AI Example model serving tensorflow (#563)
* Create AI Example model serving tensorflow * ai/model-serving-tensorflow service.yaml * ai/model-serving-tensorflow ingress.yaml * ai/model-serving-tensorflow pv.yaml * ai/model-serving-tensorflow pvc.yaml * Create Readme.md * Rename Readme.md to README.md * Update with structure format for README.md * Correct link for serving in ai/model-serving-tensorflow/README.md Co-authored-by: Janet Kuo <chiachenk@google.com> * Fix kubectl README.md * Update README.md * Update as per comments README.md * Update tensorflow/serving:2.19.0 deployment.yaml * remove hostname ai/model-serving-tensorflow/ingress.yaml --------- Co-authored-by: Janet Kuo <chiachenk@google.com>
This commit is contained in:
parent
209452cc17
commit
0598f0762a
|
@ -0,0 +1,132 @@
|
|||
# TensorFlow Model Serving on Kubernetes
|
||||
|
||||
## 1 Purpose / What You'll Learn
|
||||
|
||||
This example demonstrates how to deploy a TensorFlow model for inference using [TensorFlow Serving](https://www.tensorflow.org/serving) on Kubernetes. You’ll learn how to:
|
||||
|
||||
- Set up TensorFlow Serving with a pre-trained model
|
||||
- Use a PersistentVolume to mount your model directory
|
||||
- Expose the inference endpoint using a Kubernetes `Service` and `Ingress`
|
||||
- Send a sample prediction request to the model
|
||||
|
||||
---
|
||||
|
||||
## 📚 Table of Contents
|
||||
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Quick Start / TL;DR](#quick-start--tldr)
|
||||
- [Detailed Steps & Explanation](#detailed-steps--explanation)
|
||||
- [Verification / Seeing it Work](#verification--seeing-it-work)
|
||||
- [Configuration Customization](#configuration-customization)
|
||||
- [Cleanup](#cleanup)
|
||||
- [Further Reading / Next Steps](#further-reading--next-steps)
|
||||
|
||||
---
|
||||
|
||||
## ⚙️ Prerequisites
|
||||
|
||||
- Kubernetes cluster (tested with v1.29+)
|
||||
- `kubectl` configured
|
||||
- Optional: `ingress-nginx` for external access
|
||||
- x86-based machine (for running TensorFlow Serving image)
|
||||
- Local hostPath support (for demo) or a cloud-based PVC
|
||||
|
||||
---
|
||||
|
||||
## ⚡ Quick Start / TL;DR
|
||||
|
||||
```bash
|
||||
|
||||
# Apply manifests
|
||||
kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/pv.yaml
|
||||
kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/pvc.yaml
|
||||
kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/deployment.yaml
|
||||
kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/service.yaml
|
||||
kubectl apply -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/ingress.yaml # Optional
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 2. Expose the Servic
|
||||
|
||||
### 1. PersistentVolume & PVC Setup
|
||||
|
||||
> ⚠️ Note: For local testing, `hostPath` is used to mount `/mnt/models/my_model`. In production, replace this with a cloud-native storage backend (e.g., AWS EBS, GCP PD, or NFS).
|
||||
|
||||
|
||||
Model folder structure:
|
||||
```
|
||||
/mnt/models/my_model/
|
||||
└── 1/
|
||||
├── saved_model.pb
|
||||
└── variables/
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
### 2. Expose the Service
|
||||
|
||||
- A `ClusterIP` service exposes gRPC (8500) and REST (8501).
|
||||
- An optional `Ingress` exposes `/tf/v1/models/my_model:predict` to external clients.
|
||||
|
||||
Update the `host` value in `ingress.yaml` to match your domain.
|
||||
|
||||
---
|
||||
|
||||
## 3 Verification / Seeing it Work
|
||||
|
||||
If using ingress:
|
||||
|
||||
```bash
|
||||
curl -X POST http://<ingress-host>/tf/v1/models/my_model:predict \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{ "instances": [[1.0, 2.0, 5.0]] }'
|
||||
```
|
||||
|
||||
Expected output:
|
||||
|
||||
```json
|
||||
{
|
||||
"predictions": [...]
