More missing deps

This commit is contained in:
Justin Santa Barbara 2016-07-27 00:04:17 -04:00
parent 68076b4f01
commit 17709f212a
117 changed files with 28520 additions and 0 deletions

15
.gitmodules vendored
View File

@ -160,3 +160,18 @@
[submodule "_vendor/golang.org/x/sys"]
path = _vendor/golang.org/x/sys
url = https://github.com/golang/sys/
[submodule "_vendor/github.com/BurntSushi/toml"]
path = _vendor/github.com/BurntSushi/toml
url = https://github.com/BurntSushi/toml
[submodule "_vendor/github.com/kr/fs"]
path = _vendor/github.com/kr/fs
url = https://github.com/kr/fs
[submodule "_vendor/github.com/magiconair/properties"]
path = _vendor/github.com/magiconair/properties
url = https://github.com/magiconair/properties
[submodule "_vendor/github.com/mitchellh/mapstructure"]
path = _vendor/github.com/mitchellh/mapstructure
url = https://github.com/mitchellh/mapstructure
[submodule "_vendor/gopkg.in/yaml.v2"]
path = _vendor/gopkg.in/yaml.v2
url = https://github.com/go-yaml/yaml

1
_vendor/github.com/BurntSushi/toml generated Submodule

@ -0,0 +1 @@
Subproject commit 99064174e013895bbd9b025c31100bd1d9b590ca

1
_vendor/github.com/kr/fs generated Submodule

@ -0,0 +1 @@
Subproject commit 2788f0dbd16903de03cb8186e5c7d97b69ad387b

@ -0,0 +1 @@
Subproject commit b3f6dd549956e8a61ea4a686a1c02a33d5bdda4b

@ -0,0 +1 @@
Subproject commit 21a35fb16463dfb7c8eee579c65d995d95e64d1e

1
_vendor/gopkg.in/yaml.v2 generated Submodule

@ -0,0 +1 @@
Subproject commit e4d366fc3c7938e2958e662b4258c7a89e1f0e3e

5
vendor/github.com/BurntSushi/toml/.gitignore generated vendored Normal file
View File

@ -0,0 +1,5 @@
TAGS
tags
.*.swp
tomlcheck/tomlcheck
toml.test

15
vendor/github.com/BurntSushi/toml/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,15 @@
language: go
go:
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- tip
install:
- go install ./...
- go get github.com/BurntSushi/toml-test
script:
- export PATH="$PATH:$HOME/gopath/bin"
- make test

3
vendor/github.com/BurntSushi/toml/COMPATIBLE generated vendored Normal file
View File

@ -0,0 +1,3 @@
Compatible with TOML version
[v0.2.0](https://github.com/mojombo/toml/blob/master/versions/toml-v0.2.0.md)

14
vendor/github.com/BurntSushi/toml/COPYING generated vendored Normal file
View File

@ -0,0 +1,14 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

19
vendor/github.com/BurntSushi/toml/Makefile generated vendored Normal file
View File

@ -0,0 +1,19 @@
install:
go install ./...
test: install
go test -v
toml-test toml-test-decoder
toml-test -encoder toml-test-encoder
fmt:
gofmt -w *.go */*.go
colcheck *.go */*.go
tags:
find ./ -name '*.go' -print0 | xargs -0 gotags > TAGS
push:
git push origin master
git push github master

220
vendor/github.com/BurntSushi/toml/README.md generated vendored Normal file
View File

@ -0,0 +1,220 @@
## TOML parser and encoder for Go with reflection
TOML stands for Tom's Obvious, Minimal Language. This Go package provides a
reflection interface similar to Go's standard library `json` and `xml`
packages. This package also supports the `encoding.TextUnmarshaler` and
`encoding.TextMarshaler` interfaces so that you can define custom data
representations. (There is an example of this below.)
Spec: https://github.com/mojombo/toml
Compatible with TOML version
[v0.2.0](https://github.com/toml-lang/toml/blob/master/versions/en/toml-v0.2.0.md)
Documentation: http://godoc.org/github.com/BurntSushi/toml
Installation:
```bash
go get github.com/BurntSushi/toml
```
Try the toml validator:
```bash
go get github.com/BurntSushi/toml/cmd/tomlv
tomlv some-toml-file.toml
```
[![Build status](https://api.travis-ci.org/BurntSushi/toml.png)](https://travis-ci.org/BurntSushi/toml)
### Testing
This package passes all tests in
[toml-test](https://github.com/BurntSushi/toml-test) for both the decoder
and the encoder.
### Examples
This package works similarly to how the Go standard library handles `XML`
and `JSON`. Namely, data is loaded into Go values via reflection.
For the simplest example, consider some TOML file as just a list of keys
and values:
```toml
Age = 25
Cats = [ "Cauchy", "Plato" ]
Pi = 3.14
Perfection = [ 6, 28, 496, 8128 ]
DOB = 1987-07-05T05:45:00Z
```
Which could be defined in Go as:
```go
type Config struct {
Age int
Cats []string
Pi float64
Perfection []int
DOB time.Time // requires `import time`
}
```
And then decoded with:
```go
var conf Config
if _, err := toml.Decode(tomlData, &conf); err != nil {
// handle error
}
```
You can also use struct tags if your struct field name doesn't map to a TOML
key value directly:
```toml
some_key_NAME = "wat"
```
```go
type TOML struct {
ObscureKey string `toml:"some_key_NAME"`
}
```
### Using the `encoding.TextUnmarshaler` interface
Here's an example that automatically parses duration strings into
`time.Duration` values:
```toml
[[song]]
name = "Thunder Road"
duration = "4m49s"
[[song]]
name = "Stairway to Heaven"
duration = "8m03s"
```
Which can be decoded with:
```go
type song struct {
Name string
Duration duration
}
type songs struct {
Song []song
}
var favorites songs
if _, err := toml.Decode(blob, &favorites); err != nil {
log.Fatal(err)
}
for _, s := range favorites.Song {
fmt.Printf("%s (%s)\n", s.Name, s.Duration)
}
```
And you'll also need a `duration` type that satisfies the
`encoding.TextUnmarshaler` interface:
```go
type duration struct {
time.Duration
}
func (d *duration) UnmarshalText(text []byte) error {
var err error
d.Duration, err = time.ParseDuration(string(text))
return err
}
```
### More complex usage
Here's an example of how to load the example from the official spec page:
```toml
# This is a TOML document. Boom.
title = "TOML Example"
[owner]
name = "Tom Preston-Werner"
organization = "GitHub"
bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
dob = 1979-05-27T07:32:00Z # First class dates? Why not?
[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true
[servers]
# You can indent as you please. Tabs or spaces. TOML don't care.
[servers.alpha]
ip = "10.0.0.1"
dc = "eqdc10"
[servers.beta]
ip = "10.0.0.2"
dc = "eqdc10"
[clients]
data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it
# Line breaks are OK when inside arrays
hosts = [
"alpha",
"omega"
]
```
And the corresponding Go types are:
```go
type tomlConfig struct {
Title string
Owner ownerInfo
DB database `toml:"database"`
Servers map[string]server
Clients clients
}
type ownerInfo struct {
Name string
Org string `toml:"organization"`
Bio string
DOB time.Time
}
type database struct {
Server string
Ports []int
ConnMax int `toml:"connection_max"`
Enabled bool
}
type server struct {
IP string
DC string
}
type clients struct {
Data [][]interface{}
Hosts []string
}
```
Note that a case insensitive match will be tried if an exact match can't be
found.
A working example of the above can be found in `_examples/example.{go,toml}`.

61
vendor/github.com/BurntSushi/toml/_examples/example.go generated vendored Normal file
View File

@ -0,0 +1,61 @@
package main
import (
"fmt"
"time"
"github.com/BurntSushi/toml"
)
type tomlConfig struct {
Title string
Owner ownerInfo
DB database `toml:"database"`
Servers map[string]server
Clients clients
}
type ownerInfo struct {
Name string
Org string `toml:"organization"`
Bio string
DOB time.Time
}
type database struct {
Server string
Ports []int
ConnMax int `toml:"connection_max"`
Enabled bool
}
type server struct {
IP string
DC string
}
type clients struct {
Data [][]interface{}
Hosts []string
}
func main() {
var config tomlConfig
if _, err := toml.DecodeFile("example.toml", &config); err != nil {
fmt.Println(err)
return
}
fmt.Printf("Title: %s\n", config.Title)
fmt.Printf("Owner: %s (%s, %s), Born: %s\n",
config.Owner.Name, config.Owner.Org, config.Owner.Bio,
config.Owner.DOB)
fmt.Printf("Database: %s %v (Max conn. %d), Enabled? %v\n",
config.DB.Server, config.DB.Ports, config.DB.ConnMax,
config.DB.Enabled)
for serverName, server := range config.Servers {
fmt.Printf("Server: %s (%s, %s)\n", serverName, server.IP, server.DC)
}
fmt.Printf("Client data: %v\n", config.Clients.Data)
fmt.Printf("Client hosts: %v\n", config.Clients.Hosts)
}

View File

@ -0,0 +1,35 @@
# This is a TOML document. Boom.
title = "TOML Example"
[owner]
name = "Tom Preston-Werner"
organization = "GitHub"
bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
dob = 1979-05-27T07:32:00Z # First class dates? Why not?
[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true
[servers]
# You can indent as you please. Tabs or spaces. TOML don't care.
[servers.alpha]
ip = "10.0.0.1"
dc = "eqdc10"
[servers.beta]
ip = "10.0.0.2"
dc = "eqdc10"
[clients]
data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it
# Line breaks are OK when inside arrays
hosts = [
"alpha",
"omega"
]

22
vendor/github.com/BurntSushi/toml/_examples/hard.toml generated vendored Normal file
View File

@ -0,0 +1,22 @@
# Test file for TOML
# Only this one tries to emulate a TOML file written by a user of the kind of parser writers probably hate
# This part you'll really hate
[the]
test_string = "You'll hate me after this - #" # " Annoying, isn't it?
[the.hard]
test_array = [ "] ", " # "] # ] There you go, parse this!
test_array2 = [ "Test #11 ]proved that", "Experiment #9 was a success" ]
# You didn't think it'd as easy as chucking out the last #, did you?
another_test_string = " Same thing, but with a string #"
harder_test_string = " And when \"'s are in the string, along with # \"" # "and comments are there too"
# Things will get harder
[the.hard.bit#]
what? = "You don't think some user won't do that?"
multi_line_array = [
"]",
# ] Oh yes I did
]

View File

@ -0,0 +1,4 @@
# [x] you
# [x.y] don't
# [x.y.z] need these
[x.y.z.w] # for this to work

View File

@ -0,0 +1,6 @@
# DO NOT WANT
[fruit]
type = "apple"
[fruit.type]
apple = "yes"

View File

@ -0,0 +1,35 @@
# This is an INVALID TOML document. Boom.
# Can you spot the error without help?
title = "TOML Example"
[owner]
name = "Tom Preston-Werner"
organization = "GitHub"
bio = "GitHub Cofounder & CEO\nLikes tater tots and beer."
dob = 1979-05-27T7:32:00Z # First class dates? Why not?
[database]
server = "192.168.1.1"
ports = [ 8001, 8001, 8002 ]
connection_max = 5000
enabled = true
[servers]
# You can indent as you please. Tabs or spaces. TOML don't care.
[servers.alpha]
ip = "10.0.0.1"
dc = "eqdc10"
[servers.beta]
ip = "10.0.0.2"
dc = "eqdc10"
[clients]
data = [ ["gamma", "delta"], [1, 2] ] # just an update to make sure parsers support it
# Line breaks are OK when inside arrays
hosts = [
"alpha",
"omega"
]

View File

@ -0,0 +1,5 @@
Age = 25
Cats = [ "Cauchy", "Plato" ]
Pi = 3.14
Perfection = [ 6, 28, 496, 8128 ]
DOB = 1987-07-05T05:45:00Z

View File

@ -0,0 +1 @@
some_key_NAME = "wat"

View File

@ -0,0 +1,14 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

View File

@ -0,0 +1,14 @@
# Implements the TOML test suite interface
This is an implementation of the interface expected by
[toml-test](https://github.com/BurntSushi/toml-test) for my
[toml parser written in Go](https://github.com/BurntSushi/toml).
In particular, it maps TOML data on `stdin` to a JSON format on `stdout`.
Compatible with TOML version
[v0.2.0](https://github.com/mojombo/toml/blob/master/versions/toml-v0.2.0.md)
Compatible with `toml-test` version
[v0.2.0](https://github.com/BurntSushi/toml-test/tree/v0.2.0)

View File

@ -0,0 +1,90 @@
// Command toml-test-decoder satisfies the toml-test interface for testing
// TOML decoders. Namely, it accepts TOML on stdin and outputs JSON on stdout.
package main
import (
"encoding/json"
"flag"
"fmt"
"log"
"os"
"path"
"time"
"github.com/BurntSushi/toml"
)
func init() {
log.SetFlags(0)
flag.Usage = usage
flag.Parse()
}
func usage() {
log.Printf("Usage: %s < toml-file\n", path.Base(os.Args[0]))
flag.PrintDefaults()
os.Exit(1)
}
func main() {
if flag.NArg() != 0 {
flag.Usage()
}
var tmp interface{}
if _, err := toml.DecodeReader(os.Stdin, &tmp); err != nil {
log.Fatalf("Error decoding TOML: %s", err)
}
typedTmp := translate(tmp)
if err := json.NewEncoder(os.Stdout).Encode(typedTmp); err != nil {
log.Fatalf("Error encoding JSON: %s", err)
}
}
func translate(tomlData interface{}) interface{} {
switch orig := tomlData.(type) {
case map[string]interface{}:
typed := make(map[string]interface{}, len(orig))
for k, v := range orig {
typed[k] = translate(v)
}
return typed
case []map[string]interface{}:
typed := make([]map[string]interface{}, len(orig))
for i, v := range orig {
typed[i] = translate(v).(map[string]interface{})
}
return typed
case []interface{}:
typed := make([]interface{}, len(orig))
for i, v := range orig {
typed[i] = translate(v)
}
// We don't really need to tag arrays, but let's be future proof.
// (If TOML ever supports tuples, we'll need this.)
return tag("array", typed)
case time.Time:
return tag("datetime", orig.Format("2006-01-02T15:04:05Z"))
case bool:
return tag("bool", fmt.Sprintf("%v", orig))
case int64:
return tag("integer", fmt.Sprintf("%d", orig))
case float64:
return tag("float", fmt.Sprintf("%v", orig))
case string:
return tag("string", orig)
}
panic(fmt.Sprintf("Unknown type: %T", tomlData))
}
func tag(typeName string, data interface{}) map[string]interface{} {
return map[string]interface{}{
"type": typeName,
"value": data,
}
}

View File

@ -0,0 +1,14 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

View File

@ -0,0 +1,14 @@
# Implements the TOML test suite interface for TOML encoders
This is an implementation of the interface expected by
[toml-test](https://github.com/BurntSushi/toml-test) for the
[TOML encoder](https://github.com/BurntSushi/toml).
In particular, it maps JSON data on `stdin` to a TOML format on `stdout`.
Compatible with TOML version
[v0.2.0](https://github.com/mojombo/toml/blob/master/versions/toml-v0.2.0.md)
Compatible with `toml-test` version
[v0.2.0](https://github.com/BurntSushi/toml-test/tree/v0.2.0)

View File

@ -0,0 +1,131 @@
// Command toml-test-encoder satisfies the toml-test interface for testing
// TOML encoders. Namely, it accepts JSON on stdin and outputs TOML on stdout.
package main
import (
"encoding/json"
"flag"
"log"
"os"
"path"
"strconv"
"time"
"github.com/BurntSushi/toml"
)
func init() {
log.SetFlags(0)
flag.Usage = usage
flag.Parse()
}
func usage() {
log.Printf("Usage: %s < json-file\n", path.Base(os.Args[0]))
flag.PrintDefaults()
os.Exit(1)
}
func main() {
if flag.NArg() != 0 {
flag.Usage()
}
var tmp interface{}
if err := json.NewDecoder(os.Stdin).Decode(&tmp); err != nil {
log.Fatalf("Error decoding JSON: %s", err)
}
tomlData := translate(tmp)
if err := toml.NewEncoder(os.Stdout).Encode(tomlData); err != nil {
log.Fatalf("Error encoding TOML: %s", err)
}
}
func translate(typedJson interface{}) interface{} {
switch v := typedJson.(type) {
case map[string]interface{}:
if len(v) == 2 && in("type", v) && in("value", v) {
return untag(v)
}
m := make(map[string]interface{}, len(v))
for k, v2 := range v {
m[k] = translate(v2)
}
return m
case []interface{}:
tabArray := make([]map[string]interface{}, len(v))
for i := range v {
if m, ok := translate(v[i]).(map[string]interface{}); ok {
tabArray[i] = m
} else {
log.Fatalf("JSON arrays may only contain objects. This " +
"corresponds to only tables being allowed in " +
"TOML table arrays.")
}
}
return tabArray
}
log.Fatalf("Unrecognized JSON format '%T'.", typedJson)
panic("unreachable")
}
func untag(typed map[string]interface{}) interface{} {
t := typed["type"].(string)
v := typed["value"]
switch t {
case "string":
return v.(string)
case "integer":
v := v.(string)
n, err := strconv.Atoi(v)
if err != nil {
log.Fatalf("Could not parse '%s' as integer: %s", v, err)
}
return n
case "float":
v := v.(string)
f, err := strconv.ParseFloat(v, 64)
if err != nil {
log.Fatalf("Could not parse '%s' as float64: %s", v, err)
}
return f
case "datetime":
v := v.(string)
t, err := time.Parse("2006-01-02T15:04:05Z", v)
if err != nil {
log.Fatalf("Could not parse '%s' as a datetime: %s", v, err)
}
return t
case "bool":
v := v.(string)
switch v {
case "true":
return true
case "false":
return false
}
log.Fatalf("Could not parse '%s' as a boolean.", v)
case "array":
v := v.([]interface{})
array := make([]interface{}, len(v))
for i := range v {
if m, ok := v[i].(map[string]interface{}); ok {
array[i] = untag(m)
} else {
log.Fatalf("Arrays may only contain other arrays or "+
"primitive values, but found a '%T'.", m)
}
}
return array
}
log.Fatalf("Unrecognized tag type '%s'.", t)
panic("unreachable")
}
func in(key string, m map[string]interface{}) bool {
_, ok := m[key]
return ok
}

14
vendor/github.com/BurntSushi/toml/cmd/tomlv/COPYING generated vendored Normal file
View File

@ -0,0 +1,14 @@
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
Version 2, December 2004
Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>
Everyone is permitted to copy and distribute verbatim or modified
copies of this license document, and changing it is allowed as long
as the name is changed.
DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. You just DO WHAT THE FUCK YOU WANT TO.

