have an Ingress Controller installed (e.g., NGINX).
## 🎯 Purpose / What You'll Learn
Adjust the host value in ingress.yaml to match your domain or use a LoadBalancer for direct access instead of Ingress.
This example demonstrates how to deploy a TensorFlow model for inference using [TensorFlow Serving](https://www.tensorflow.org/tfx/serving) on Kubernetes. Youll learn how to:
For basic testing:
```
curl -X POST http://<ingress-host>/tf/v1/models/my_model:predict -d '{ "instances": [[1.0, 2.0, 5.0]] }'
- Set up TensorFlow Serving with a pre-trained model
- Use a PersistentVolume to mount your model directory
- Expose the inference endpoint using a Kubernetes `Service` and `Ingress`
- Send a sample prediction request to the model
---
## 📚 Table of Contents
- [Prerequisites](#prerequisites)
- [Quick Start / TL;DR](#quick-start--tldr)
- [Detailed Steps & Explanation](#detailed-steps--explanation)
- [Verification / Seeing it Work](#verification--seeing-it-work)
- [Configuration Customization](#configuration-customization)
- [Cleanup](#cleanup)
- [Further Reading / Next Steps](#further-reading--next-steps)
---
## ⚙️ Prerequisites
- Kubernetes cluster (tested with v1.29+)
- `kubectl` configured
- Optional: `ingress-nginx` for external access
- x86-based machine (for running TensorFlow Serving image)
- Local hostPath support (for demo) or a cloud-based PVC
---
## ⚡ Quick Start / TL;DR
```bash
# Create demo model directory
mkdir -p /mnt/models/my_model/1
wget https://storage.googleapis.com/tf-serving-models/resnet_v2.tar.gz
tar -xzvf resnet_v2.tar.gz -C /mnt/models/my_model/1 --strip-components=1
# Apply manifests
kubectl apply -f pvc.yaml
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
kubectl apply -f ingress.yaml # Optional
```
PVC
---
⚠️ Note: You must create a PersistentVolumeClaim named my-model-pvc that points to the directory where your SavedModel is stored (/models/my_model/1/saved_model.pb).
## 🧩 Detailed Steps & Explanation
📌 For demo/testing purposes, this uses a hostPath volume — useful for single-node clusters (like Minikube or KIND).
Replace hostPath with a cloud volume (e.g., GCP PD, AWS EBS, NFS, etc.) in production environments.
### 1. PersistentVolume & PVC Setup
Directory Structure on Node (/mnt/models/my_model/)
Your model directory (mounted on the node at /mnt/models/my_model/) should look like this:
> ⚠️ Note: For local testing, `hostPath` is used to mount `/mnt/models/my_model`. In production, replace this with a cloud-native storage backend (e.g., AWS EBS, GCP PD, or NFS).
```yaml
# pvc.yaml (example snippet)
apiVersion: v1
kind: PersistentVolume
metadata:
name: my-model-pv
spec:
hostPath:
path: /mnt/models/my_model
...
```
Model folder structure:
```
/mnt/models/my_model/
└── 1/
@ -25,11 +76,85 @@ Your model directory (mounted on the node at /mnt/models/my_model/) should look
└── variables/
```
✅ How to Load a Demo Model (if using local clusters)
```
mkdir -p /mnt/models/my_model/1
wget https://storage.googleapis.com/tf-serving-models/resnet_v2.tar.gz
tar -xzvf resnet_v2.tar.gz -C /mnt/models/my_model/1 --strip-components=1
---
### 2. Deploy TensorFlow Serving
```yaml
# deployment.yaml (example snippet)
containers:
- name: tf-serving
image: tensorflow/serving:2.13.0
args:
- --model_name=my_model
- --model_base_path=/models/my_model
volumeMounts:
- name: model-volume
mountPath: /models/my_model
```
---
### 3. Expose the Service
- A `ClusterIP` service exposes gRPC (8500) and REST (8501).
- An optional `Ingress` exposes `/tf/v1/models/my_model:predict` to external clients.
Update the `host` value in `ingress.yaml` to match your domain.
---
## ✅ Verification / Seeing it Work
If using ingress:
```bash
curl -X POST http://<ingress-host>/tf/v1/models/my_model:predict \
-H "Content-Type: application/json" \
-d '{ "instances": [[1.0, 2.0, 5.0]] }'
```
Expected output:
```json
{
"predictions": [...]
}
```
To verify the pod is running:
```bash
kubectl get pods
kubectl logs <tf-serving-pod-name>
```
---
## 🛠️ Configuration Customization
- Update `model_name` and `model_base_path` in the deployment
- Replace `hostPath` with `PersistentVolumeClaim` bound to cloud storage
- Modify resource requests/limits for TensorFlow container
---
## 🧹 Cleanup
```bash
kubectl delete -f ingress.yaml
kubectl delete -f service.yaml
kubectl delete -f deployment.yaml
kubectl delete -f pvc.yaml
```
---
## 📘 Further Reading / Next Steps
- [TensorFlow Serving](https://www.tensorflow.org/tfx/serving)
- [TF Serving REST API Reference](https://www.tensorflow.org/tfx/serving/api_rest)
- [Kubernetes Ingress Controller](https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/)
- [Persistent Volumes](https://kubernetes.io/docs/concepts/storage/persistent-volumes/)