|
||||
}
|
||||
```
|
||||
|
||||
To verify the pod is running:
|
||||
|
||||
```bash
|
||||
kubectl get pods
|
||||
kubectl wait --for=condition=Available deployment/tf-serving --timeout=300s
|
||||
kubectl logs deployment/tf-serving
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🛠️ Configuration Customization
|
||||
|
||||
- Update `model_name` and `model_base_path` in the deployment
|
||||
- Replace `hostPath` with `PersistentVolumeClaim` bound to cloud storage
|
||||
- Modify resource requests/limits for TensorFlow container
|
||||
|
||||
---
|
||||
|
||||
## 🧹 Cleanup
|
||||
|
||||
```bash
|
||||
kubectl delete -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/ingress.yaml # Optional
|
||||
kubectl delete -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/service.yaml
|
||||
kubectl delete -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/deployment.yaml
|
||||
kubectl delete -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/pvc.yaml
|
||||
kubectl delete -f https://raw.githubusercontent.com/kubernetes/examples/refs/heads/master/ai/model-serving-tensorflow/pv.yaml
|
||||
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 4 Further Reading / Next Steps
|
||||
|
||||
- [TensorFlow Serving](https://www.tensorflow.org/tfx/serving)
|
||||
- [TF Serving REST API Reference](https://www.tensorflow.org/tfx/serving/api_rest)
|
||||
- [Kubernetes Ingress Controller](https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/)
|
||||
- [Persistent Volumes](https://kubernetes.io/docs/concepts/storage/persistent-volumes/)
|
||||
|
||||
|
|
@ -0,0 +1,34 @@
|
|||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: tf-serving
|
||||
labels:
|
||||
app: tf-serving
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app: tf-serving
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: tf-serving
|
||||
spec:
|
||||
containers:
|
||||
- name: tensorflow-serving
|
||||
image: tensorflow/serving:2.19.0
|
||||
args:
|
||||
- "--model_name=my_model"
|
||||
- "--port=8500"
|
||||
- "--rest_api_port=8501"
|
||||
- "--model_base_path=/models/my_model"
|
||||
ports:
|
||||
- containerPort: 8500 # gRPC
|
||||
- containerPort: 8501 # REST
|
||||
volumeMounts:
|
||||
- name: model-volume
|
||||
mountPath: /models/my_model
|
||||
volumes:
|
||||
- name: model-volume
|
||||
persistentVolumeClaim:
|
||||
claimName: my-model-pvc
|
|
@ -0,0 +1,17 @@
|
|||
apiVersion: networking.k8s.io/v1
|
||||
kind: Ingress
|
||||
metadata:
|
||||
name: tf-serving-ingress
|
||||
annotations:
|
||||
nginx.ingress.kubernetes.io/rewrite-target: /$2
|
||||
spec:
|
||||
rules:
|
||||
- http:
|
||||
paths:
|
||||
- path: /tf(/|$)(.*)
|
||||
pathType: Prefix
|
||||
backend:
|
||||
service:
|
||||
name: tf-serving
|
||||
port:
|
||||
number: 8501
|
|
@ -0,0 +1,12 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolume
|
||||
metadata:
|
||||
name: my-model-pv
|
||||
spec:
|
||||
capacity:
|
||||
storage: 1Gi
|
||||
accessModes:
|
||||
- ReadOnlyMany
|
||||
persistentVolumeReclaimPolicy: Retain
|
||||
hostPath:
|
||||
path: /mnt/models/my_model
|
|
@ -0,0 +1,11 @@
|
|||
apiVersion: v1
|
||||
kind: PersistentVolumeClaim
|
||||
metadata:
|
||||
name: my-model-pvc
|
||||
spec:
|
||||
accessModes:
|
||||
- ReadOnlyMany
|
||||
resources:
|
||||
requests:
|
||||
storage: 1Gi
|
||||
volumeName: my-model-pv
|
|
@ -0,0 +1,15 @@
|
|||
apiVersion: v1
|
||||
kind: Service
|
||||
metadata:
|
||||
name: tf-serving
|
||||
spec:
|
||||
selector:
|
||||
app: tf-serving
|
||||
ports:
|
||||
- name: grpc
|
||||
port: 8500
|
||||
targetPort: 8500
|
||||
- name: rest
|
||||
port: 8501
|
||||
targetPort: 8501
|
||||
type: ClusterIP
|
Loading…
Reference in New Issue