22
vendor/github.com/BurntSushi/toml/cmd/tomlv/README.md generated vendored Normal file
View File

@ -0,0 +1,22 @@
# TOML Validator
If Go is installed, it's simple to try it out:
```bash
go get github.com/BurntSushi/toml/cmd/tomlv
tomlv some-toml-file.toml
```
You can see the types of every key in a TOML file with:
```bash
tomlv -types some-toml-file.toml
```
At the moment, only one error message is reported at a time. Error messages
include line numbers. No output means that the files given are valid TOML, or
there is a bug in `tomlv`.
Compatible with TOML version
[v0.1.0](https://github.com/mojombo/toml/blob/master/versions/toml-v0.1.0.md)

61
vendor/github.com/BurntSushi/toml/cmd/tomlv/main.go generated vendored Normal file
View File

@ -0,0 +1,61 @@
// Command tomlv validates TOML documents and prints each key's type.
package main
import (
"flag"
"fmt"
"log"
"os"
"path"
"strings"
"text/tabwriter"
"github.com/BurntSushi/toml"
)
var (
flagTypes = false
)
func init() {
log.SetFlags(0)
flag.BoolVar(&flagTypes, "types", flagTypes,
"When set, the types of every defined key will be shown.")
flag.Usage = usage
flag.Parse()
}
func usage() {
log.Printf("Usage: %s toml-file [ toml-file ... ]\n",
path.Base(os.Args[0]))
flag.PrintDefaults()
os.Exit(1)
}
func main() {
if flag.NArg() < 1 {
flag.Usage()
}
for _, f := range flag.Args() {
var tmp interface{}
md, err := toml.DecodeFile(f, &tmp)
if err != nil {
log.Fatalf("Error in '%s': %s", f, err)
}
if flagTypes {
printTypes(md)
}
}
}
func printTypes(md toml.MetaData) {
tabw := tabwriter.NewWriter(os.Stdout, 0, 0, 2, ' ', 0)
for _, key := range md.Keys() {
fmt.Fprintf(tabw, "%s%s\t%s\n",
strings.Repeat(" ", len(key)-1), key, md.Type(key...))
}
tabw.Flush()
}

509
vendor/github.com/BurntSushi/toml/decode.go generated vendored Normal file
View File

@ -0,0 +1,509 @@
package toml
import (
"fmt"
"io"
"io/ioutil"
"math"
"reflect"
"strings"
"time"
)
func e(format string, args ...interface{}) error {
return fmt.Errorf("toml: "+format, args...)
}
// Unmarshaler is the interface implemented by objects that can unmarshal a
// TOML description of themselves.
type Unmarshaler interface {
UnmarshalTOML(interface{}) error
}
// Unmarshal decodes the contents of `p` in TOML format into a pointer `v`.
func Unmarshal(p []byte, v interface{}) error {
_, err := Decode(string(p), v)
return err
}
// Primitive is a TOML value that hasn't been decoded into a Go value.
// When using the various `Decode*` functions, the type `Primitive` may
// be given to any value, and its decoding will be delayed.
//
// A `Primitive` value can be decoded using the `PrimitiveDecode` function.
//
// The underlying representation of a `Primitive` value is subject to change.
// Do not rely on it.
//
// N.B. Primitive values are still parsed, so using them will only avoid
// the overhead of reflection. They can be useful when you don't know the
// exact type of TOML data until run time.
type Primitive struct {
undecoded interface{}
context Key
}
// DEPRECATED!
//
// Use MetaData.PrimitiveDecode instead.
func PrimitiveDecode(primValue Primitive, v interface{}) error {
md := MetaData{decoded: make(map[string]bool)}
return md.unify(primValue.undecoded, rvalue(v))
}
// PrimitiveDecode is just like the other `Decode*` functions, except it
// decodes a TOML value that has already been parsed. Valid primitive values
// can *only* be obtained from values filled by the decoder functions,
// including this method. (i.e., `v` may contain more `Primitive`
// values.)
//
// Meta data for primitive values is included in the meta data returned by
// the `Decode*` functions with one exception: keys returned by the Undecoded
// method will only reflect keys that were decoded. Namely, any keys hidden
// behind a Primitive will be considered undecoded. Executing this method will
// update the undecoded keys in the meta data. (See the example.)
func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error {
md.context = primValue.context
defer func() { md.context = nil }()
return md.unify(primValue.undecoded, rvalue(v))
}
// Decode will decode the contents of `data` in TOML format into a pointer
// `v`.
//
// TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be
// used interchangeably.)
//
// TOML arrays of tables correspond to either a slice of structs or a slice
// of maps.
//
// TOML datetimes correspond to Go `time.Time` values.
//
// All other TOML types (float, string, int, bool and array) correspond
// to the obvious Go types.
//
// An exception to the above rules is if a type implements the
// encoding.TextUnmarshaler interface. In this case, any primitive TOML value
// (floats, strings, integers, booleans and datetimes) will be converted to
// a byte string and given to the value's UnmarshalText method. See the
// Unmarshaler example for a demonstration with time duration strings.
//
// Key mapping
//
// TOML keys can map to either keys in a Go map or field names in a Go
// struct. The special `toml` struct tag may be used to map TOML keys to
// struct fields that don't match the key name exactly. (See the example.)
// A case insensitive match to struct names will be tried if an exact match
// can't be found.
//
// The mapping between TOML values and Go values is loose. That is, there
// may exist TOML values that cannot be placed into your representation, and
// there may be parts of your representation that do not correspond to
// TOML values. This loose mapping can be made stricter by using the IsDefined
// and/or Undecoded methods on the MetaData returned.
//
// This decoder will not handle cyclic types. If a cyclic type is passed,
// `Decode` will not terminate.
func Decode(data string, v interface{}) (MetaData, error) {
rv := reflect.ValueOf(v)
if rv.Kind() != reflect.Ptr {
return MetaData{}, e("Decode of non-pointer %s", reflect.TypeOf(v))
}
if rv.IsNil() {
return MetaData{}, e("Decode of nil %s", reflect.TypeOf(v))
}
p, err := parse(data)
if err != nil {
return MetaData{}, err
}
md := MetaData{
p.mapping, p.types, p.ordered,
make(map[string]bool, len(p.ordered)), nil,
}
return md, md.unify(p.mapping, indirect(rv))
}
// DecodeFile is just like Decode, except it will automatically read the
// contents of the file at `fpath` and decode it for you.
func DecodeFile(fpath string, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadFile(fpath)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// DecodeReader is just like Decode, except it will consume all bytes
// from the reader and decode it for you.
func DecodeReader(r io.Reader, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadAll(r)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// unify performs a sort of type unification based on the structure of `rv`,
// which is the client representation.
//
// Any type mismatch produces an error. Finding a type that we don't know
// how to handle produces an unsupported type error.
func (md *MetaData) unify(data interface{}, rv reflect.Value) error {
// Special case. Look for a `Primitive` value.
if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() {
// Save the undecoded data and the key context into the primitive
// value.
context := make(Key, len(md.context))
copy(context, md.context)
rv.Set(reflect.ValueOf(Primitive{
undecoded: data,
context: context,
}))
return nil
}
// Special case. Unmarshaler Interface support.
if rv.CanAddr() {
if v, ok := rv.Addr().Interface().(Unmarshaler); ok {
return v.UnmarshalTOML(data)
}
}
// Special case. Handle time.Time values specifically.
// TODO: Remove this code when we decide to drop support for Go 1.1.
// This isn't necessary in Go 1.2 because time.Time satisfies the encoding
// interfaces.
if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) {
return md.unifyDatetime(data, rv)
}
// Special case. Look for a value satisfying the TextUnmarshaler interface.
if v, ok := rv.Interface().(TextUnmarshaler); ok {
return md.unifyText(data, v)
}
// BUG(burntsushi)
// The behavior here is incorrect whenever a Go type satisfies the
// encoding.TextUnmarshaler interface but also corresponds to a TOML
// hash or array. In particular, the unmarshaler should only be applied
// to primitive TOML values. But at this point, it will be applied to
// all kinds of values and produce an incorrect error whenever those values
// are hashes or arrays (including arrays of tables).
k := rv.Kind()
// laziness
if k >= reflect.Int && k <= reflect.Uint64 {
return md.unifyInt(data, rv)
}
switch k {
case reflect.Ptr:
elem := reflect.New(rv.Type().Elem())
err := md.unify(data, reflect.Indirect(elem))
if err != nil {
return err
}
rv.Set(elem)
return nil
case reflect.Struct:
return md.unifyStruct(data, rv)
case reflect.Map:
return md.unifyMap(data, rv)
case reflect.Array:
return md.unifyArray(data, rv)
case reflect.Slice:
return md.unifySlice(data, rv)
case reflect.String:
return md.unifyString(data, rv)
case reflect.Bool:
return md.unifyBool(data, rv)
case reflect.Interface:
// we only support empty interfaces.
if rv.NumMethod() > 0 {
return e("unsupported type %s", rv.Type())
}
return md.unifyAnything(data, rv)
case reflect.Float32:
fallthrough
case reflect.Float64:
return md.unifyFloat64(data, rv)
}
return e("unsupported type %s", rv.Kind())
}
func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if mapping == nil {
return nil
}
return e("type mismatch for %s: expected table but found %T",
rv.Type().String(), mapping)
}
for key, datum := range tmap {
var f *field
fields := cachedTypeFields(rv.Type())
for i := range fields {
ff := &fields[i]
if ff.name == key {
f = ff
break
}
if f == nil && strings.EqualFold(ff.name, key) {
f = ff
}
}
if f != nil {
subv := rv
for _, i := range f.index {
subv = indirect(subv.Field(i))
}
if isUnifiable(subv) {
md.decoded[md.context.add(key).String()] = true
md.context = append(md.context, key)
if err := md.unify(datum, subv); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
} else if f.name != "" {
// Bad user! No soup for you!
return e("cannot write unexported field %s.%s",
rv.Type().String(), f.name)
}
}
}
return nil
}
func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if tmap == nil {
return nil
}
return badtype("map", mapping)
}
if rv.IsNil() {
rv.Set(reflect.MakeMap(rv.Type()))
}
for k, v := range tmap {
md.decoded[md.context.add(k).String()] = true
md.context = append(md.context, k)
rvkey := indirect(reflect.New(rv.Type().Key()))
rvval := reflect.Indirect(reflect.New(rv.Type().Elem()))
if err := md.unify(v, rvval); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
rvkey.SetString(k)
rv.SetMapIndex(rvkey, rvval)
}
return nil
}
func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
sliceLen := datav.Len()
if sliceLen != rv.Len() {
return e("expected array length %d; got TOML array of length %d",
rv.Len(), sliceLen)
}
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
n := datav.Len()
if rv.IsNil() || rv.Cap() < n {
rv.Set(reflect.MakeSlice(rv.Type(), n, n))
}
rv.SetLen(n)
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySliceArray(data, rv reflect.Value) error {
sliceLen := data.Len()
for i := 0; i < sliceLen; i++ {
v := data.Index(i).Interface()
sliceval := indirect(rv.Index(i))
if err := md.unify(v, sliceval); err != nil {
return err
}
}
return nil
}
func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error {
if _, ok := data.(time.Time); ok {
rv.Set(reflect.ValueOf(data))
return nil
}
return badtype("time.Time", data)
}
func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error {
if s, ok := data.(string); ok {
rv.SetString(s)
return nil
}
return badtype("string", data)
}
func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error {
if num, ok := data.(float64); ok {
switch rv.Kind() {
case reflect.Float32:
fallthrough
case reflect.Float64:
rv.SetFloat(num)
default:
panic("bug")
}
return nil
}
return badtype("float", data)
}
func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error {
if num, ok := data.(int64); ok {
if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 {
switch rv.Kind() {
case reflect.Int, reflect.Int64:
// No bounds checking necessary.
case reflect.Int8:
if num < math.MinInt8 || num > math.MaxInt8 {
return e("value %d is out of range for int8", num)
}
case reflect.Int16:
if num < math.MinInt16 || num > math.MaxInt16 {
return e("value %d is out of range for int16", num)
}
case reflect.Int32:
if num < math.MinInt32 || num > math.MaxInt32 {
return e("value %d is out of range for int32", num)
}
}
rv.SetInt(num)
} else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 {
unum := uint64(num)
switch rv.Kind() {
case reflect.Uint, reflect.Uint64:
// No bounds checking necessary.
case reflect.Uint8:
if num < 0 || unum > math.MaxUint8 {
return e("value %d is out of range for uint8", num)
}
case reflect.Uint16:
if num < 0 || unum > math.MaxUint16 {
return e("value %d is out of range for uint16", num)
}
case reflect.Uint32:
if num < 0 || unum > math.MaxUint32 {
return e("value %d is out of range for uint32", num)
}
}
rv.SetUint(unum)
} else {
panic("unreachable")
}
return nil
}
return badtype("integer", data)
}
func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error {
if b, ok := data.(bool); ok {
rv.SetBool(b)
return nil
}
return badtype("boolean", data)
}
func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error {
rv.Set(reflect.ValueOf(data))
return nil
}
func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error {
var s string
switch sdata := data.(type) {
case TextMarshaler:
text, err := sdata.MarshalText()
if err != nil {
return err
}
s = string(text)
case fmt.Stringer:
s = sdata.String()
case string:
s = sdata
case bool:
s = fmt.Sprintf("%v", sdata)
case int64:
s = fmt.Sprintf("%d", sdata)
case float64:
s = fmt.Sprintf("%f", sdata)
default:
return badtype("primitive (string-like)", data)
}
if err := v.UnmarshalText([]byte(s)); err != nil {
return err
}
return nil
}
// rvalue returns a reflect.Value of `v`. All pointers are resolved.
func rvalue(v interface{}) reflect.Value {
return indirect(reflect.ValueOf(v))
}
// indirect returns the value pointed to by a pointer.
// Pointers are followed until the value is not a pointer.
// New values are allocated for each nil pointer.
//
// An exception to this rule is if the value satisfies an interface of
// interest to us (like encoding.TextUnmarshaler).
func indirect(v reflect.Value) reflect.Value {
if v.Kind() != reflect.Ptr {
if v.CanSet() {
pv := v.Addr()
if _, ok := pv.Interface().(TextUnmarshaler); ok {
return pv
}
}
return v
}
if v.IsNil() {
v.Set(reflect.New(v.Type().Elem()))
}
return indirect(reflect.Indirect(v))
}
func isUnifiable(rv reflect.Value) bool {
if rv.CanSet() {
return true
}
if _, ok := rv.Interface().(TextUnmarshaler); ok {
return true
}
return false
}
func badtype(expected string, data interface{}) error {
return e("cannot load TOML value of type %T into a Go %s", data, expected)
}

121
vendor/github.com/BurntSushi/toml/decode_meta.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
package toml
import "strings"
// MetaData allows access to meta information about TOML data that may not
// be inferrable via reflection. In particular, whether a key has been defined
// and the TOML type of a key.
type MetaData struct {
mapping map[string]interface{}
types map[string]tomlType
keys []Key
decoded map[string]bool
context Key // Used only during decoding.
}
// IsDefined returns true if the key given exists in the TOML data. The key
// should be specified hierarchially. e.g.,
//
// // access the TOML key 'a.b.c'
// IsDefined("a", "b", "c")
//
// IsDefined will return false if an empty key given. Keys are case sensitive.
func (md *MetaData) IsDefined(key ...string) bool {
if len(key) == 0 {
return false
}
var hash map[string]interface{}
var ok bool
var hashOrVal interface{} = md.mapping
for _, k := range key {
if hash, ok = hashOrVal.(map[string]interface{}); !ok {
return false
}
if hashOrVal, ok = hash[k]; !ok {
return false
}
}
return true
}
// Type returns a string representation of the type of the key specified.
//
// Type will return the empty string if given an empty key or a key that
// does not exist. Keys are case sensitive.
func (md *MetaData) Type(key ...string) string {
fullkey := strings.Join(key, ".")
if typ, ok := md.types[fullkey]; ok {
return typ.typeString()
}
return ""
}
// Key is the type of any TOML key, including key groups. Use (MetaData).Keys
// to get values of this type.
type Key []string
func (k Key) String() string {
return strings.Join(k, ".")
}
func (k Key) maybeQuotedAll() string {
var ss []string
for i := range k {
ss = append(ss, k.maybeQuoted(i))
}
return strings.Join(ss, ".")
}
func (k Key) maybeQuoted(i int) string {
quote := false
for _, c := range k[i] {
if !isBareKeyChar(c) {
quote = true
break
}
}
if quote {
return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\""
}
return k[i]
}
func (k Key) add(piece string) Key {
newKey := make(Key, len(k)+1)
copy(newKey, k)
newKey[len(k)] = piece
return newKey
}
// Keys returns a slice of every key in the TOML data, including key groups.
// Each key is itself a slice, where the first element is the top of the
// hierarchy and the last is the most specific.
//
// The list will have the same order as the keys appeared in the TOML data.
//
// All keys returned are non-empty.
func (md *MetaData) Keys() []Key {
return md.keys
}
// Undecoded returns all keys that have not been decoded in the order in which
// they appear in the original TOML document.
//
// This includes keys that haven't been decoded because of a Primitive value.
// Once the Primitive value is decoded, the keys will be considered decoded.
//
// Also note that decoding into an empty interface will result in no decoding,
// and so no keys will be considered decoded.
//
// In this sense, the Undecoded keys correspond to keys in the TOML document
// that do not have a concrete type in your representation.
func (md *MetaData) Undecoded() []Key {
undecoded := make([]Key, 0, len(md.keys))
for _, key := range md.keys {
if !md.decoded[key.String()] {
undecoded = append(undecoded, key)
}
}
return undecoded
}

1288
vendor/github.com/BurntSushi/toml/decode_test.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

27
vendor/github.com/BurntSushi/toml/doc.go generated vendored Normal file
View File

@ -0,0 +1,27 @@
/*
Package toml provides facilities for decoding and encoding TOML configuration
files via reflection. There is also support for delaying decoding with
the Primitive type, and querying the set of keys in a TOML document with the
MetaData type.
The specification implemented: https://github.com/mojombo/toml
The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify
whether a file is a valid TOML document. It can also be used to print the
type of each key in a TOML document.
Testing
There are two important types of tests used for this package. The first is
contained inside '*_test.go' files and uses the standard Go unit testing
framework. These tests are primarily devoted to holistically testing the
decoder and encoder.
The second type of testing is used to verify the implementation's adherence
to the TOML specification. These tests have been factored into their own
project: https://github.com/BurntSushi/toml-test
The reason the tests are in a separate project is so that they can be used by
any implementation of TOML. Namely, it is language agnostic.
*/
package toml

568
vendor/github.com/BurntSushi/toml/encode.go generated vendored Normal file
View File

@ -0,0 +1,568 @@
package toml
import (
"bufio"
"errors"
"fmt"
"io"
"reflect"
"sort"
"strconv"
"strings"
"time"
)
type tomlEncodeError struct{ error }
var (
errArrayMixedElementTypes = errors.New(
"toml: cannot encode array with mixed element types")
errArrayNilElement = errors.New(
"toml: cannot encode array with nil element")
errNonString = errors.New(
"toml: cannot encode a map with non-string key type")
errAnonNonStruct = errors.New(
"toml: cannot encode an anonymous field that is not a struct")
errArrayNoTable = errors.New(
"toml: TOML array element cannot contain a table")
errNoKey = errors.New(
"toml: top-level values must be Go maps or structs")
errAnything = errors.New("") // used in testing
)
var quotedReplacer = strings.NewReplacer(
"\t", "\\t",
"\n", "\\n",
"\r", "\\r",
"\"", "\\\"",
"\\", "\\\\",
)
// Encoder controls the encoding of Go values to a TOML document to some
// io.Writer.
//
// The indentation level can be controlled with the Indent field.
type Encoder struct {
// A single indentation level. By default it is two spaces.
Indent string
// hasWritten is whether we have written any output to w yet.
hasWritten bool
w *bufio.Writer
}
// NewEncoder returns a TOML encoder that encodes Go values to the io.Writer
// given. By default, a single indentation level is 2 spaces.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{
w: bufio.NewWriter(w),
Indent: " ",
}
}
// Encode writes a TOML representation of the Go value to the underlying
// io.Writer. If the value given cannot be encoded to a valid TOML document,
// then an error is returned.
//
// The mapping between Go values and TOML values should be precisely the same
// as for the Decode* functions. Similarly, the TextMarshaler interface is
// supported by encoding the resulting bytes as strings. (If you want to write
// arbitrary binary data then you will need to use something like base64 since
// TOML does not have any binary types.)
//
// When encoding TOML hashes (i.e., Go maps or structs), keys without any
// sub-hashes are encoded first.
//
// If a Go map is encoded, then its keys are sorted alphabetically for
// deterministic output. More control over this behavior may be provided if
// there is demand for it.
//
// Encoding Go values without a corresponding TOML representation---like map
// types with non-string keys---will cause an error to be returned. Similarly
// for mixed arrays/slices, arrays/slices with nil elements, embedded
// non-struct types and nested slices containing maps or structs.
// (e.g., [][]map[string]string is not allowed but []map[string]string is OK
// and so is []map[string][]string.)
func (enc *Encoder) Encode(v interface{}) error {
rv := eindirect(reflect.ValueOf(v))
if err := enc.safeEncode(Key([]string{}), rv); err != nil {
return err
}
return enc.w.Flush()
}
func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) {
defer func() {
if r := recover(); r != nil {
if terr, ok := r.(tomlEncodeError); ok {
err = terr.error
return
}
panic(r)
}
}()
enc.encode(key, rv)
return nil
}
func (enc *Encoder) encode(key Key, rv reflect.Value) {
// Special case. Time needs to be in ISO8601 format.
// Special case. If we can marshal the type to text, then we used that.
// Basically, this prevents the encoder for handling these types as
// generic structs (or whatever the underlying type of a TextMarshaler is).
switch rv.Interface().(type) {
case time.Time, TextMarshaler:
enc.keyEqElement(key, rv)
return
}
k := rv.Kind()
switch k {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64,
reflect.Float32, reflect.Float64, reflect.String, reflect.Bool:
enc.keyEqElement(key, rv)
case reflect.Array, reflect.Slice:
if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) {
enc.eArrayOfTables(key, rv)
} else {
enc.keyEqElement(key, rv)
}
case reflect.Interface:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Map:
if rv.IsNil() {
return
}
enc.eTable(key, rv)
case reflect.Ptr:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Struct:
enc.eTable(key, rv)
default:
panic(e("unsupported type for key '%s': %s", key, k))
}
}
// eElement encodes any value that can be an array element (primitives and
// arrays).
func (enc *Encoder) eElement(rv reflect.Value) {
switch v := rv.Interface().(type) {
case time.Time:
// Special case time.Time as a primitive. Has to come before
// TextMarshaler below because time.Time implements
// encoding.TextMarshaler, but we need to always use UTC.
enc.wf(v.UTC().Format("2006-01-02T15:04:05Z"))
return
case TextMarshaler:
// Special case. Use text marshaler if it's available for this value.
if s, err := v.MarshalText(); err != nil {
encPanic(err)
} else {
enc.writeQuoted(string(s))
}
return
}
switch rv.Kind() {
case reflect.Bool:
enc.wf(strconv.FormatBool(rv.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64:
enc.wf(strconv.FormatInt(rv.Int(), 10))
case reflect.Uint, reflect.Uint8, reflect.Uint16,
reflect.Uint32, reflect.Uint64:
enc.wf(strconv.FormatUint(rv.Uint(), 10))
case reflect.Float32:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32)))
case reflect.Float64:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64)))
case reflect.Array, reflect.Slice:
enc.eArrayOrSliceElement(rv)
case reflect.Interface:
enc.eElement(rv.Elem())
case reflect.String:
enc.writeQuoted(rv.String())
default:
panic(e("unexpected primitive type: %s", rv.Kind()))
}
}
// By the TOML spec, all floats must have a decimal with at least one
// number on either side.
func floatAddDecimal(fstr string) string {
if !strings.Contains(fstr, ".") {
return fstr + ".0"
}
return fstr
}
func (enc *Encoder) writeQuoted(s string) {
enc.wf("\"%s\"", quotedReplacer.Replace(s))
}
func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) {
length := rv.Len()
enc.wf("[")
for i := 0; i < length; i++ {
elem := rv.Index(i)
enc.eElement(elem)
if i != length-1 {
enc.wf(", ")
}
}
enc.wf("]")
}
func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
for i := 0; i < rv.Len(); i++ {
trv := rv.Index(i)
if isNil(trv) {
continue
}
panicIfInvalidKey(key)
enc.newline()
enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
enc.eMapOrStruct(key, trv)
}
}
func (enc *Encoder) eTable(key Key, rv reflect.Value) {
panicIfInvalidKey(key)
if len(key) == 1 {
// Output an extra new line between top-level tables.
// (The newline isn't written if nothing else has been written though.)
enc.newline()
}
if len(key) > 0 {
enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
}
enc.eMapOrStruct(key, rv)
}
func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) {
switch rv := eindirect(rv); rv.Kind() {
case reflect.Map:
enc.eMap(key, rv)
case reflect.Struct:
enc.eStruct(key, rv)
default:
panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String())
}
}
func (enc *Encoder) eMap(key Key, rv reflect.Value) {
rt := rv.Type()
if rt.Key().Kind() != reflect.String {
encPanic(errNonString)
}
// Sort keys so that we have deterministic output. And write keys directly
// underneath this key first, before writing sub-structs or sub-maps.
var mapKeysDirect, mapKeysSub []string
for _, mapKey := range rv.MapKeys() {
k := mapKey.String()
if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) {
mapKeysSub = append(mapKeysSub, k)
} else {
mapKeysDirect = append(mapKeysDirect, k)
}
}
var writeMapKeys = func(mapKeys []string) {
sort.Strings(mapKeys)
for _, mapKey := range mapKeys {
mrv := rv.MapIndex(reflect.ValueOf(mapKey))
if isNil(mrv) {
// Don't write anything for nil fields.
continue
}
enc.encode(key.add(mapKey), mrv)
}
}
writeMapKeys(mapKeysDirect)
writeMapKeys(mapKeysSub)
}
func (enc *Encoder) eStruct(key Key, rv reflect.Value) {
// Write keys for fields directly under this key first, because if we write
// a field that creates a new table, then all keys under it will be in that
// table (not the one we're writing here).
rt := rv.Type()
var fieldsDirect, fieldsSub [][]int
var addFields func(rt reflect.Type, rv reflect.Value, start []int)
addFields = func(rt reflect.Type, rv reflect.Value, start []int) {
for i := 0; i < rt.NumField(); i++ {
f := rt.Field(i)
// skip unexported fields
if f.PkgPath != "" && !f.Anonymous {
continue
}
frv := rv.Field(i)
if f.Anonymous {
t := f.Type
switch t.Kind() {
case reflect.Struct:
// Treat anonymous struct fields with
// tag names as though they are not
// anonymous, like encoding/json does.
if getOptions(f.Tag).name == "" {
addFields(t, frv, f.Index)
continue
}
case reflect.Ptr:
if t.Elem().Kind() == reflect.Struct &&
getOptions(f.Tag).name == "" {
if !frv.IsNil() {
addFields(t.Elem(), frv.Elem(), f.Index)
}
continue
}
// Fall through to the normal field encoding logic below
// for non-struct anonymous fields.
}
}
if typeIsHash(tomlTypeOfGo(frv)) {
fieldsSub = append(fieldsSub, append(start, f.Index...))
} else {
fieldsDirect = append(fieldsDirect, append(start, f.Index...))
}
}
}
addFields(rt, rv, nil)
var writeFields = func(fields [][]int) {
for _, fieldIndex := range fields {
sft := rt.FieldByIndex(fieldIndex)
sf := rv.FieldByIndex(fieldIndex)
if isNil(sf) {
// Don't write anything for nil fields.
continue
}
opts := getOptions(sft.Tag)
if opts.skip {
continue
}
keyName := sft.Name
if opts.name != "" {
keyName = opts.name
}
if opts.omitempty && isEmpty(sf) {
continue
}
if opts.omitzero && isZero(sf) {
continue
}
enc.encode(key.add(keyName), sf)
}
}
writeFields(fieldsDirect)
writeFields(fieldsSub)
}
// tomlTypeName returns the TOML type name of the Go value's type. It is
// used to determine whether the types of array elements are mixed (which is
// forbidden). If the Go value is nil, then it is illegal for it to be an array
// element, and valueIsNil is returned as true.
// Returns the TOML type of a Go value. The type may be `nil`, which means
// no concrete TOML type could be found.
func tomlTypeOfGo(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() {
return nil
}
switch rv.Kind() {
case reflect.Bool:
return tomlBool
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64:
return tomlInteger
case reflect.Float32, reflect.Float64:
return tomlFloat
case reflect.Array, reflect.Slice:
if typeEqual(tomlHash, tomlArrayType(rv)) {
return tomlArrayHash
}
return tomlArray
case reflect.Ptr, reflect.Interface:
return tomlTypeOfGo(rv.Elem())
case reflect.String:
return tomlString
case reflect.Map:
return tomlHash
case reflect.Struct:
switch rv.Interface().(type) {
case time.Time:
return tomlDatetime
case TextMarshaler:
return tomlString
default:
return tomlHash
}
default:
panic("unexpected reflect.Kind: " + rv.Kind().String())
}
}
// tomlArrayType returns the element type of a TOML array. The type returned
// may be nil if it cannot be determined (e.g., a nil slice or a zero length
// slize). This function may also panic if it finds a type that cannot be
// expressed in TOML (such as nil elements, heterogeneous arrays or directly
// nested arrays of tables).
func tomlArrayType(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() || rv.Len() == 0 {
return nil
}
firstType := tomlTypeOfGo(rv.Index(0))
if firstType == nil {
encPanic(errArrayNilElement)
}
rvlen := rv.Len()
for i := 1; i < rvlen; i++ {
elem := rv.Index(i)
switch elemType := tomlTypeOfGo(elem); {
case elemType == nil:
encPanic(errArrayNilElement)
case !typeEqual(firstType, elemType):
encPanic(errArrayMixedElementTypes)
}
}
// If we have a nested array, then we must make sure that the nested
// array contains ONLY primitives.
// This checks arbitrarily nested arrays.
if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) {
nest := tomlArrayType(eindirect(rv.Index(0)))
if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) {
encPanic(errArrayNoTable)
}
}
return firstType
}
type tagOptions struct {
skip bool // "-"
name string
omitempty bool
omitzero bool
}
func getOptions(tag reflect.StructTag) tagOptions {
t := tag.Get("toml")
if t == "-" {
return tagOptions{skip: true}
}
var opts tagOptions
parts := strings.Split(t, ",")
opts.name = parts[0]
for _, s := range parts[1:] {
switch s {
case "omitempty":
opts.omitempty = true
case "omitzero":
opts.omitzero = true
}
}
return opts
}
func isZero(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return rv.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return rv.Uint() == 0
case reflect.Float32, reflect.Float64:
return rv.Float() == 0.0
}
return false
}
func isEmpty(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Array, reflect.Slice, reflect.Map, reflect.String:
return rv.Len() == 0
case reflect.Bool:
return !rv.Bool()
}
return false
}
func (enc *Encoder) newline() {
if enc.hasWritten {
enc.wf("\n")
}
}
func (enc *Encoder) keyEqElement(key Key, val reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
panicIfInvalidKey(key)
enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1))
enc.eElement(val)
enc.newline()
}
func (enc *Encoder) wf(format string, v ...interface{}) {
if _, err := fmt.Fprintf(enc.w, format, v...); err != nil {
encPanic(err)
}
enc.hasWritten = true
}
func (enc *Encoder) indentStr(key Key) string {
return strings.Repeat(enc.Indent, len(key)-1)
}
func encPanic(err error) {
panic(tomlEncodeError{err})
}
func eindirect(v reflect.Value) reflect.Value {
switch v.Kind() {
case reflect.Ptr, reflect.Interface:
return eindirect(v.Elem())
default:
return v
}
}
func isNil(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return rv.IsNil()
default:
return false
}
}
func panicIfInvalidKey(key Key) {
for _, k := range key {
if len(k) == 0 {
encPanic(e("Key '%s' is not a valid table name. Key names "+
"cannot be empty.", key.maybeQuotedAll()))
}
}
}
func isValidKeyName(s string) bool {
return len(s) != 0
}

615
vendor/github.com/BurntSushi/toml/encode_test.go generated vendored Normal file
View File

@ -0,0 +1,615 @@
package toml
import (
"bytes"
"fmt"
"log"
"net"
"testing"
"time"
)
func TestEncodeRoundTrip(t *testing.T) {
type Config struct {
Age int
Cats []string
Pi float64
Perfection []int
DOB time.Time
Ipaddress net.IP
}
var inputs = Config{
13,
[]string{"one", "two", "three"},
3.145,
[]int{11, 2, 3, 4},
time.Now(),
net.ParseIP("192.168.59.254"),
}
var firstBuffer bytes.Buffer
e := NewEncoder(&firstBuffer)
err := e.Encode(inputs)
if err != nil {
t.Fatal(err)
}
var outputs Config
if _, err := Decode(firstBuffer.String(), &outputs); err != nil {
t.Logf("Could not decode:\n-----\n%s\n-----\n",
firstBuffer.String())
t.Fatal(err)
}
// could test each value individually, but I'm lazy
var secondBuffer bytes.Buffer
e2 := NewEncoder(&secondBuffer)
err = e2.Encode(outputs)
if err != nil {
t.Fatal(err)
}
if firstBuffer.String() != secondBuffer.String() {
t.Error(
firstBuffer.String(),
"\n\n is not identical to\n\n",
secondBuffer.String())
}
}
// XXX(burntsushi)
// I think these tests probably should be removed. They are good, but they
// ought to be obsolete by toml-test.
func TestEncode(t *testing.T) {
type Embedded struct {
Int int `toml:"_int"`
}
type NonStruct int
date := time.Date(2014, 5, 11, 20, 30, 40, 0, time.FixedZone("IST", 3600))
dateStr := "2014-05-11T19:30:40Z"
tests := map[string]struct {
input interface{}
wantOutput string
wantError error
}{
"bool field": {
input: struct {
BoolTrue bool
BoolFalse bool
}{true, false},
wantOutput: "BoolTrue = true\nBoolFalse = false\n",
},
"int fields": {
input: struct {
Int int
Int8 int8
Int16 int16
Int32 int32
Int64 int64
}{1, 2, 3, 4, 5},
wantOutput: "Int = 1\nInt8 = 2\nInt16 = 3\nInt32 = 4\nInt64 = 5\n",
},
"uint fields": {
input: struct {
Uint uint
Uint8 uint8
Uint16 uint16
Uint32 uint32
Uint64 uint64
}{1, 2, 3, 4, 5},
wantOutput: "Uint = 1\nUint8 = 2\nUint16 = 3\nUint32 = 4" +
"\nUint64 = 5\n",
},
"float fields": {
input: struct {
Float32 float32
Float64 float64
}{1.5, 2.5},
wantOutput: "Float32 = 1.5\nFloat64 = 2.5\n",
},
"string field": {
input: struct{ String string }{"foo"},
wantOutput: "String = \"foo\"\n",
},
"string field and unexported field": {
input: struct {
String string
unexported int
}{"foo", 0},
wantOutput: "String = \"foo\"\n",
},
"datetime field in UTC": {
input: struct{ Date time.Time }{date},
wantOutput: fmt.Sprintf("Date = %s\n", dateStr),
},
"datetime field as primitive": {
// Using a map here to fail if isStructOrMap() returns true for
// time.Time.
input: map[string]interface{}{
"Date": date,
"Int": 1,
},
wantOutput: fmt.Sprintf("Date = %s\nInt = 1\n", dateStr),
},
"array fields": {
input: struct {
IntArray0 [0]int
IntArray3 [3]int
}{[0]int{}, [3]int{1, 2, 3}},
wantOutput: "IntArray0 = []\nIntArray3 = [1, 2, 3]\n",
},
"slice fields": {
input: struct{ IntSliceNil, IntSlice0, IntSlice3 []int }{
nil, []int{}, []int{1, 2, 3},
},
wantOutput: "IntSlice0 = []\nIntSlice3 = [1, 2, 3]\n",
},
"datetime slices": {
input: struct{ DatetimeSlice []time.Time }{
[]time.Time{date, date},
},
wantOutput: fmt.Sprintf("DatetimeSlice = [%s, %s]\n",
dateStr, dateStr),
},
"nested arrays and slices": {
input: struct {
SliceOfArrays [][2]int
ArrayOfSlices [2][]int
SliceOfArraysOfSlices [][2][]int
ArrayOfSlicesOfArrays [2][][2]int
SliceOfMixedArrays [][2]interface{}
ArrayOfMixedSlices [2][]interface{}
}{
[][2]int{{1, 2}, {3, 4}},
[2][]int{{1, 2}, {3, 4}},
[][2][]int{
{
{1, 2}, {3, 4},
},
{
{5, 6}, {7, 8},
},
},
[2][][2]int{
{
{1, 2}, {3, 4},
},
{
{5, 6}, {7, 8},
},
},
[][2]interface{}{
{1, 2}, {"a", "b"},
},
[2][]interface{}{
{1, 2}, {"a", "b"},
},
},
wantOutput: `SliceOfArrays = [[1, 2], [3, 4]]
ArrayOfSlices = [[1, 2], [3, 4]]
SliceOfArraysOfSlices = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
ArrayOfSlicesOfArrays = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
SliceOfMixedArrays = [[1, 2], ["a", "b"]]
ArrayOfMixedSlices = [[1, 2], ["a", "b"]]
`,
},
"empty slice": {
input: struct{ Empty []interface{} }{[]interface{}{}},
wantOutput: "Empty = []\n",
},
"(error) slice with element type mismatch (string and integer)": {
input: struct{ Mixed []interface{} }{[]interface{}{1, "a"}},
wantError: errArrayMixedElementTypes,
},
"(error) slice with element type mismatch (integer and float)": {
input: struct{ Mixed []interface{} }{[]interface{}{1, 2.5}},
wantError: errArrayMixedElementTypes,
},
"slice with elems of differing Go types, same TOML types": {
input: struct {
MixedInts []interface{}
MixedFloats []interface{}
}{
[]interface{}{
int(1), int8(2), int16(3), int32(4), int64(5),
uint(1), uint8(2), uint16(3), uint32(4), uint64(5),
},
[]interface{}{float32(1.5), float64(2.5)},
},
wantOutput: "MixedInts = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5]\n" +
"MixedFloats = [1.5, 2.5]\n",
},
"(error) slice w/ element type mismatch (one is nested array)": {
input: struct{ Mixed []interface{} }{
[]interface{}{1, []interface{}{2}},
},
wantError: errArrayMixedElementTypes,
},
"(error) slice with 1 nil element": {
input: struct{ NilElement1 []interface{} }{[]interface{}{nil}},
wantError: errArrayNilElement,
},
"(error) slice with 1 nil element (and other non-nil elements)": {
input: struct{ NilElement []interface{} }{
[]interface{}{1, nil},
},
wantError: errArrayNilElement,
},
"simple map": {
input: map[string]int{"a": 1, "b": 2},
wantOutput: "a = 1\nb = 2\n",
},
"map with interface{} value type": {
input: map[string]interface{}{"a": 1, "b": "c"},
wantOutput: "a = 1\nb = \"c\"\n",
},
"map with interface{} value type, some of which are structs": {
input: map[string]interface{}{
"a": struct{ Int int }{2},
"b": 1,
},
wantOutput: "b = 1\n\n[a]\n Int = 2\n",
},
"nested map": {
input: map[string]map[string]int{
"a": {"b": 1},
"c": {"d": 2},
},
wantOutput: "[a]\n b = 1\n\n[c]\n d = 2\n",
},
"nested struct": {
input: struct{ Struct struct{ Int int } }{
struct{ Int int }{1},
},
wantOutput: "[Struct]\n Int = 1\n",
},
"nested struct and non-struct field": {
input: struct {
Struct struct{ Int int }
Bool bool
}{struct{ Int int }{1}, true},
wantOutput: "Bool = true\n\n[Struct]\n Int = 1\n",
},
"2 nested structs": {
input: struct{ Struct1, Struct2 struct{ Int int } }{
struct{ Int int }{1}, struct{ Int int }{2},
},
wantOutput: "[Struct1]\n Int = 1\n\n[Struct2]\n Int = 2\n",
},
"deeply nested structs": {
input: struct {
Struct1, Struct2 struct{ Struct3 *struct{ Int int } }
}{
struct{ Struct3 *struct{ Int int } }{&struct{ Int int }{1}},
struct{ Struct3 *struct{ Int int } }{nil},
},
wantOutput: "[Struct1]\n [Struct1.Struct3]\n Int = 1" +
"\n\n[Struct2]\n",
},
"nested struct with nil struct elem": {
input: struct {
Struct struct{ Inner *struct{ Int int } }
}{
struct{ Inner *struct{ Int int } }{nil},
},
wantOutput: "[Struct]\n",
},
"nested struct with no fields": {
input: struct {
Struct struct{ Inner struct{} }
}{
struct{ Inner struct{} }{struct{}{}},
},
wantOutput: "[Struct]\n [Struct.Inner]\n",
},
"struct with tags": {
input: struct {
Struct struct {
Int int `toml:"_int"`
} `toml:"_struct"`
Bool bool `toml:"_bool"`
}{
struct {
Int int `toml:"_int"`
}{1}, true,
},
wantOutput: "_bool = true\n\n[_struct]\n _int = 1\n",
},
"embedded struct": {
input: struct{ Embedded }{Embedded{1}},
wantOutput: "_int = 1\n",
},
"embedded *struct": {
input: struct{ *Embedded }{&Embedded{1}},
wantOutput: "_int = 1\n",
},
"nested embedded struct": {
input: struct {
Struct struct{ Embedded } `toml:"_struct"`
}{struct{ Embedded }{Embedded{1}}},
wantOutput: "[_struct]\n _int = 1\n",
},
"nested embedded *struct": {
input: struct {
Struct struct{ *Embedded } `toml:"_struct"`
}{struct{ *Embedded }{&Embedded{1}}},
wantOutput: "[_struct]\n _int = 1\n",
},
"embedded non-struct": {
input: struct{ NonStruct }{5},
wantOutput: "NonStruct = 5\n",
},
"array of tables": {
input: struct {
Structs []*struct{ Int int } `toml:"struct"`
}{
[]*struct{ Int int }{{1}, {3}},
},
wantOutput: "[[struct]]\n Int = 1\n\n[[struct]]\n Int = 3\n",
},
"array of tables order": {
input: map[string]interface{}{
"map": map[string]interface{}{
"zero": 5,
"arr": []map[string]int{
{
"friend": 5,
},
},
},
},
wantOutput: "[map]\n zero = 5\n\n [[map.arr]]\n friend = 5\n",
},
"(error) top-level slice": {
input: []struct{ Int int }{{1}, {2}, {3}},
wantError: errNoKey,
},
"(error) slice of slice": {
input: struct {
Slices [][]struct{ Int int }
}{
[][]struct{ Int int }{{{1}}, {{2}}, {{3}}},
},
wantError: errArrayNoTable,
},
"(error) map no string key": {
input: map[int]string{1: ""},
wantError: errNonString,
},
"(error) empty key name": {
input: map[string]int{"": 1},
wantError: errAnything,
},
"(error) empty map name": {
input: map[string]interface{}{
"": map[string]int{"v": 1},
},
wantError: errAnything,
},
}
for label, test := range tests {
encodeExpected(t, label, test.input, test.wantOutput, test.wantError)
}
}
func TestEncodeNestedTableArrays(t *testing.T) {
type song struct {
Name string `toml:"name"`
}
type album struct {
Name string `toml:"name"`
Songs []song `toml:"songs"`
}
type springsteen struct {
Albums []album `toml:"albums"`
}
value := springsteen{
[]album{
{"Born to Run",
[]song{{"Jungleland"}, {"Meeting Across the River"}}},
{"Born in the USA",
[]song{{"Glory Days"}, {"Dancing in the Dark"}}},
},
}
expected := `[[albums]]
name = "Born to Run"
[[albums.songs]]
name = "Jungleland"
[[albums.songs]]
name = "Meeting Across the River"
[[albums]]
name = "Born in the USA"
[[albums.songs]]
name = "Glory Days"
[[albums.songs]]
name = "Dancing in the Dark"
`
encodeExpected(t, "nested table arrays", value, expected, nil)
}
func TestEncodeArrayHashWithNormalHashOrder(t *testing.T) {
type Alpha struct {
V int
}
type Beta struct {
V int
}
type Conf struct {
V int
A Alpha
B []Beta
}
val := Conf{
V: 1,
A: Alpha{2},
B: []Beta{{3}},
}
expected := "V = 1\n\n[A]\n V = 2\n\n[[B]]\n V = 3\n"
encodeExpected(t, "array hash with normal hash order", val, expected, nil)
}
func TestEncodeWithOmitEmpty(t *testing.T) {
type simple struct {
Bool bool `toml:"bool,omitempty"`
String string `toml:"string,omitempty"`
Array [0]byte `toml:"array,omitempty"`
Slice []int `toml:"slice,omitempty"`
Map map[string]string `toml:"map,omitempty"`
}
var v simple
encodeExpected(t, "fields with omitempty are omitted when empty", v, "", nil)
v = simple{
Bool: true,
String: " ",
Slice: []int{2, 3, 4},
Map: map[string]string{"foo": "bar"},
}
expected := `bool = true
string = " "
slice = [2, 3, 4]
[map]
foo = "bar"
`
encodeExpected(t, "fields with omitempty are not omitted when non-empty",
v, expected, nil)
}
func TestEncodeWithOmitZero(t *testing.T) {
type simple struct {
Number int `toml:"number,omitzero"`
Real float64 `toml:"real,omitzero"`
Unsigned uint `toml:"unsigned,omitzero"`
}
value := simple{0, 0.0, uint(0)}
expected := ""
encodeExpected(t, "simple with omitzero, all zero", value, expected, nil)
value.Number = 10
value.Real = 20
value.Unsigned = 5
expected = `number = 10
real = 20.0
unsigned = 5
`
encodeExpected(t, "simple with omitzero, non-zero", value, expected, nil)
}
func TestEncodeOmitemptyWithEmptyName(t *testing.T) {
type simple struct {
S []int `toml:",omitempty"`
}
v := simple{[]int{1, 2, 3}}
expected := "S = [1, 2, 3]\n"
encodeExpected(t, "simple with omitempty, no name, non-empty field",
v, expected, nil)
}
func TestEncodeAnonymousStruct(t *testing.T) {
type Inner struct{ N int }
type Outer0 struct{ Inner }
type Outer1 struct {
Inner `toml:"inner"`
}
v0 := Outer0{Inner{3}}
expected := "N = 3\n"
encodeExpected(t, "embedded anonymous untagged struct", v0, expected, nil)
v1 := Outer1{Inner{3}}
expected = "[inner]\n N = 3\n"
encodeExpected(t, "embedded anonymous tagged struct", v1, expected, nil)
}
func TestEncodeAnonymousStructPointerField(t *testing.T) {
type Inner struct{ N int }
type Outer0 struct{ *Inner }
type Outer1 struct {
*Inner `toml:"inner"`
}
v0 := Outer0{}
expected := ""
encodeExpected(t, "nil anonymous untagged struct pointer field", v0, expected, nil)
v0 = Outer0{&Inner{3}}
expected = "N = 3\n"
encodeExpected(t, "non-nil anonymous untagged struct pointer field", v0, expected, nil)
v1 := Outer1{}
expected = ""
encodeExpected(t, "nil anonymous tagged struct pointer field", v1, expected, nil)
v1 = Outer1{&Inner{3}}
expected = "[inner]\n N = 3\n"
encodeExpected(t, "non-nil anonymous tagged struct pointer field", v1, expected, nil)
}
func TestEncodeIgnoredFields(t *testing.T) {
type simple struct {
Number int `toml:"-"`
}
value := simple{}
expected := ""
encodeExpected(t, "ignored field", value, expected, nil)
}
func encodeExpected(
t *testing.T, label string, val interface{}, wantStr string, wantErr error,
) {
var buf bytes.Buffer
enc := NewEncoder(&buf)
err := enc.Encode(val)
if err != wantErr {
if wantErr != nil {
if wantErr == errAnything && err != nil {
return
}
t.Errorf("%s: want Encode error %v, got %v", label, wantErr, err)
} else {
t.Errorf("%s: Encode failed: %s", label, err)
}
}
if err != nil {
return
}
if got := buf.String(); wantStr != got {
t.Errorf("%s: want\n-----\n%q\n-----\nbut got\n-----\n%q\n-----\n",
label, wantStr, got)
}
}
func ExampleEncoder_Encode() {
date, _ := time.Parse(time.RFC822, "14 Mar 10 18:00 UTC")
var config = map[string]interface{}{
"date": date,
"counts": []int{1, 1, 2, 3, 5, 8},
"hash": map[string]string{
"key1": "val1",
"key2": "val2",
},
}
buf := new(bytes.Buffer)
if err := NewEncoder(buf).Encode(config); err != nil {
log.Fatal(err)
}
fmt.Println(buf.String())
// Output:
// counts = [1, 1, 2, 3, 5, 8]
// date = 2010-03-14T18:00:00Z
//
// [hash]
// key1 = "val1"
// key2 = "val2"
}

19
vendor/github.com/BurntSushi/toml/encoding_types.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
// +build go1.2
package toml
// In order to support Go 1.1, we define our own TextMarshaler and
// TextUnmarshaler types. For Go 1.2+, we just alias them with the
// standard library interfaces.
import (
"encoding"
)
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler encoding.TextMarshaler
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler encoding.TextUnmarshaler

View File

@ -0,0 +1,18 @@
// +build !go1.2
package toml
// These interfaces were introduced in Go 1.2, so we add them manually when
// compiling for Go 1.1.
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler interface {
MarshalText() (text []byte, err error)
}
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler interface {
UnmarshalText(text []byte) error
}

858
vendor/github.com/BurntSushi/toml/lex.go generated vendored Normal file
View File

@ -0,0 +1,858 @@
package toml
import (
"fmt"
"strings"
"unicode"
"unicode/utf8"
)
type itemType int
const (
itemError itemType = iota
itemNIL // used in the parser to indicate no type
itemEOF
itemText
itemString
itemRawString
itemMultilineString
itemRawMultilineString
itemBool
itemInteger
itemFloat
itemDatetime
itemArray // the start of an array
itemArrayEnd
itemTableStart
itemTableEnd
itemArrayTableStart
itemArrayTableEnd
itemKeyStart
itemCommentStart
)
const (
eof = 0
tableStart = '['
tableEnd = ']'
arrayTableStart = '['
arrayTableEnd = ']'
tableSep = '.'
keySep = '='
arrayStart = '['
arrayEnd = ']'
arrayValTerm = ','
commentStart = '#'
stringStart = '"'
stringEnd = '"'
rawStringStart = '\''
rawStringEnd = '\''
)
type stateFn func(lx *lexer) stateFn
type lexer struct {
input string
start int
pos int
width int
line int
state stateFn
items chan item
// A stack of state functions used to maintain context.
// The idea is to reuse parts of the state machine in various places.
// For example, values can appear at the top level or within arbitrarily
// nested arrays. The last state on the stack is used after a value has
// been lexed. Similarly for comments.
stack []stateFn
}
type item struct {
typ itemType
val string
line int
}
func (lx *lexer) nextItem() item {
for {
select {
case item := <-lx.items:
return item
default:
lx.state = lx.state(lx)
}
}
}
func lex(input string) *lexer {
lx := &lexer{
input: input + "\n",
state: lexTop,
line: 1,
items: make(chan item, 10),
stack: make([]stateFn, 0, 10),
}
return lx
}
func (lx *lexer) push(state stateFn) {
lx.stack = append(lx.stack, state)
}
func (lx *lexer) pop() stateFn {
if len(lx.stack) == 0 {
return lx.errorf("BUG in lexer: no states to pop.")
}
last := lx.stack[len(lx.stack)-1]
lx.stack = lx.stack[0 : len(lx.stack)-1]
return last
}
func (lx *lexer) current() string {
return lx.input[lx.start:lx.pos]
}
func (lx *lexer) emit(typ itemType) {
lx.items <- item{typ, lx.current(), lx.line}
lx.start = lx.pos
}
func (lx *lexer) emitTrim(typ itemType) {
lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line}
lx.start = lx.pos
}
func (lx *lexer) next() (r rune) {
if lx.pos >= len(lx.input) {
lx.width = 0
return eof
}
if lx.input[lx.pos] == '\n' {
lx.line++
}
r, lx.width = utf8.DecodeRuneInString(lx.input[lx.pos:])
lx.pos += lx.width
return r
}
// ignore skips over the pending input before this point.
func (lx *lexer) ignore() {
lx.start = lx.pos
}
// backup steps back one rune. Can be called only once per call of next.
func (lx *lexer) backup() {
lx.pos -= lx.width
if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' {
lx.line--
}
}
// accept consumes the next rune if it's equal to `valid`.
func (lx *lexer) accept(valid rune) bool {
if lx.next() == valid {
return true
}
lx.backup()
return false
}
// peek returns but does not consume the next rune in the input.
func (lx *lexer) peek() rune {
r := lx.next()
lx.backup()
return r
}
// skip ignores all input that matches the given predicate.
func (lx *lexer) skip(pred func(rune) bool) {
for {
r := lx.next()
if pred(r) {
continue
}
lx.backup()
lx.ignore()
return
}
}
// errorf stops all lexing by emitting an error and returning `nil`.
// Note that any value that is a character is escaped if it's a special
// character (new lines, tabs, etc.).
func (lx *lexer) errorf(format string, values ...interface{}) stateFn {
lx.items <- item{
itemError,
fmt.Sprintf(format, values...),
lx.line,
}
return nil
}
// lexTop consumes elements at the top level of TOML data.
func lexTop(lx *lexer) stateFn {
r := lx.next()
if isWhitespace(r) || isNL(r) {
return lexSkip(lx, lexTop)
}
switch r {
case commentStart:
lx.push(lexTop)
return lexCommentStart
case tableStart:
return lexTableStart
case eof:
if lx.pos > lx.start {
return lx.errorf("Unexpected EOF.")
}
lx.emit(itemEOF)
return nil
}
// At this point, the only valid item can be a key, so we back up
// and let the key lexer do the rest.
lx.backup()
lx.push(lexTopEnd)
return lexKeyStart
}
// lexTopEnd is entered whenever a top-level item has been consumed. (A value
// or a table.) It must see only whitespace, and will turn back to lexTop
// upon a new line. If it sees EOF, it will quit the lexer successfully.
func lexTopEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case r == commentStart:
// a comment will read to a new line for us.
lx.push(lexTop)
return lexCommentStart
case isWhitespace(r):
return lexTopEnd
case isNL(r):
lx.ignore()
return lexTop
case r == eof:
lx.ignore()
return lexTop
}
return lx.errorf("Expected a top-level item to end with a new line, "+
"comment or EOF, but got %q instead.", r)
}
// lexTable lexes the beginning of a table. Namely, it makes sure that
// it starts with a character other than '.' and ']'.
// It assumes that '[' has already been consumed.
// It also handles the case that this is an item in an array of tables.
// e.g., '[[name]]'.
func lexTableStart(lx *lexer) stateFn {
if lx.peek() == arrayTableStart {
lx.next()
lx.emit(itemArrayTableStart)
lx.push(lexArrayTableEnd)
} else {
lx.emit(itemTableStart)
lx.push(lexTableEnd)
}
return lexTableNameStart
}
func lexTableEnd(lx *lexer) stateFn {
lx.emit(itemTableEnd)
return lexTopEnd
}
func lexArrayTableEnd(lx *lexer) stateFn {
if r := lx.next(); r != arrayTableEnd {
return lx.errorf("Expected end of table array name delimiter %q, "+
"but got %q instead.", arrayTableEnd, r)
}
lx.emit(itemArrayTableEnd)
return lexTopEnd
}
func lexTableNameStart(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.peek(); {
case r == tableEnd || r == eof:
return lx.errorf("Unexpected end of table name. (Table names cannot " +
"be empty.)")
case r == tableSep:
return lx.errorf("Unexpected table separator. (Table names cannot " +
"be empty.)")
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.push(lexTableNameEnd)
return lexValue // reuse string lexing
default:
return lexBareTableName
}
}
// lexBareTableName lexes the name of a table. It assumes that at least one
// valid character for the table has already been read.
func lexBareTableName(lx *lexer) stateFn {
r := lx.next()
if isBareKeyChar(r) {
return lexBareTableName
}
lx.backup()
lx.emit(itemText)
return lexTableNameEnd
}
// lexTableNameEnd reads the end of a piece of a table name, optionally
// consuming whitespace.
func lexTableNameEnd(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.next(); {
case isWhitespace(r):
return lexTableNameEnd
case r == tableSep:
lx.ignore()
return lexTableNameStart
case r == tableEnd:
return lx.pop()
default:
return lx.errorf("Expected '.' or ']' to end table name, but got %q "+
"instead.", r)
}
}
// lexKeyStart consumes a key name up until the first non-whitespace character.
// lexKeyStart will ignore whitespace.
func lexKeyStart(lx *lexer) stateFn {
r := lx.peek()
switch {
case r == keySep:
return lx.errorf("Unexpected key separator %q.", keySep)
case isWhitespace(r) || isNL(r):
lx.next()
return lexSkip(lx, lexKeyStart)
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.emit(itemKeyStart)
lx.push(lexKeyEnd)
return lexValue // reuse string lexing
default:
lx.ignore()
lx.emit(itemKeyStart)
return lexBareKey
}
}
// lexBareKey consumes the text of a bare key. Assumes that the first character
// (which is not whitespace) has not yet been consumed.
func lexBareKey(lx *lexer) stateFn {
switch r := lx.next(); {
case isBareKeyChar(r):
return lexBareKey
case isWhitespace(r):
lx.backup()
lx.emit(itemText)
return lexKeyEnd
case r == keySep:
lx.backup()
lx.emit(itemText)
return lexKeyEnd
default:
return lx.errorf("Bare keys cannot contain %q.", r)
}
}
// lexKeyEnd consumes the end of a key and trims whitespace (up to the key
// separator).
func lexKeyEnd(lx *lexer) stateFn {
switch r := lx.next(); {
case r == keySep:
return lexSkip(lx, lexValue)
case isWhitespace(r):
return lexSkip(lx, lexKeyEnd)
default:
return lx.errorf("Expected key separator %q, but got %q instead.",
keySep, r)
}
}
// lexValue starts the consumption of a value anywhere a value is expected.
// lexValue will ignore whitespace.
// After a value is lexed, the last state on the next is popped and returned.
func lexValue(lx *lexer) stateFn {
// We allow whitespace to precede a value, but NOT new lines.
// In array syntax, the array states are responsible for ignoring new
// lines.
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexValue)
case isDigit(r):
lx.backup() // avoid an extra state and use the same as above
return lexNumberOrDateStart
}
switch r {
case arrayStart:
lx.ignore()
lx.emit(itemArray)
return lexArrayValue
case stringStart:
if lx.accept(stringStart) {
if lx.accept(stringStart) {
lx.ignore() // Ignore """
return lexMultilineString
}
lx.backup()
}
lx.ignore() // ignore the '"'
return lexString
case rawStringStart:
if lx.accept(rawStringStart) {
if lx.accept(rawStringStart) {
lx.ignore() // Ignore """
return lexMultilineRawString
}
lx.backup()
}
lx.ignore() // ignore the "'"
return lexRawString
case '+', '-':
return lexNumberStart
case '.': // special error case, be kind to users
return lx.errorf("Floats must start with a digit, not '.'.")
}
if unicode.IsLetter(r) {
// Be permissive here; lexBool will give a nice error if the
// user wrote something like
// x = foo
// (i.e. not 'true' or 'false' but is something else word-like.)
lx.backup()
return lexBool
}
return lx.errorf("Expected value but found %q instead.", r)
}
// lexArrayValue consumes one value in an array. It assumes that '[' or ','
// have already been consumed. All whitespace and new lines are ignored.
func lexArrayValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValue)
case r == commentStart:
lx.push(lexArrayValue)
return lexCommentStart
case r == arrayValTerm:
return lx.errorf("Unexpected array value terminator %q.",
arrayValTerm)
case r == arrayEnd:
return lexArrayEnd
}
lx.backup()
lx.push(lexArrayValueEnd)
return lexValue
}
// lexArrayValueEnd consumes the cruft between values of an array. Namely,
// it ignores whitespace and expects either a ',' or a ']'.
func lexArrayValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValueEnd)
case r == commentStart:
lx.push(lexArrayValueEnd)
return lexCommentStart
case r == arrayValTerm:
lx.ignore()
return lexArrayValue // move on to the next value
case r == arrayEnd:
return lexArrayEnd
}
return lx.errorf("Expected an array value terminator %q or an array "+
"terminator %q, but got %q instead.", arrayValTerm, arrayEnd, r)
}
// lexArrayEnd finishes the lexing of an array. It assumes that a ']' has
// just been consumed.
func lexArrayEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemArrayEnd)
return lx.pop()
}
// lexString consumes the inner contents of a string. It assumes that the
// beginning '"' has already been consumed and ignored.
func lexString(lx *lexer) stateFn {
r := lx.next()
switch {
case isNL(r):
return lx.errorf("Strings cannot contain new lines.")
case r == '\\':
lx.push(lexString)
return lexStringEscape
case r == stringEnd:
lx.backup()
lx.emit(itemString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexString
}
// lexMultilineString consumes the inner contents of a string. It assumes that
// the beginning '"""' has already been consumed and ignored.
func lexMultilineString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == '\\':
return lexMultilineStringEscape
case r == stringEnd:
if lx.accept(stringEnd) {
if lx.accept(stringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineString
}
// lexRawString consumes a raw string. Nothing can be escaped in such a string.
// It assumes that the beginning "'" has already been consumed and ignored.
func lexRawString(lx *lexer) stateFn {
r := lx.next()
switch {
case isNL(r):
return lx.errorf("Strings cannot contain new lines.")
case r == rawStringEnd:
lx.backup()
lx.emit(itemRawString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexRawString
}
// lexMultilineRawString consumes a raw string. Nothing can be escaped in such
// a string. It assumes that the beginning "'" has already been consumed and
// ignored.
func lexMultilineRawString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == rawStringEnd:
if lx.accept(rawStringEnd) {
if lx.accept(rawStringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemRawMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineRawString
}
// lexMultilineStringEscape consumes an escaped character. It assumes that the
// preceding '\\' has already been consumed.
func lexMultilineStringEscape(lx *lexer) stateFn {
// Handle the special case first:
if isNL(lx.next()) {
return lexMultilineString
}
lx.backup()
lx.push(lexMultilineString)
return lexStringEscape(lx)
}
func lexStringEscape(lx *lexer) stateFn {
r := lx.next()
switch r {
case 'b':
fallthrough
case 't':
fallthrough
case 'n':
fallthrough
case 'f':
fallthrough
case 'r':
fallthrough
case '"':
fallthrough
case '\\':
return lx.pop()
case 'u':
return lexShortUnicodeEscape
case 'U':
return lexLongUnicodeEscape
}
return lx.errorf("Invalid escape character %q. Only the following "+
"escape characters are allowed: "+
"\\b, \\t, \\n, \\f, \\r, \\\", \\/, \\\\, "+
"\\uXXXX and \\UXXXXXXXX.", r)
}
func lexShortUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 4; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf("Expected four hexadecimal digits after '\\u', "+
"but got '%s' instead.", lx.current())
}
}
return lx.pop()
}
func lexLongUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 8; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf("Expected eight hexadecimal digits after '\\U', "+
"but got '%s' instead.", lx.current())
}
}
return lx.pop()
}
// lexNumberOrDateStart consumes either an integer, a float, or datetime.
func lexNumberOrDateStart(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '_':
return lexNumber
case 'e', 'E':
return lexFloat
case '.':
return lx.errorf("Floats must start with a digit, not '.'.")
}
return lx.errorf("Expected a digit but got %q.", r)
}
// lexNumberOrDate consumes either an integer, float or datetime.
func lexNumberOrDate(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '-':
return lexDatetime
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexDatetime consumes a Datetime, to a first approximation.
// The parser validates that it matches one of the accepted formats.
func lexDatetime(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexDatetime
}
switch r {
case '-', 'T', ':', '.', 'Z':
return lexDatetime
}
lx.backup()
lx.emit(itemDatetime)
return lx.pop()
}
// lexNumberStart consumes either an integer or a float. It assumes that a sign
// has already been read, but that *no* digits have been consumed.
// lexNumberStart will move to the appropriate integer or float states.
func lexNumberStart(lx *lexer) stateFn {
// We MUST see a digit. Even floats have to start with a digit.
r := lx.next()
if !isDigit(r) {
if r == '.' {
return lx.errorf("Floats must start with a digit, not '.'.")
}
return lx.errorf("Expected a digit but got %q.", r)
}
return lexNumber
}
// lexNumber consumes an integer or a float after seeing the first digit.
func lexNumber(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumber
}
switch r {
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexFloat consumes the elements of a float. It allows any sequence of
// float-like characters, so floats emitted by the lexer are only a first
// approximation and must be validated by the parser.
func lexFloat(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexFloat
}
switch r {
case '_', '.', '-', '+', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemFloat)
return lx.pop()
}
// lexBool consumes a bool string: 'true' or 'false.
func lexBool(lx *lexer) stateFn {
var rs []rune
for {
r := lx.next()
if r == eof || isWhitespace(r) || isNL(r) {
lx.backup()
break
}
rs = append(rs, r)
}
s := string(rs)
switch s {
case "true", "false":
lx.emit(itemBool)
return lx.pop()
}
return lx.errorf("Expected value but found %q instead.", s)
}
// lexCommentStart begins the lexing of a comment. It will emit
// itemCommentStart and consume no characters, passing control to lexComment.
func lexCommentStart(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemCommentStart)
return lexComment
}
// lexComment lexes an entire comment. It assumes that '#' has been consumed.
// It will consume *up to* the first new line character, and pass control
// back to the last state on the stack.
func lexComment(lx *lexer) stateFn {
r := lx.peek()
if isNL(r) || r == eof {
lx.emit(itemText)
return lx.pop()
}
lx.next()
return lexComment
}
// lexSkip ignores all slurped input and moves on to the next state.
func lexSkip(lx *lexer, nextState stateFn) stateFn {
return func(lx *lexer) stateFn {
lx.ignore()
return nextState
}
}
// isWhitespace returns true if `r` is a whitespace character according
// to the spec.
func isWhitespace(r rune) bool {
return r == '\t' || r == ' '
}
func isNL(r rune) bool {
return r == '\n' || r == '\r'
}
func isDigit(r rune) bool {
return r >= '0' && r <= '9'
}
func isHexadecimal(r rune) bool {
return (r >= '0' && r <= '9') ||
(r >= 'a' && r <= 'f') ||
(r >= 'A' && r <= 'F')
}
func isBareKeyChar(r rune) bool {
return (r >= 'A' && r <= 'Z') ||
(r >= 'a' && r <= 'z') ||
(r >= '0' && r <= '9') ||
r == '_' ||
r == '-'
}
func (itype itemType) String() string {
switch itype {
case itemError:
return "Error"
case itemNIL:
return "NIL"
case itemEOF:
return "EOF"
case itemText:
return "Text"
case itemString, itemRawString, itemMultilineString, itemRawMultilineString:
return "String"
case itemBool:
return "Bool"
case itemInteger:
return "Integer"
case itemFloat:
return "Float"
case itemDatetime:
return "DateTime"
case itemTableStart:
return "TableStart"
case itemTableEnd:
return "TableEnd"
case itemKeyStart:
return "KeyStart"
case itemArray:
return "Array"
case itemArrayEnd:
return "ArrayEnd"
case itemCommentStart:
return "CommentStart"
}
panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype)))
}
func (item item) String() string {
return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val)
}

557
vendor/github.com/BurntSushi/toml/parse.go generated vendored Normal file
View File

@ -0,0 +1,557 @@
package toml
import (
"fmt"
"strconv"
"strings"
"time"
"unicode"
"unicode/utf8"
)
type parser struct {
mapping map[string]interface{}
types map[string]tomlType
lx *lexer
// A list of keys in the order that they appear in the TOML data.
ordered []Key
// the full key for the current hash in scope
context Key
// the base key name for everything except hashes
currentKey string
// rough approximation of line number
approxLine int
// A map of 'key.group.names' to whether they were created implicitly.
implicits map[string]bool
}
type parseError string
func (pe parseError) Error() string {
return string(pe)
}
func parse(data string) (p *parser, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
if err, ok = r.(parseError); ok {
return
}
panic(r)
}
}()
p = &parser{
mapping: make(map[string]interface{}),
types: make(map[string]tomlType),
lx: lex(data),
ordered: make([]Key, 0),
implicits: make(map[string]bool),
}
for {
item := p.next()
if item.typ == itemEOF {
break
}
p.topLevel(item)
}
return p, nil
}
func (p *parser) panicf(format string, v ...interface{}) {
msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s",
p.approxLine, p.current(), fmt.Sprintf(format, v...))
panic(parseError(msg))
}
func (p *parser) next() item {
it := p.lx.nextItem()
if it.typ == itemError {
p.panicf("%s", it.val)
}
return it
}
func (p *parser) bug(format string, v ...interface{}) {
panic(fmt.Sprintf("BUG: "+format+"\n\n", v...))
}
func (p *parser) expect(typ itemType) item {
it := p.next()
p.assertEqual(typ, it.typ)
return it
}
func (p *parser) assertEqual(expected, got itemType) {
if expected != got {
p.bug("Expected '%s' but got '%s'.", expected, got)
}
}
func (p *parser) topLevel(item item) {
switch item.typ {
case itemCommentStart:
p.approxLine = item.line
p.expect(itemText)
case itemTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemTableEnd, kg.typ)
p.establishContext(key, false)
p.setType("", tomlHash)
p.ordered = append(p.ordered, key)
case itemArrayTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemArrayTableEnd, kg.typ)
p.establishContext(key, true)
p.setType("", tomlArrayHash)
p.ordered = append(p.ordered, key)
case itemKeyStart:
kname := p.next()
p.approxLine = kname.line
p.currentKey = p.keyString(kname)
val, typ := p.value(p.next())
p.setValue(p.currentKey, val)
p.setType(p.currentKey, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
p.currentKey = ""
default:
p.bug("Unexpected type at top level: %s", item.typ)
}
}
// Gets a string for a key (or part of a key in a table name).
func (p *parser) keyString(it item) string {
switch it.typ {
case itemText:
return it.val
case itemString, itemMultilineString,
itemRawString, itemRawMultilineString:
s, _ := p.value(it)
return s.(string)
default:
p.bug("Unexpected key type: %s", it.typ)
panic("unreachable")
}
}
// value translates an expected value from the lexer into a Go value wrapped
// as an empty interface.
func (p *parser) value(it item) (interface{}, tomlType) {
switch it.typ {
case itemString:
return p.replaceEscapes(it.val), p.typeOfPrimitive(it)
case itemMultilineString:
trimmed := stripFirstNewline(stripEscapedWhitespace(it.val))
return p.replaceEscapes(trimmed), p.typeOfPrimitive(it)
case itemRawString:
return it.val, p.typeOfPrimitive(it)
case itemRawMultilineString:
return stripFirstNewline(it.val), p.typeOfPrimitive(it)
case itemBool:
switch it.val {
case "true":
return true, p.typeOfPrimitive(it)
case "false":
return false, p.typeOfPrimitive(it)
}
p.bug("Expected boolean value, but got '%s'.", it.val)
case itemInteger:
if !numUnderscoresOK(it.val) {
p.panicf("Invalid integer %q: underscores must be surrounded by digits",
it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseInt(val, 10, 64)
if err != nil {
// Distinguish integer values. Normally, it'd be a bug if the lexer
// provides an invalid integer, but it's possible that the number is
// out of range of valid values (which the lexer cannot determine).
// So mark the former as a bug but the latter as a legitimate user
// error.
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Integer '%s' is out of the range of 64-bit "+
"signed integers.", it.val)
} else {
p.bug("Expected integer value, but got '%s'.", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemFloat:
parts := strings.FieldsFunc(it.val, func(r rune) bool {
switch r {
case '.', 'e', 'E':
return true
}
return false
})
for _, part := range parts {
if !numUnderscoresOK(part) {
p.panicf("Invalid float %q: underscores must be "+
"surrounded by digits", it.val)
}
}
if !numPeriodsOK(it.val) {
// As a special case, numbers like '123.' or '1.e2',
// which are valid as far as Go/strconv are concerned,
// must be rejected because TOML says that a fractional
// part consists of '.' followed by 1+ digits.
p.panicf("Invalid float %q: '.' must be followed "+
"by one or more digits", it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseFloat(val, 64)
if err != nil {
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Float '%s' is out of the range of 64-bit "+
"IEEE-754 floating-point numbers.", it.val)
} else {
p.panicf("Invalid float value: %q", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemDatetime:
var t time.Time
var ok bool
var err error
for _, format := range []string{
"2006-01-02T15:04:05Z07:00",
"2006-01-02T15:04:05",
"2006-01-02",
} {
t, err = time.ParseInLocation(format, it.val, time.Local)
if err == nil {
ok = true
break
}
}
if !ok {
p.panicf("Invalid TOML Datetime: %q.", it.val)
}
return t, p.typeOfPrimitive(it)
case itemArray:
array := make([]interface{}, 0)
types := make([]tomlType, 0)
for it = p.next(); it.typ != itemArrayEnd; it = p.next() {
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
val, typ := p.value(it)
array = append(array, val)
types = append(types, typ)
}
return array, p.typeOfArray(types)
}
p.bug("Unexpected value type: %s", it.typ)
panic("unreachable")
}
// numUnderscoresOK checks whether each underscore in s is surrounded by
// characters that are not underscores.
func numUnderscoresOK(s string) bool {
accept := false
for _, r := range s {
if r == '_' {
if !accept {
return false
}
accept = false
continue
}
accept = true
}
return accept
}
// numPeriodsOK checks whether every period in s is followed by a digit.
func numPeriodsOK(s string) bool {
period := false
for _, r := range s {
if period && !isDigit(r) {
return false
}
period = r == '.'
}
return !period
}
// establishContext sets the current context of the parser,
// where the context is either a hash or an array of hashes. Which one is
// set depends on the value of the `array` parameter.
//
// Establishing the context also makes sure that the key isn't a duplicate, and
// will create implicit hashes automatically.
func (p *parser) establishContext(key Key, array bool) {
var ok bool
// Always start at the top level and drill down for our context.
hashContext := p.mapping
keyContext := make(Key, 0)
// We only need implicit hashes for key[0:-1]
for _, k := range key[0 : len(key)-1] {
_, ok = hashContext[k]
keyContext = append(keyContext, k)
// No key? Make an implicit hash and move on.
if !ok {
p.addImplicit(keyContext)
hashContext[k] = make(map[string]interface{})
}
// If the hash context is actually an array of tables, then set
// the hash context to the last element in that array.
//
// Otherwise, it better be a table, since this MUST be a key group (by
// virtue of it not being the last element in a key).
switch t := hashContext[k].(type) {
case []map[string]interface{}:
hashContext = t[len(t)-1]
case map[string]interface{}:
hashContext = t
default:
p.panicf("Key '%s' was already created as a hash.", keyContext)
}
}
p.context = keyContext
if array {
// If this is the first element for this array, then allocate a new
// list of tables for it.
k := key[len(key)-1]
if _, ok := hashContext[k]; !ok {
hashContext[k] = make([]map[string]interface{}, 0, 5)
}
// Add a new table. But make sure the key hasn't already been used
// for something else.
if hash, ok := hashContext[k].([]map[string]interface{}); ok {
hashContext[k] = append(hash, make(map[string]interface{}))
} else {
p.panicf("Key '%s' was already created and cannot be used as "+
"an array.", keyContext)
}
} else {
p.setValue(key[len(key)-1], make(map[string]interface{}))
}
p.context = append(p.context, key[len(key)-1])
}
// setValue sets the given key to the given value in the current context.
// It will make sure that the key hasn't already been defined, account for
// implicit key groups.
func (p *parser) setValue(key string, value interface{}) {
var tmpHash interface{}
var ok bool
hash := p.mapping
keyContext := make(Key, 0)
for _, k := range p.context {
keyContext = append(keyContext, k)
if tmpHash, ok = hash[k]; !ok {
p.bug("Context for key '%s' has not been established.", keyContext)
}
switch t := tmpHash.(type) {
case []map[string]interface{}:
// The context is a table of hashes. Pick the most recent table
// defined as the current hash.
hash = t[len(t)-1]
case map[string]interface{}:
hash = t
default:
p.bug("Expected hash to have type 'map[string]interface{}', but "+
"it has '%T' instead.", tmpHash)
}
}
keyContext = append(keyContext, key)
if _, ok := hash[key]; ok {
// Typically, if the given key has already been set, then we have
// to raise an error since duplicate keys are disallowed. However,
// it's possible that a key was previously defined implicitly. In this
// case, it is allowed to be redefined concretely. (See the
// `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.)
//
// But we have to make sure to stop marking it as an implicit. (So that
// another redefinition provokes an error.)
//
// Note that since it has already been defined (as a hash), we don't
// want to overwrite it. So our business is done.
if p.isImplicit(keyContext) {
p.removeImplicit(keyContext)
return
}
// Otherwise, we have a concrete key trying to override a previous
// key, which is *always* wrong.
p.panicf("Key '%s' has already been defined.", keyContext)
}
hash[key] = value
}
// setType sets the type of a particular value at a given key.
// It should be called immediately AFTER setValue.
//
// Note that if `key` is empty, then the type given will be applied to the
// current context (which is either a table or an array of tables).
func (p *parser) setType(key string, typ tomlType) {
keyContext := make(Key, 0, len(p.context)+1)
for _, k := range p.context {
keyContext = append(keyContext, k)
}
if len(key) > 0 { // allow type setting for hashes
keyContext = append(keyContext, key)
}
p.types[keyContext.String()] = typ
}
// addImplicit sets the given Key as having been created implicitly.
func (p *parser) addImplicit(key Key) {
p.implicits[key.String()] = true
}
// removeImplicit stops tagging the given key as having been implicitly
// created.
func (p *parser) removeImplicit(key Key) {
p.implicits[key.String()] = false
}
// isImplicit returns true if the key group pointed to by the key was created
// implicitly.
func (p *parser) isImplicit(key Key) bool {
return p.implicits[key.String()]
}
// current returns the full key name of the current context.
func (p *parser) current() string {
if len(p.currentKey) == 0 {
return p.context.String()
}
if len(p.context) == 0 {
return p.currentKey
}
return fmt.Sprintf("%s.%s", p.context, p.currentKey)
}
func stripFirstNewline(s string) string {
if len(s) == 0 || s[0] != '\n' {
return s
}
return s[1:]
}
func stripEscapedWhitespace(s string) string {
esc := strings.Split(s, "\\\n")
if len(esc) > 1 {
for i := 1; i < len(esc); i++ {
esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace)
}
}
return strings.Join(esc, "")
}
func (p *parser) replaceEscapes(str string) string {
var replaced []rune
s := []byte(str)
r := 0
for r < len(s) {
if s[r] != '\\' {
c, size := utf8.DecodeRune(s[r:])
r += size
replaced = append(replaced, c)
continue
}
r += 1
if r >= len(s) {
p.bug("Escape sequence at end of string.")
return ""
}
switch s[r] {
default:
p.bug("Expected valid escape code after \\, but got %q.", s[r])
return ""
case 'b':
replaced = append(replaced, rune(0x0008))
r += 1
case 't':
replaced = append(replaced, rune(0x0009))
r += 1
case 'n':
replaced = append(replaced, rune(0x000A))
r += 1
case 'f':
replaced = append(replaced, rune(0x000C))
r += 1
case 'r':
replaced = append(replaced, rune(0x000D))
r += 1
case '"':
replaced = append(replaced, rune(0x0022))
r += 1
case '\\':
replaced = append(replaced, rune(0x005C))
r += 1
case 'u':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+5). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+5])
replaced = append(replaced, escaped)
r += 5
case 'U':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+9). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+9])
replaced = append(replaced, escaped)
r += 9
}
}
return string(replaced)
}
func (p *parser) asciiEscapeToUnicode(bs []byte) rune {
s := string(bs)
hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32)
if err != nil {
p.bug("Could not parse '%s' as a hexadecimal number, but the "+
"lexer claims it's OK: %s", s, err)
}
if !utf8.ValidRune(rune(hex)) {
p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s)
}
return rune(hex)
}
func isStringType(ty itemType) bool {
return ty == itemString || ty == itemMultilineString ||
ty == itemRawString || ty == itemRawMultilineString
}

1
vendor/github.com/BurntSushi/toml/session.vim generated vendored Normal file
View File

@ -0,0 +1 @@
au BufWritePost *.go silent!make tags > /dev/null 2>&1

91
vendor/github.com/BurntSushi/toml/type_check.go generated vendored Normal file
View File

@ -0,0 +1,91 @@
package toml
// tomlType represents any Go type that corresponds to a TOML type.
// While the first draft of the TOML spec has a simplistic type system that
// probably doesn't need this level of sophistication, we seem to be militating
// toward adding real composite types.
type tomlType interface {
typeString() string
}
// typeEqual accepts any two types and returns true if they are equal.
func typeEqual(t1, t2 tomlType) bool {
if t1 == nil || t2 == nil {
return false
}
return t1.typeString() == t2.typeString()
}
func typeIsHash(t tomlType) bool {
return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash)
}
type tomlBaseType string
func (btype tomlBaseType) typeString() string {
return string(btype)
}
func (btype tomlBaseType) String() string {
return btype.typeString()
}
var (
tomlInteger tomlBaseType = "Integer"
tomlFloat tomlBaseType = "Float"
tomlDatetime tomlBaseType = "Datetime"
tomlString tomlBaseType = "String"
tomlBool tomlBaseType = "Bool"
tomlArray tomlBaseType = "Array"
tomlHash tomlBaseType = "Hash"
tomlArrayHash tomlBaseType = "ArrayHash"
)
// typeOfPrimitive returns a tomlType of any primitive value in TOML.
// Primitive values are: Integer, Float, Datetime, String and Bool.
//
// Passing a lexer item other than the following will cause a BUG message
// to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime.
func (p *parser) typeOfPrimitive(lexItem item) tomlType {
switch lexItem.typ {
case itemInteger:
return tomlInteger
case itemFloat:
return tomlFloat
case itemDatetime:
return tomlDatetime
case itemString:
return tomlString
case itemMultilineString:
return tomlString
case itemRawString:
return tomlString
case itemRawMultilineString:
return tomlString
case itemBool:
return tomlBool
}
p.bug("Cannot infer primitive type of lex item '%s'.", lexItem)
panic("unreachable")
}
// typeOfArray returns a tomlType for an array given a list of types of its
// values.
//
// In the current spec, if an array is homogeneous, then its type is always
// "Array". If the array is not homogeneous, an error is generated.
func (p *parser) typeOfArray(types []tomlType) tomlType {
// Empty arrays are cool.
if len(types) == 0 {
return tomlArray
}
theType := types[0]
for _, t := range types[1:] {
if !typeEqual(theType, t) {
p.panicf("Array contains values of type '%s' and '%s', but "+
"arrays must be homogeneous.", theType, t)
}
}
return tomlArray
}

242
vendor/github.com/BurntSushi/toml/type_fields.go generated vendored Normal file
View File

@ -0,0 +1,242 @@
package toml
// Struct field handling is adapted from code in encoding/json:
//
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the Go distribution.
import (
"reflect"
"sort"
"sync"
)
// A field represents a single field found in a struct.
type field struct {
name string // the name of the field (`toml` tag included)
tag bool // whether field has a `toml` tag
index []int // represents the depth of an anonymous field
typ reflect.Type // the type of the field
}
// byName sorts field by name, breaking ties with depth,
// then breaking ties with "name came from toml tag", then
// breaking ties with index sequence.
type byName []field
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool {
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that TOML should recognize for the given
// type. The algorithm is breadth-first search over the set of structs to
// include - the top struct and then any reachable anonymous structs.
func typeFields(t reflect.Type) []field {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
count := map[reflect.Type]int{}
nextCount := map[reflect.Type]int{}
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.PkgPath != "" && !sf.Anonymous { // unexported
continue
}
opts := getOptions(sf.Tag)
if opts.skip {
continue
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if opts.name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := opts.name != ""
name := opts.name
if name == "" {
name = sf.Name
}
fields = append(fields, field{name, tagged, index, ft})
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
f := field{name: ft.Name(), index: index, typ: ft}
next = append(next, f)
}
}
}
}
sort.Sort(byName(fields))
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with TOML tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
return fields
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// TOML tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order. The winner
// must therefore be one with the shortest index length. Drop all
// longer entries, which is easy: just truncate the slice.
length := len(fields[0].index)
tagged := -1 // Index of first tagged field.
for i, f := range fields {
if len(f.index) > length {
fields = fields[:i]
break
}
if f.tag {
if tagged >= 0 {
// Multiple tagged fields at the same level: conflict.
// Return no field.
return field{}, false
}
tagged = i
}
}
if tagged >= 0 {
return fields[tagged], true
}
// All remaining fields have the same length. If there's more than one,
// we have a conflict (two fields named "X" at the same level) and we
// return no field.
if len(fields) > 1 {
return field{}, false
}
return fields[0], true
}
var fieldCache struct {
sync.RWMutex
m map[reflect.Type][]field
}
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) []field {
fieldCache.RLock()
f := fieldCache.m[t]
fieldCache.RUnlock()
if f != nil {
return f
}
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = typeFields(t)
if f == nil {
f = []field{}
}
fieldCache.Lock()
if fieldCache.m == nil {
fieldCache.m = map[reflect.Type][]field{}
}
fieldCache.m[t] = f
fieldCache.Unlock()
return f
}

27
vendor/github.com/kr/fs/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Copyright (c) 2012 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3
vendor/github.com/kr/fs/Readme generated vendored Normal file
View File

@ -0,0 +1,3 @@
Filesystem Package
http://godoc.org/github.com/kr/fs

19
vendor/github.com/kr/fs/example_test.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
package fs_test
import (
"fmt"
"os"
"github.com/kr/fs"
)
func ExampleWalker() {
walker := fs.Walk("/usr/lib")
for walker.Step() {
if err := walker.Err(); err != nil {
fmt.Fprintln(os.Stderr, err)
continue
}
fmt.Println(walker.Path())
}
}

36
vendor/github.com/kr/fs/filesystem.go generated vendored Normal file
View File

@ -0,0 +1,36 @@
package fs
import (
"io/ioutil"
"os"
"path/filepath"
)
// FileSystem defines the methods of an abstract filesystem.
type FileSystem interface {
// ReadDir reads the directory named by dirname and returns a
// list of directory entries.
ReadDir(dirname string) ([]os.FileInfo, error)
// Lstat returns a FileInfo describing the named file. If the file is a
// symbolic link, the returned FileInfo describes the symbolic link. Lstat
// makes no attempt to follow the link.
Lstat(name string) (os.FileInfo, error)
// Join joins any number of path elements into a single path, adding a
// separator if necessary. The result is Cleaned; in particular, all
// empty strings are ignored.
//
// The separator is FileSystem specific.
Join(elem ...string) string
}
// fs represents a FileSystem provided by the os package.
type fs struct{}
func (f *fs) ReadDir(dirname string) ([]os.FileInfo, error) { return ioutil.ReadDir(dirname) }
func (f *fs) Lstat(name string) (os.FileInfo, error) { return os.Lstat(name) }
func (f *fs) Join(elem ...string) string { return filepath.Join(elem...) }

95
vendor/github.com/kr/fs/walk.go generated vendored Normal file
View File

@ -0,0 +1,95 @@
// Package fs provides filesystem-related functions.
package fs
import (
"os"
)
// Walker provides a convenient interface for iterating over the
// descendants of a filesystem path.
// Successive calls to the Step method will step through each
// file or directory in the tree, including the root. The files
// are walked in lexical order, which makes the output deterministic
// but means that for very large directories Walker can be inefficient.
// Walker does not follow symbolic links.
type Walker struct {
fs FileSystem
cur item
stack []item
descend bool
}
type item struct {
path string
info os.FileInfo
err error
}
// Walk returns a new Walker rooted at root.
func Walk(root string) *Walker {
return WalkFS(root, new(fs))
}
// WalkFS returns a new Walker rooted at root on the FileSystem fs.
func WalkFS(root string, fs FileSystem) *Walker {
info, err := fs.Lstat(root)
return &Walker{
fs: fs,
stack: []item{{root, info, err}},
}
}
// Step advances the Walker to the next file or directory,
// which will then be available through the Path, Stat,
// and Err methods.
// It returns false when the walk stops at the end of the tree.
func (w *Walker) Step() bool {
if w.descend && w.cur.err == nil && w.cur.info.IsDir() {
list, err := w.fs.ReadDir(w.cur.path)
if err != nil {
w.cur.err = err
w.stack = append(w.stack, w.cur)
} else {
for i := len(list) - 1; i >= 0; i-- {
path := w.fs.Join(w.cur.path, list[i].Name())
w.stack = append(w.stack, item{path, list[i], nil})
}
}
}
if len(w.stack) == 0 {
return false
}
i := len(w.stack) - 1
w.cur = w.stack[i]
w.stack = w.stack[:i]
w.descend = true
return true
}
// Path returns the path to the most recent file or directory
// visited by a call to Step. It contains the argument to Walk
// as a prefix; that is, if Walk is called with "dir", which is
// a directory containing the file "a", Path will return "dir/a".
func (w *Walker) Path() string {
return w.cur.path
}
// Stat returns info for the most recent file or directory
// visited by a call to Step.
func (w *Walker) Stat() os.FileInfo {
return w.cur.info
}
// Err returns the error, if any, for the most recent attempt
// by Step to visit a file or directory. If a directory has
// an error, w will not descend into that directory.
func (w *Walker) Err() error {
return w.cur.err
}
// SkipDir causes the currently visited directory to be skipped.
// If w is not on a directory, SkipDir has no effect.
func (w *Walker) SkipDir() {
w.descend = false
}

209
vendor/github.com/kr/fs/walk_test.go generated vendored Normal file
View File

@ -0,0 +1,209 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fs_test
import (
"os"
"path/filepath"
"runtime"
"testing"
"github.com/kr/fs"
)
type PathTest struct {
path, result string
}
type Node struct {
name string
entries []*Node // nil if the entry is a file
mark int
}
var tree = &Node{
"testdata",
[]*Node{
{"a", nil, 0},
{"b", []*Node{}, 0},
{"c", nil, 0},
{
"d",
[]*Node{
{"x", nil, 0},
{"y", []*Node{}, 0},
{
"z",
[]*Node{
{"u", nil, 0},
{"v", nil, 0},
},
0,
},
},
0,
},
},
0,
}
func walkTree(n *Node, path string, f func(path string, n *Node)) {
f(path, n)
for _, e := range n.entries {
walkTree(e, filepath.Join(path, e.name), f)
}
}
func makeTree(t *testing.T) {
walkTree(tree, tree.name, func(path string, n *Node) {
if n.entries == nil {
fd, err := os.Create(path)
if err != nil {
t.Errorf("makeTree: %v", err)
return
}
fd.Close()
} else {
os.Mkdir(path, 0770)
}
})
}
func markTree(n *Node) { walkTree(n, "", func(path string, n *Node) { n.mark++ }) }
func checkMarks(t *testing.T, report bool) {
walkTree(tree, tree.name, func(path string, n *Node) {
if n.mark != 1 && report {
t.Errorf("node %s mark = %d; expected 1", path, n.mark)
}
n.mark = 0
})
}
// Assumes that each node name is unique. Good enough for a test.
// If clear is true, any incoming error is cleared before return. The errors
// are always accumulated, though.
func mark(path string, info os.FileInfo, err error, errors *[]error, clear bool) error {
if err != nil {
*errors = append(*errors, err)
if clear {
return nil
}
return err
}
name := info.Name()
walkTree(tree, tree.name, func(path string, n *Node) {
if n.name == name {
n.mark++
}
})
return nil
}
func TestWalk(t *testing.T) {
makeTree(t)
errors := make([]error, 0, 10)
clear := true
markFn := func(walker *fs.Walker) (err error) {
for walker.Step() {
err = mark(walker.Path(), walker.Stat(), walker.Err(), &errors, clear)
if err != nil {
break
}
}
return err
}
// Expect no errors.
err := markFn(fs.Walk(tree.name))
if err != nil {
t.Fatalf("no error expected, found: %s", err)
}
if len(errors) != 0 {
t.Fatalf("unexpected errors: %s", errors)
}
checkMarks(t, true)
errors = errors[0:0]
// Test permission errors. Only possible if we're not root
// and only on some file systems (AFS, FAT). To avoid errors during
// all.bash on those file systems, skip during go test -short.
if os.Getuid() > 0 && !testing.Short() {
// introduce 2 errors: chmod top-level directories to 0
os.Chmod(filepath.Join(tree.name, tree.entries[1].name), 0)
os.Chmod(filepath.Join(tree.name, tree.entries[3].name), 0)
// 3) capture errors, expect two.
// mark respective subtrees manually
markTree(tree.entries[1])
markTree(tree.entries[3])
// correct double-marking of directory itself
tree.entries[1].mark--
tree.entries[3].mark--
err := markFn(fs.Walk(tree.name))
if err != nil {
t.Fatalf("expected no error return from Walk, got %s", err)
}
if len(errors) != 2 {
t.Errorf("expected 2 errors, got %d: %s", len(errors), errors)
}
// the inaccessible subtrees were marked manually
checkMarks(t, true)
errors = errors[0:0]
// 4) capture errors, stop after first error.
// mark respective subtrees manually
markTree(tree.entries[1])
markTree(tree.entries[3])
// correct double-marking of directory itself
tree.entries[1].mark--
tree.entries[3].mark--
clear = false // error will stop processing
err = markFn(fs.Walk(tree.name))
if err == nil {
t.Fatalf("expected error return from Walk")
}
if len(errors) != 1 {
t.Errorf("expected 1 error, got %d: %s", len(errors), errors)
}
// the inaccessible subtrees were marked manually
checkMarks(t, false)
errors = errors[0:0]
// restore permissions
os.Chmod(filepath.Join(tree.name, tree.entries[1].name), 0770)
os.Chmod(filepath.Join(tree.name, tree.entries[3].name), 0770)
}
// cleanup
if err := os.RemoveAll(tree.name); err != nil {
t.Errorf("removeTree: %v", err)
}
}
func TestBug3486(t *testing.T) { // http://code.google.com/p/go/issues/detail?id=3486
root, err := filepath.EvalSymlinks(runtime.GOROOT())
if err != nil {
t.Fatal(err)
}
lib := filepath.Join(root, "lib")
src := filepath.Join(root, "src")
seenSrc := false
walker := fs.Walk(root)
for walker.Step() {
if walker.Err() != nil {
t.Fatal(walker.Err())
}
switch walker.Path() {
case lib:
walker.SkipDir()
case src:
seenSrc = true
}
}
if !seenSrc {
t.Fatalf("%q not seen", src)
}
}

6
vendor/github.com/magiconair/properties/.gitignore generated vendored Normal file
View File

@ -0,0 +1,6 @@
*.sublime-project
*.sublime-workspace
*.un~
*.swp
.idea/
*.iml

6
vendor/github.com/magiconair/properties/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,6 @@
language: go
go:
- 1.4.3
- 1.5.3
- 1.6
- tip

81
vendor/github.com/magiconair/properties/CHANGELOG.md generated vendored Normal file
View File

@ -0,0 +1,81 @@
## Changelog
### [1.7.0](https://github.com/magiconair/properties/tags/v1.7.0) - 20 Mar 2016
* [Issue #10](https://github.com/magiconair/properties/issues/10): Add [LoadURL,LoadURLs,MustLoadURL,MustLoadURLs](http://godoc.org/github.com/magiconair/properties#Properties.LoadURL) method to load properties from a URL.
* [Issue #11](https://github.com/magiconair/properties/issues/11): Add [LoadString,MustLoadString](http://godoc.org/github.com/magiconair/properties#Properties.LoadString) method to load properties from an UTF8 string.
* [PR #8](https://github.com/magiconair/properties/pull/8): Add [MustFlag](http://godoc.org/github.com/magiconair/properties#Properties.MustFlag) method to provide overrides via command line flags. (@pascaldekloe)
### [1.6.0](https://github.com/magiconair/properties/tags/v1.6.0) - 11 Dec 2015
* Add [Decode](http://godoc.org/github.com/magiconair/properties#Properties.Decode) method to populate struct from properties via tags.
### [1.5.6](https://github.com/magiconair/properties/tags/v1.5.6) - 18 Oct 2015
* Vendored in gopkg.in/check.v1
### [1.5.5](https://github.com/magiconair/properties/tags/v1.5.5) - 31 Jul 2015
* [PR #6](https://github.com/magiconair/properties/pull/6): Add [Delete](http://godoc.org/github.com/magiconair/properties#Properties.Delete) method to remove keys including comments. (@gerbenjacobs)
### [1.5.4](https://github.com/magiconair/properties/tags/v1.5.4) - 23 Jun 2015
* [Issue #5](https://github.com/magiconair/properties/issues/5): Allow disabling of property expansion [DisableExpansion](http://godoc.org/github.com/magiconair/properties#Properties.DisableExpansion). When property expansion is disabled Properties become a simple key/value store and don't check for circular references.
### [1.5.3](https://github.com/magiconair/properties/tags/v1.5.3) - 02 Jun 2015
* [Issue #4](https://github.com/magiconair/properties/issues/4): Maintain key order in [Filter()](http://godoc.org/github.com/magiconair/properties#Properties.Filter), [FilterPrefix()](http://godoc.org/github.com/magiconair/properties#Properties.FilterPrefix) and [FilterRegexp()](http://godoc.org/github.com/magiconair/properties#Properties.FilterRegexp)
### [1.5.2](https://github.com/magiconair/properties/tags/v1.5.2) - 10 Apr 2015
* [Issue #3](https://github.com/magiconair/properties/issues/3): Don't print comments in [WriteComment()](http://godoc.org/github.com/magiconair/properties#Properties.WriteComment) if they are all empty
* Add clickable links to README
### [1.5.1](https://github.com/magiconair/properties/tags/v1.5.1) - 08 Dec 2014
* Added [GetParsedDuration()](http://godoc.org/github.com/magiconair/properties#Properties.GetParsedDuration) and [MustGetParsedDuration()](http://godoc.org/github.com/magiconair/properties#Properties.MustGetParsedDuration) for values specified compatible with
[time.ParseDuration()](http://golang.org/pkg/time/#ParseDuration).
### [1.5.0](https://github.com/magiconair/properties/tags/v1.5.0) - 18 Nov 2014
* Added support for single and multi-line comments (reading, writing and updating)
* The order of keys is now preserved
* Calling [Set()](http://godoc.org/github.com/magiconair/properties#Properties.Set) with an empty key now silently ignores the call and does not create a new entry
* Added a [MustSet()](http://godoc.org/github.com/magiconair/properties#Properties.MustSet) method
* Migrated test library from launchpad.net/gocheck to [gopkg.in/check.v1](http://gopkg.in/check.v1)
### [1.4.2](https://github.com/magiconair/properties/tags/v1.4.2) - 15 Nov 2014
* [Issue #2](https://github.com/magiconair/properties/issues/2): Fixed goroutine leak in parser which created two lexers but cleaned up only one
### [1.4.1](https://github.com/magiconair/properties/tags/v1.4.1) - 13 Nov 2014
* [Issue #1](https://github.com/magiconair/properties/issues/1): Fixed bug in Keys() method which returned an empty string
### [1.4.0](https://github.com/magiconair/properties/tags/v1.4.0) - 23 Sep 2014
* Added [Keys()](http://godoc.org/github.com/magiconair/properties#Properties.Keys) to get the keys
* Added [Filter()](http://godoc.org/github.com/magiconair/properties#Properties.Filter), [FilterRegexp()](http://godoc.org/github.com/magiconair/properties#Properties.FilterRegexp) and [FilterPrefix()](http://godoc.org/github.com/magiconair/properties#Properties.FilterPrefix) to get a subset of the properties
### [1.3.0](https://github.com/magiconair/properties/tags/v1.3.0) - 18 Mar 2014
* Added support for time.Duration
* Made MustXXX() failure beha[ior configurable (log.Fatal, panic](https://github.com/magiconair/properties/tags/vior configurable (log.Fatal, panic) - custom)
* Changed default of MustXXX() failure from panic to log.Fatal
### [1.2.0](https://github.com/magiconair/properties/tags/v1.2.0) - 05 Mar 2014
* Added MustGet... functions
* Added support for int and uint with range checks on 32 bit platforms
### [1.1.0](https://github.com/magiconair/properties/tags/v1.1.0) - 20 Jan 2014
* Renamed from goproperties to properties
* Added support for expansion of environment vars in
filenames and value expressions
* Fixed bug where value expressions were not at the
start of the string
### [1.0.0](https://github.com/magiconair/properties/tags/v1.0.0) - 7 Jan 2014
* Initial release

25
vendor/github.com/magiconair/properties/LICENSE generated vendored Normal file
View File

@ -0,0 +1,25 @@
goproperties - properties file decoder for Go
Copyright (c) 2013-2014 - Frank Schroeder
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

81
vendor/github.com/magiconair/properties/README.md generated vendored Normal file
View File

@ -0,0 +1,81 @@
Overview [![Build Status](https://travis-ci.org/magiconair/properties.svg?branch=master)](https://travis-ci.org/magiconair/properties)
========
#### Current version: 1.7.0
properties is a Go library for reading and writing properties files.
It supports reading from multiple files or URLs and Spring style recursive
property expansion of expressions like `${key}` to their corresponding value.
Value expressions can refer to other keys like in `${key}` or to environment
variables like in `${USER}`. Filenames can also contain environment variables
like in `/home/${USER}/myapp.properties`.
Properties can be decoded into structs, maps, arrays and values through
struct tags.
Comments and the order of keys are preserved. Comments can be modified
and can be written to the output.
The properties library supports both ISO-8859-1 and UTF-8 encoded data.
Starting from version 1.3.0 the behavior of the MustXXX() functions is
configurable by providing a custom `ErrorHandler` function. The default has
changed from `panic` to `log.Fatal` but this is configurable and custom
error handling functions can be provided. See the package documentation for
details.
Getting Started
---------------
```go
import (
"flag"
"github.com/magiconair/properties"
)
func main() {
p := properties.MustLoadFile("${HOME}/config.properties", properties.UTF8)
// via getters
host := p.MustGetString("host")
port := p.GetInt("port", 8080)
// or via decode
type Config struct {
Host string `properties:"host"`
Port int `properties:"port,default=9000"`
Accept []string `properties:"accept,default=image/png;image;gif"`
Timeout time.Duration `properties:"timeout,default=5s"`
}
var cfg Config
if err := p.Decode(&cfg); err != nil {
log.Fatal(err)
}
// or via flags
p.MustFlag(flag.CommandLine)
// or via url
p = properties.MustLoadURL("http://host/path")
}
```
Read the full documentation on [GoDoc](https://godoc.org/github.com/magiconair/properties) [![GoDoc](https://godoc.org/github.com/magiconair/properties?status.png)](https://godoc.org/github.com/magiconair/properties)
Installation and Upgrade
------------------------
```
$ go get -u github.com/magiconair/properties
```
License
-------
2 clause BSD license. See [LICENSE](https://github.com/magiconair/properties/blob/master/LICENSE) file for details.
ToDo
----
* Dump contents with passwords and secrets obscured

View File

@ -0,0 +1,25 @@
Gocheck - A rich testing framework for Go
Copyright (c) 2010-2013 Gustavo Niemeyer <gustavo@niemeyer.net>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,20 @@
Instructions
============
Install the package with:
go get gopkg.in/check.v1
Import it with:
import "gopkg.in/check.v1"
and use _check_ as the package name inside the code.
For more details, visit the project page:
* http://labix.org/gocheck
and the API documentation:
* https://gopkg.in/check.v1

View File

@ -0,0 +1,2 @@
- Assert(slice, Contains, item)
- Parallel test support

View File

@ -0,0 +1,163 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package check
import (
"fmt"
"runtime"
"time"
)
var memStats runtime.MemStats
// testingB is a type passed to Benchmark functions to manage benchmark
// timing and to specify the number of iterations to run.
type timer struct {
start time.Time // Time test or benchmark started
duration time.Duration
N int
bytes int64
timerOn bool
benchTime time.Duration
// The initial states of memStats.Mallocs and memStats.TotalAlloc.
startAllocs uint64
startBytes uint64
// The net total of this test after being run.
netAllocs uint64
netBytes uint64
}
// StartTimer starts timing a test. This function is called automatically
// before a benchmark starts, but it can also used to resume timing after
// a call to StopTimer.
func (c *C) StartTimer() {
if !c.timerOn {
c.start = time.Now()
c.timerOn = true
runtime.ReadMemStats(&memStats)
c.startAllocs = memStats.Mallocs
c.startBytes = memStats.TotalAlloc
}
}
// StopTimer stops timing a test. This can be used to pause the timer
// while performing complex initialization that you don't
// want to measure.
func (c *C) StopTimer() {
if c.timerOn {
c.duration += time.Now().Sub(c.start)
c.timerOn = false
runtime.ReadMemStats(&memStats)
c.netAllocs += memStats.Mallocs - c.startAllocs
c.netBytes += memStats.TotalAlloc - c.startBytes
}
}
// ResetTimer sets the elapsed benchmark time to zero.
// It does not affect whether the timer is running.
func (c *C) ResetTimer() {
if c.timerOn {
c.start = time.Now()
runtime.ReadMemStats(&memStats)
c.startAllocs = memStats.Mallocs
c.startBytes = memStats.TotalAlloc
}
c.duration = 0
c.netAllocs = 0
c.netBytes = 0
}
// SetBytes informs the number of bytes that the benchmark processes
// on each iteration. If this is called in a benchmark it will also
// report MB/s.
func (c *C) SetBytes(n int64) {
c.bytes = n
}
func (c *C) nsPerOp() int64 {
if c.N <= 0 {
return 0
}
return c.duration.Nanoseconds() / int64(c.N)
}
func (c *C) mbPerSec() float64 {
if c.bytes <= 0 || c.duration <= 0 || c.N <= 0 {
return 0
}
return (float64(c.bytes) * float64(c.N) / 1e6) / c.duration.Seconds()
}
func (c *C) timerString() string {
if c.N <= 0 {
return fmt.Sprintf("%3.3fs", float64(c.duration.Nanoseconds())/1e9)
}
mbs := c.mbPerSec()
mb := ""
if mbs != 0 {
mb = fmt.Sprintf("\t%7.2f MB/s", mbs)
}
nsop := c.nsPerOp()
ns := fmt.Sprintf("%10d ns/op", nsop)
if c.N > 0 && nsop < 100 {
// The format specifiers here make sure that
// the ones digits line up for all three possible formats.
if nsop < 10 {
ns = fmt.Sprintf("%13.2f ns/op", float64(c.duration.Nanoseconds())/float64(c.N))
} else {
ns = fmt.Sprintf("%12.1f ns/op", float64(c.duration.Nanoseconds())/float64(c.N))
}
}
memStats := ""
if c.benchMem {
allocedBytes := fmt.Sprintf("%8d B/op", int64(c.netBytes)/int64(c.N))
allocs := fmt.Sprintf("%8d allocs/op", int64(c.netAllocs)/int64(c.N))
memStats = fmt.Sprintf("\t%s\t%s", allocedBytes, allocs)
}
return fmt.Sprintf("%8d\t%s%s%s", c.N, ns, mb, memStats)
}
func min(x, y int) int {
if x > y {
return y
}
return x
}
func max(x, y int) int {
if x < y {
return y
}
return x
}
// roundDown10 rounds a number down to the nearest power of 10.
func roundDown10(n int) int {
var tens = 0
// tens = floor(log_10(n))
for n > 10 {
n = n / 10
tens++
}
// result = 10^tens
result := 1
for i := 0; i < tens; i++ {
result *= 10
}
return result
}
// roundUp rounds x up to a number of the form [1eX, 2eX, 5eX].
func roundUp(n int) int {
base := roundDown10(n)
if n < (2 * base) {
return 2 * base
}
if n < (5 * base) {
return 5 * base
}
return 10 * base
}

View File

@ -0,0 +1,91 @@
// These tests verify the test running logic.
package check_test
import (
. "github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
"time"
)
var benchmarkS = Suite(&BenchmarkS{})
type BenchmarkS struct{}
func (s *BenchmarkS) TestCountSuite(c *C) {
suitesRun += 1
}
func (s *BenchmarkS) TestBasicTestTiming(c *C) {
helper := FixtureHelper{sleepOn: "Test1", sleep: 1000000 * time.Nanosecond}
output := String{}
runConf := RunConf{Output: &output, Verbose: true}
Run(&helper, &runConf)
expected := "PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Test1\t0\\.001s\n" +
"PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Test2\t0\\.000s\n"
c.Assert(output.value, Matches, expected)
}
func (s *BenchmarkS) TestStreamTestTiming(c *C) {
helper := FixtureHelper{sleepOn: "SetUpSuite", sleep: 1000000 * time.Nanosecond}
output := String{}
runConf := RunConf{Output: &output, Stream: true}
Run(&helper, &runConf)
expected := "(?s).*\nPASS: check_test\\.go:[0-9]+: FixtureHelper\\.SetUpSuite\t *0\\.001s\n.*"
c.Assert(output.value, Matches, expected)
}
func (s *BenchmarkS) TestBenchmark(c *C) {
helper := FixtureHelper{sleep: 100000}
output := String{}
runConf := RunConf{
Output: &output,
Benchmark: true,
BenchmarkTime: 10000000,
Filter: "Benchmark1",
}
Run(&helper, &runConf)
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Benchmark1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "SetUpTest")
c.Check(helper.calls[5], Equals, "Benchmark1")
c.Check(helper.calls[6], Equals, "TearDownTest")
// ... and more.
expected := "PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Benchmark1\t *100\t *[12][0-9]{5} ns/op\n"
c.Assert(output.value, Matches, expected)
}
func (s *BenchmarkS) TestBenchmarkBytes(c *C) {
helper := FixtureHelper{sleep: 100000}
output := String{}
runConf := RunConf{
Output: &output,
Benchmark: true,
BenchmarkTime: 10000000,
Filter: "Benchmark2",
}
Run(&helper, &runConf)
expected := "PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Benchmark2\t *100\t *[12][0-9]{5} ns/op\t *[4-9]\\.[0-9]{2} MB/s\n"
c.Assert(output.value, Matches, expected)
}
func (s *BenchmarkS) TestBenchmarkMem(c *C) {
helper := FixtureHelper{sleep: 100000}
output := String{}
runConf := RunConf{
Output: &output,
Benchmark: true,
BenchmarkMem: true,
BenchmarkTime: 10000000,
Filter: "Benchmark3",
}
Run(&helper, &runConf)
expected := "PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Benchmark3\t *100\t *[12][0-9]{5} ns/op\t *[0-9]+ B/op\t *[1-9] allocs/op\n"
c.Assert(output.value, Matches, expected)
}

View File

@ -0,0 +1,82 @@
// These initial tests are for bootstrapping. They verify that we can
// basically use the testing infrastructure itself to check if the test
// system is working.
//
// These tests use will break down the test runner badly in case of
// errors because if they simply fail, we can't be sure the developer
// will ever see anything (because failing means the failing system
// somehow isn't working! :-)
//
// Do not assume *any* internal functionality works as expected besides
// what's actually tested here.
package check_test
import (
"fmt"
"github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
"strings"
)
type BootstrapS struct{}
var boostrapS = check.Suite(&BootstrapS{})
func (s *BootstrapS) TestCountSuite(c *check.C) {
suitesRun += 1
}
func (s *BootstrapS) TestFailedAndFail(c *check.C) {
if c.Failed() {
critical("c.Failed() must be false first!")
}
c.Fail()
if !c.Failed() {
critical("c.Fail() didn't put the test in a failed state!")
}
c.Succeed()
}
func (s *BootstrapS) TestFailedAndSucceed(c *check.C) {
c.Fail()
c.Succeed()
if c.Failed() {
critical("c.Succeed() didn't put the test back in a non-failed state")
}
}
func (s *BootstrapS) TestLogAndGetTestLog(c *check.C) {
c.Log("Hello there!")
log := c.GetTestLog()
if log != "Hello there!\n" {
critical(fmt.Sprintf("Log() or GetTestLog() is not working! Got: %#v", log))
}
}
func (s *BootstrapS) TestLogfAndGetTestLog(c *check.C) {
c.Logf("Hello %v", "there!")
log := c.GetTestLog()
if log != "Hello there!\n" {
critical(fmt.Sprintf("Logf() or GetTestLog() is not working! Got: %#v", log))
}
}
func (s *BootstrapS) TestRunShowsErrors(c *check.C) {
output := String{}
check.Run(&FailHelper{}, &check.RunConf{Output: &output})
if strings.Index(output.value, "Expected failure!") == -1 {
critical(fmt.Sprintf("RunWithWriter() output did not contain the "+
"expected failure! Got: %#v",
output.value))
}
}
func (s *BootstrapS) TestRunDoesntShowSuccesses(c *check.C) {
output := String{}
check.Run(&SuccessHelper{}, &check.RunConf{Output: &output})
if strings.Index(output.value, "Expected success!") != -1 {
critical(fmt.Sprintf("RunWithWriter() output contained a successful "+
"test! Got: %#v",
output.value))
}
}

View File

@ -0,0 +1,945 @@
// Package check is a rich testing extension for Go's testing package.
//
// For details about the project, see:
//
// http://labix.org/gocheck
//
package check
import (
"bytes"
"errors"
"fmt"
"io"
"math/rand"
"os"
"path"
"path/filepath"
"reflect"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"time"
)
// -----------------------------------------------------------------------
// Internal type which deals with suite method calling.
const (
fixtureKd = iota
testKd
)
type funcKind int
const (
succeededSt = iota
failedSt
skippedSt
panickedSt
fixturePanickedSt
missedSt
)
type funcStatus int
// A method value can't reach its own Method structure.
type methodType struct {
reflect.Value
Info reflect.Method
}
func newMethod(receiver reflect.Value, i int) *methodType {
return &methodType{receiver.Method(i), receiver.Type().Method(i)}
}
func (method *methodType) PC() uintptr {
return method.Info.Func.Pointer()
}
func (method *methodType) suiteName() string {
t := method.Info.Type.In(0)
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
return t.Name()
}
func (method *methodType) String() string {
return method.suiteName() + "." + method.Info.Name
}
func (method *methodType) matches(re *regexp.Regexp) bool {
return (re.MatchString(method.Info.Name) ||
re.MatchString(method.suiteName()) ||
re.MatchString(method.String()))
}
type C struct {
method *methodType
kind funcKind
testName string
status funcStatus
logb *logger
logw io.Writer
done chan *C
reason string
mustFail bool
tempDir *tempDir
benchMem bool
startTime time.Time
timer
}
func (c *C) stopNow() {
runtime.Goexit()
}
// logger is a concurrency safe byte.Buffer
type logger struct {
sync.Mutex
writer bytes.Buffer
}
func (l *logger) Write(buf []byte) (int, error) {
l.Lock()
defer l.Unlock()
return l.writer.Write(buf)
}
func (l *logger) WriteTo(w io.Writer) (int64, error) {
l.Lock()
defer l.Unlock()
return l.writer.WriteTo(w)
}
func (l *logger) String() string {
l.Lock()
defer l.Unlock()
return l.writer.String()
}
// -----------------------------------------------------------------------
// Handling of temporary files and directories.
type tempDir struct {
sync.Mutex
path string
counter int
}
func (td *tempDir) newPath() string {
td.Lock()
defer td.Unlock()
if td.path == "" {
var err error
for i := 0; i != 100; i++ {
path := fmt.Sprintf("%s%ccheck-%d", os.TempDir(), os.PathSeparator, rand.Int())
if err = os.Mkdir(path, 0700); err == nil {
td.path = path
break
}
}
if td.path == "" {
panic("Couldn't create temporary directory: " + err.Error())
}
}
result := filepath.Join(td.path, strconv.Itoa(td.counter))
td.counter += 1
return result
}
func (td *tempDir) removeAll() {
td.Lock()
defer td.Unlock()
if td.path != "" {
err := os.RemoveAll(td.path)
if err != nil {
fmt.Fprintf(os.Stderr, "WARNING: Error cleaning up temporaries: "+err.Error())
}
}
}
// Create a new temporary directory which is automatically removed after
// the suite finishes running.
func (c *C) MkDir() string {
path := c.tempDir.newPath()
if err := os.Mkdir(path, 0700); err != nil {
panic(fmt.Sprintf("Couldn't create temporary directory %s: %s", path, err.Error()))
}
return path
}
// -----------------------------------------------------------------------
// Low-level logging functions.
func (c *C) log(args ...interface{}) {
c.writeLog([]byte(fmt.Sprint(args...) + "\n"))
}
func (c *C) logf(format string, args ...interface{}) {
c.writeLog([]byte(fmt.Sprintf(format+"\n", args...)))
}
func (c *C) logNewLine() {
c.writeLog([]byte{'\n'})
}
func (c *C) writeLog(buf []byte) {
c.logb.Write(buf)
if c.logw != nil {
c.logw.Write(buf)
}
}
func hasStringOrError(x interface{}) (ok bool) {
_, ok = x.(fmt.Stringer)
if ok {
return
}
_, ok = x.(error)
return
}
func (c *C) logValue(label string, value interface{}) {
if label == "" {
if hasStringOrError(value) {
c.logf("... %#v (%q)", value, value)
} else {
c.logf("... %#v", value)
}
} else if value == nil {
c.logf("... %s = nil", label)
} else {
if hasStringOrError(value) {
fv := fmt.Sprintf("%#v", value)
qv := fmt.Sprintf("%q", value)
if fv != qv {
c.logf("... %s %s = %s (%s)", label, reflect.TypeOf(value), fv, qv)
return
}
}
if s, ok := value.(string); ok && isMultiLine(s) {
c.logf(`... %s %s = "" +`, label, reflect.TypeOf(value))
c.logMultiLine(s)
} else {
c.logf("... %s %s = %#v", label, reflect.TypeOf(value), value)
}
}
}
func (c *C) logMultiLine(s string) {
b := make([]byte, 0, len(s)*2)
i := 0
n := len(s)
for i < n {
j := i + 1
for j < n && s[j-1] != '\n' {
j++
}
b = append(b, "... "...)
b = strconv.AppendQuote(b, s[i:j])
if j < n {
b = append(b, " +"...)
}
b = append(b, '\n')
i = j
}
c.writeLog(b)
}
func isMultiLine(s string) bool {
for i := 0; i+1 < len(s); i++ {
if s[i] == '\n' {
return true
}
}
return false
}
func (c *C) logString(issue string) {
c.log("... ", issue)
}
func (c *C) logCaller(skip int) {
// This is a bit heavier than it ought to be.
skip += 1 // Our own frame.
pc, callerFile, callerLine, ok := runtime.Caller(skip)
if !ok {
return
}
var testFile string
var testLine int
testFunc := runtime.FuncForPC(c.method.PC())
if runtime.FuncForPC(pc) != testFunc {
for {
skip += 1
if pc, file, line, ok := runtime.Caller(skip); ok {
// Note that the test line may be different on
// distinct calls for the same test. Showing
// the "internal" line is helpful when debugging.
if runtime.FuncForPC(pc) == testFunc {
testFile, testLine = file, line
break
}
} else {
break
}
}
}
if testFile != "" && (testFile != callerFile || testLine != callerLine) {
c.logCode(testFile, testLine)
}
c.logCode(callerFile, callerLine)
}
func (c *C) logCode(path string, line int) {
c.logf("%s:%d:", nicePath(path), line)
code, err := printLine(path, line)
if code == "" {
code = "..." // XXX Open the file and take the raw line.
if err != nil {
code += err.Error()
}
}
c.log(indent(code, " "))
}
var valueGo = filepath.Join("reflect", "value.go")
var asmGo = filepath.Join("runtime", "asm_")
func (c *C) logPanic(skip int, value interface{}) {
skip++ // Our own frame.
initialSkip := skip
for ; ; skip++ {
if pc, file, line, ok := runtime.Caller(skip); ok {
if skip == initialSkip {
c.logf("... Panic: %s (PC=0x%X)\n", value, pc)
}
name := niceFuncName(pc)
path := nicePath(file)
if strings.Contains(path, "/gopkg.in/check.v") {
continue
}
if name == "Value.call" && strings.HasSuffix(path, valueGo) {
continue
}
if name == "call16" && strings.Contains(path, asmGo) {
continue
}
c.logf("%s:%d\n in %s", nicePath(file), line, name)
} else {
break
}
}
}
func (c *C) logSoftPanic(issue string) {
c.log("... Panic: ", issue)
}
func (c *C) logArgPanic(method *methodType, expectedType string) {
c.logf("... Panic: %s argument should be %s",
niceFuncName(method.PC()), expectedType)
}
// -----------------------------------------------------------------------
// Some simple formatting helpers.
var initWD, initWDErr = os.Getwd()
func init() {
if initWDErr == nil {
initWD = strings.Replace(initWD, "\\", "/", -1) + "/"
}
}
func nicePath(path string) string {
if initWDErr == nil {
if strings.HasPrefix(path, initWD) {
return path[len(initWD):]
}
}
return path
}
func niceFuncPath(pc uintptr) string {
function := runtime.FuncForPC(pc)
if function != nil {
filename, line := function.FileLine(pc)
return fmt.Sprintf("%s:%d", nicePath(filename), line)
}
return "<unknown path>"
}
func niceFuncName(pc uintptr) string {
function := runtime.FuncForPC(pc)
if function != nil {
name := path.Base(function.Name())
if i := strings.Index(name, "."); i > 0 {
name = name[i+1:]
}
if strings.HasPrefix(name, "(*") {
if i := strings.Index(name, ")"); i > 0 {
name = name[2:i] + name[i+1:]
}
}
if i := strings.LastIndex(name, ".*"); i != -1 {
name = name[:i] + "." + name[i+2:]
}
if i := strings.LastIndex(name, "·"); i != -1 {
name = name[:i] + "." + name[i+2:]
}
return name
}
return "<unknown function>"
}
// -----------------------------------------------------------------------
// Result tracker to aggregate call results.
type Result struct {
Succeeded int
Failed int
Skipped int
Panicked int
FixturePanicked int
ExpectedFailures int
Missed int // Not even tried to run, related to a panic in the fixture.
RunError error // Houston, we've got a problem.
WorkDir string // If KeepWorkDir is true
}
type resultTracker struct {
result Result
_lastWasProblem bool
_waiting int
_missed int
_expectChan chan *C
_doneChan chan *C
_stopChan chan bool
}
func newResultTracker() *resultTracker {
return &resultTracker{_expectChan: make(chan *C), // Synchronous
_doneChan: make(chan *C, 32), // Asynchronous
_stopChan: make(chan bool)} // Synchronous
}
func (tracker *resultTracker) start() {
go tracker._loopRoutine()
}
func (tracker *resultTracker) waitAndStop() {
<-tracker._stopChan
}
func (tracker *resultTracker) expectCall(c *C) {
tracker._expectChan <- c
}
func (tracker *resultTracker) callDone(c *C) {
tracker._doneChan <- c
}
func (tracker *resultTracker) _loopRoutine() {
for {
var c *C
if tracker._waiting > 0 {
// Calls still running. Can't stop.
select {
// XXX Reindent this (not now to make diff clear)
case c = <-tracker._expectChan:
tracker._waiting += 1
case c = <-tracker._doneChan:
tracker._waiting -= 1
switch c.status {
case succeededSt:
if c.kind == testKd {
if c.mustFail {
tracker.result.ExpectedFailures++
} else {
tracker.result.Succeeded++
}
}
case failedSt:
tracker.result.Failed++
case panickedSt:
if c.kind == fixtureKd {
tracker.result.FixturePanicked++
} else {
tracker.result.Panicked++
}
case fixturePanickedSt:
// Track it as missed, since the panic
// was on the fixture, not on the test.
tracker.result.Missed++
case missedSt:
tracker.result.Missed++
case skippedSt:
if c.kind == testKd {
tracker.result.Skipped++
}
}
}
} else {
// No calls. Can stop, but no done calls here.
select {
case tracker._stopChan <- true:
return
case c = <-tracker._expectChan:
tracker._waiting += 1
case c = <-tracker._doneChan:
panic("Tracker got an unexpected done call.")
}
}
}
}
// -----------------------------------------------------------------------
// The underlying suite runner.
type suiteRunner struct {
suite interface{}
setUpSuite, tearDownSuite *methodType
setUpTest, tearDownTest *methodType
tests []*methodType
tracker *resultTracker
tempDir *tempDir
keepDir bool
output *outputWriter
reportedProblemLast bool
benchTime time.Duration
benchMem bool
}
type RunConf struct {
Output io.Writer
Stream bool
Verbose bool
Filter string
Benchmark bool
BenchmarkTime time.Duration // Defaults to 1 second
BenchmarkMem bool
KeepWorkDir bool
}
// Create a new suiteRunner able to run all methods in the given suite.
func newSuiteRunner(suite interface{}, runConf *RunConf) *suiteRunner {
var conf RunConf
if runConf != nil {
conf = *runConf
}
if conf.Output == nil {
conf.Output = os.Stdout
}
if conf.Benchmark {
conf.Verbose = true
}
suiteType := reflect.TypeOf(suite)
suiteNumMethods := suiteType.NumMethod()
suiteValue := reflect.ValueOf(suite)
runner := &suiteRunner{
suite: suite,
output: newOutputWriter(conf.Output, conf.Stream, conf.Verbose),
tracker: newResultTracker(),
benchTime: conf.BenchmarkTime,
benchMem: conf.BenchmarkMem,
tempDir: &tempDir{},
keepDir: conf.KeepWorkDir,
tests: make([]*methodType, 0, suiteNumMethods),
}
if runner.benchTime == 0 {
runner.benchTime = 1 * time.Second
}
var filterRegexp *regexp.Regexp
if conf.Filter != "" {
if regexp, err := regexp.Compile(conf.Filter); err != nil {
msg := "Bad filter expression: " + err.Error()
runner.tracker.result.RunError = errors.New(msg)
return runner
} else {
filterRegexp = regexp
}
}
for i := 0; i != suiteNumMethods; i++ {
method := newMethod(suiteValue, i)
switch method.Info.Name {
case "SetUpSuite":
runner.setUpSuite = method
case "TearDownSuite":
runner.tearDownSuite = method
case "SetUpTest":
runner.setUpTest = method
case "TearDownTest":
runner.tearDownTest = method
default:
prefix := "Test"
if conf.Benchmark {
prefix = "Benchmark"
}
if !strings.HasPrefix(method.Info.Name, prefix) {
continue
}
if filterRegexp == nil || method.matches(filterRegexp) {
runner.tests = append(runner.tests, method)
}
}
}
return runner
}
// Run all methods in the given suite.
func (runner *suiteRunner) run() *Result {
if runner.tracker.result.RunError == nil && len(runner.tests) > 0 {
runner.tracker.start()
if runner.checkFixtureArgs() {
c := runner.runFixture(runner.setUpSuite, "", nil)
if c == nil || c.status == succeededSt {
for i := 0; i != len(runner.tests); i++ {
c := runner.runTest(runner.tests[i])
if c.status == fixturePanickedSt {
runner.skipTests(missedSt, runner.tests[i+1:])
break
}
}
} else if c != nil && c.status == skippedSt {
runner.skipTests(skippedSt, runner.tests)
} else {
runner.skipTests(missedSt, runner.tests)
}
runner.runFixture(runner.tearDownSuite, "", nil)
} else {
runner.skipTests(missedSt, runner.tests)
}
runner.tracker.waitAndStop()
if runner.keepDir {
runner.tracker.result.WorkDir = runner.tempDir.path
} else {
runner.tempDir.removeAll()
}
}
return &runner.tracker.result
}
// Create a call object with the given suite method, and fork a
// goroutine with the provided dispatcher for running it.
func (runner *suiteRunner) forkCall(method *methodType, kind funcKind, testName string, logb *logger, dispatcher func(c *C)) *C {
var logw io.Writer
if runner.output.Stream {
logw = runner.output
}
if logb == nil {
logb = new(logger)
}
c := &C{
method: method,
kind: kind,
testName: testName,
logb: logb,
logw: logw,
tempDir: runner.tempDir,
done: make(chan *C, 1),
timer: timer{benchTime: runner.benchTime},
startTime: time.Now(),
benchMem: runner.benchMem,
}
runner.tracker.expectCall(c)
go (func() {
runner.reportCallStarted(c)
defer runner.callDone(c)
dispatcher(c)
})()
return c
}
// Same as forkCall(), but wait for call to finish before returning.
func (runner *suiteRunner) runFunc(method *methodType, kind funcKind, testName string, logb *logger, dispatcher func(c *C)) *C {
c := runner.forkCall(method, kind, testName, logb, dispatcher)
<-c.done
return c
}
// Handle a finished call. If there were any panics, update the call status
// accordingly. Then, mark the call as done and report to the tracker.
func (runner *suiteRunner) callDone(c *C) {
value := recover()
if value != nil {
switch v := value.(type) {
case *fixturePanic:
if v.status == skippedSt {
c.status = skippedSt
} else {
c.logSoftPanic("Fixture has panicked (see related PANIC)")
c.status = fixturePanickedSt
}
default:
c.logPanic(1, value)
c.status = panickedSt
}
}
if c.mustFail {
switch c.status {
case failedSt:
c.status = succeededSt
case succeededSt:
c.status = failedSt
c.logString("Error: Test succeeded, but was expected to fail")
c.logString("Reason: " + c.reason)
}
}
runner.reportCallDone(c)
c.done <- c
}
// Runs a fixture call synchronously. The fixture will still be run in a
// goroutine like all suite methods, but this method will not return
// while the fixture goroutine is not done, because the fixture must be
// run in a desired order.
func (runner *suiteRunner) runFixture(method *methodType, testName string, logb *logger) *C {
if method != nil {
c := runner.runFunc(method, fixtureKd, testName, logb, func(c *C) {
c.ResetTimer()
c.StartTimer()
defer c.StopTimer()
c.method.Call([]reflect.Value{reflect.ValueOf(c)})
})
return c
}
return nil
}
// Run the fixture method with runFixture(), but panic with a fixturePanic{}
// in case the fixture method panics. This makes it easier to track the
// fixture panic together with other call panics within forkTest().
func (runner *suiteRunner) runFixtureWithPanic(method *methodType, testName string, logb *logger, skipped *bool) *C {
if skipped != nil && *skipped {
return nil
}
c := runner.runFixture(method, testName, logb)
if c != nil && c.status != succeededSt {
if skipped != nil {
*skipped = c.status == skippedSt
}
panic(&fixturePanic{c.status, method})
}
return c
}
type fixturePanic struct {
status funcStatus
method *methodType
}
// Run the suite test method, together with the test-specific fixture,
// asynchronously.
func (runner *suiteRunner) forkTest(method *methodType) *C {
testName := method.String()
return runner.forkCall(method, testKd, testName, nil, func(c *C) {
var skipped bool
defer runner.runFixtureWithPanic(runner.tearDownTest, testName, nil, &skipped)
defer c.StopTimer()
benchN := 1
for {
runner.runFixtureWithPanic(runner.setUpTest, testName, c.logb, &skipped)
mt := c.method.Type()
if mt.NumIn() != 1 || mt.In(0) != reflect.TypeOf(c) {
// Rather than a plain panic, provide a more helpful message when
// the argument type is incorrect.
c.status = panickedSt
c.logArgPanic(c.method, "*check.C")
return
}
if strings.HasPrefix(c.method.Info.Name, "Test") {
c.ResetTimer()
c.StartTimer()
c.method.Call([]reflect.Value{reflect.ValueOf(c)})
return
}
if !strings.HasPrefix(c.method.Info.Name, "Benchmark") {
panic("unexpected method prefix: " + c.method.Info.Name)
}
runtime.GC()
c.N = benchN
c.ResetTimer()
c.StartTimer()
c.method.Call([]reflect.Value{reflect.ValueOf(c)})
c.StopTimer()
if c.status != succeededSt || c.duration >= c.benchTime || benchN >= 1e9 {
return
}
perOpN := int(1e9)
if c.nsPerOp() != 0 {
perOpN = int(c.benchTime.Nanoseconds() / c.nsPerOp())
}
// Logic taken from the stock testing package:
// - Run more iterations than we think we'll need for a second (1.5x).
// - Don't grow too fast in case we had timing errors previously.
// - Be sure to run at least one more than last time.
benchN = max(min(perOpN+perOpN/2, 100*benchN), benchN+1)
benchN = roundUp(benchN)
skipped = true // Don't run the deferred one if this panics.
runner.runFixtureWithPanic(runner.tearDownTest, testName, nil, nil)
skipped = false
}
})
}
// Same as forkTest(), but wait for the test to finish before returning.
func (runner *suiteRunner) runTest(method *methodType) *C {
c := runner.forkTest(method)
<-c.done
return c
}
// Helper to mark tests as skipped or missed. A bit heavy for what
// it does, but it enables homogeneous handling of tracking, including
// nice verbose output.
func (runner *suiteRunner) skipTests(status funcStatus, methods []*methodType) {
for _, method := range methods {
runner.runFunc(method, testKd, "", nil, func(c *C) {
c.status = status
})
}
}
// Verify if the fixture arguments are *check.C. In case of errors,
// log the error as a panic in the fixture method call, and return false.
func (runner *suiteRunner) checkFixtureArgs() bool {
succeeded := true
argType := reflect.TypeOf(&C{})
for _, method := range []*methodType{runner.setUpSuite, runner.tearDownSuite, runner.setUpTest, runner.tearDownTest} {
if method != nil {
mt := method.Type()
if mt.NumIn() != 1 || mt.In(0) != argType {
succeeded = false
runner.runFunc(method, fixtureKd, "", nil, func(c *C) {
c.logArgPanic(method, "*check.C")
c.status = panickedSt
})
}
}
}
return succeeded
}
func (runner *suiteRunner) reportCallStarted(c *C) {
runner.output.WriteCallStarted("START", c)
}
func (runner *suiteRunner) reportCallDone(c *C) {
runner.tracker.callDone(c)
switch c.status {
case succeededSt:
if c.mustFail {
runner.output.WriteCallSuccess("FAIL EXPECTED", c)
} else {
runner.output.WriteCallSuccess("PASS", c)
}
case skippedSt:
runner.output.WriteCallSuccess("SKIP", c)
case failedSt:
runner.output.WriteCallProblem("FAIL", c)
case panickedSt:
runner.output.WriteCallProblem("PANIC", c)
case fixturePanickedSt:
// That's a testKd call reporting that its fixture
// has panicked. The fixture call which caused the
// panic itself was tracked above. We'll report to
// aid debugging.
runner.output.WriteCallProblem("PANIC", c)
case missedSt:
runner.output.WriteCallSuccess("MISS", c)
}
}
// -----------------------------------------------------------------------
// Output writer manages atomic output writing according to settings.
type outputWriter struct {
m sync.Mutex
writer io.Writer
wroteCallProblemLast bool
Stream bool
Verbose bool
}
func newOutputWriter(writer io.Writer, stream, verbose bool) *outputWriter {
return &outputWriter{writer: writer, Stream: stream, Verbose: verbose}
}
func (ow *outputWriter) Write(content []byte) (n int, err error) {
ow.m.Lock()
n, err = ow.writer.Write(content)
ow.m.Unlock()
return
}
func (ow *outputWriter) WriteCallStarted(label string, c *C) {
if ow.Stream {
header := renderCallHeader(label, c, "", "\n")
ow.m.Lock()
ow.writer.Write([]byte(header))
ow.m.Unlock()
}
}
func (ow *outputWriter) WriteCallProblem(label string, c *C) {
var prefix string
if !ow.Stream {
prefix = "\n-----------------------------------" +
"-----------------------------------\n"
}
header := renderCallHeader(label, c, prefix, "\n\n")
ow.m.Lock()
ow.wroteCallProblemLast = true
ow.writer.Write([]byte(header))
if !ow.Stream {
c.logb.WriteTo(ow.writer)
}
ow.m.Unlock()
}
func (ow *outputWriter) WriteCallSuccess(label string, c *C) {
if ow.Stream || (ow.Verbose && c.kind == testKd) {
// TODO Use a buffer here.
var suffix string
if c.reason != "" {
suffix = " (" + c.reason + ")"
}
if c.status == succeededSt {
suffix += "\t" + c.timerString()
}
suffix += "\n"
if ow.Stream {
suffix += "\n"
}
header := renderCallHeader(label, c, "", suffix)
ow.m.Lock()
// Resist temptation of using line as prefix above due to race.
if !ow.Stream && ow.wroteCallProblemLast {
header = "\n-----------------------------------" +
"-----------------------------------\n" +
header
}
ow.wroteCallProblemLast = false
ow.writer.Write([]byte(header))
ow.m.Unlock()
}
}
func renderCallHeader(label string, c *C, prefix, suffix string) string {
pc := c.method.PC()
return fmt.Sprintf("%s%s: %s: %s%s", prefix, label, niceFuncPath(pc),
niceFuncName(pc), suffix)
}

View File

@ -0,0 +1,207 @@
// This file contains just a few generic helpers which are used by the
// other test files.
package check_test
import (
"flag"
"fmt"
"os"
"regexp"
"runtime"
"testing"
"time"
"github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
)
// We count the number of suites run at least to get a vague hint that the
// test suite is behaving as it should. Otherwise a bug introduced at the
// very core of the system could go unperceived.
const suitesRunExpected = 8
var suitesRun int = 0
func Test(t *testing.T) {
check.TestingT(t)
if suitesRun != suitesRunExpected && flag.Lookup("check.f").Value.String() == "" {
critical(fmt.Sprintf("Expected %d suites to run rather than %d",
suitesRunExpected, suitesRun))
}
}
// -----------------------------------------------------------------------
// Helper functions.
// Break down badly. This is used in test cases which can't yet assume
// that the fundamental bits are working.
func critical(error string) {
fmt.Fprintln(os.Stderr, "CRITICAL: "+error)
os.Exit(1)
}
// Return the file line where it's called.
func getMyLine() int {
if _, _, line, ok := runtime.Caller(1); ok {
return line
}
return -1
}
// -----------------------------------------------------------------------
// Helper type implementing a basic io.Writer for testing output.
// Type implementing the io.Writer interface for analyzing output.
type String struct {
value string
}
// The only function required by the io.Writer interface. Will append
// written data to the String.value string.
func (s *String) Write(p []byte) (n int, err error) {
s.value += string(p)
return len(p), nil
}
// Trivial wrapper to test errors happening on a different file
// than the test itself.
func checkEqualWrapper(c *check.C, obtained, expected interface{}) (result bool, line int) {
return c.Check(obtained, check.Equals, expected), getMyLine()
}
// -----------------------------------------------------------------------
// Helper suite for testing basic fail behavior.
type FailHelper struct {
testLine int
}
func (s *FailHelper) TestLogAndFail(c *check.C) {
s.testLine = getMyLine() - 1
c.Log("Expected failure!")
c.Fail()
}
// -----------------------------------------------------------------------
// Helper suite for testing basic success behavior.
type SuccessHelper struct{}
func (s *SuccessHelper) TestLogAndSucceed(c *check.C) {
c.Log("Expected success!")
}
// -----------------------------------------------------------------------
// Helper suite for testing ordering and behavior of fixture.
type FixtureHelper struct {
calls []string
panicOn string
skip bool
skipOnN int
sleepOn string
sleep time.Duration
bytes int64
}
func (s *FixtureHelper) trace(name string, c *check.C) {
s.calls = append(s.calls, name)
if name == s.panicOn {
panic(name)
}
if s.sleep > 0 && s.sleepOn == name {
time.Sleep(s.sleep)
}
if s.skip && s.skipOnN == len(s.calls)-1 {
c.Skip("skipOnN == n")
}
}
func (s *FixtureHelper) SetUpSuite(c *check.C) {
s.trace("SetUpSuite", c)
}
func (s *FixtureHelper) TearDownSuite(c *check.C) {
s.trace("TearDownSuite", c)
}
func (s *FixtureHelper) SetUpTest(c *check.C) {
s.trace("SetUpTest", c)
}
func (s *FixtureHelper) TearDownTest(c *check.C) {
s.trace("TearDownTest", c)
}
func (s *FixtureHelper) Test1(c *check.C) {
s.trace("Test1", c)
}
func (s *FixtureHelper) Test2(c *check.C) {
s.trace("Test2", c)
}
func (s *FixtureHelper) Benchmark1(c *check.C) {
s.trace("Benchmark1", c)
for i := 0; i < c.N; i++ {
time.Sleep(s.sleep)
}
}
func (s *FixtureHelper) Benchmark2(c *check.C) {
s.trace("Benchmark2", c)
c.SetBytes(1024)
for i := 0; i < c.N; i++ {
time.Sleep(s.sleep)
}
}
func (s *FixtureHelper) Benchmark3(c *check.C) {
var x []int64
s.trace("Benchmark3", c)
for i := 0; i < c.N; i++ {
time.Sleep(s.sleep)
x = make([]int64, 5)
_ = x
}
}
// -----------------------------------------------------------------------
// Helper which checks the state of the test and ensures that it matches
// the given expectations. Depends on c.Errorf() working, so shouldn't
// be used to test this one function.
type expectedState struct {
name string
result interface{}
failed bool
log string
}
// Verify the state of the test. Note that since this also verifies if
// the test is supposed to be in a failed state, no other checks should
// be done in addition to what is being tested.
func checkState(c *check.C, result interface{}, expected *expectedState) {
failed := c.Failed()
c.Succeed()
log := c.GetTestLog()
matched, matchError := regexp.MatchString("^"+expected.log+"$", log)
if matchError != nil {
c.Errorf("Error in matching expression used in testing %s",
expected.name)
} else if !matched {
c.Errorf("%s logged:\n----------\n%s----------\n\nExpected:\n----------\n%s\n----------",
expected.name, log, expected.log)
}
if result != expected.result {
c.Errorf("%s returned %#v rather than %#v",
expected.name, result, expected.result)
}
if failed != expected.failed {
if failed {
c.Errorf("%s has failed when it shouldn't", expected.name)
} else {
c.Errorf("%s has not failed when it should", expected.name)
}
}
}

View File

@ -0,0 +1,458 @@
package check
import (
"fmt"
"reflect"
"regexp"
)
// -----------------------------------------------------------------------
// CommentInterface and Commentf helper, to attach extra information to checks.
type comment struct {
format string
args []interface{}
}
// Commentf returns an infomational value to use with Assert or Check calls.
// If the checker test fails, the provided arguments will be passed to
// fmt.Sprintf, and will be presented next to the logged failure.
//
// For example:
//
// c.Assert(v, Equals, 42, Commentf("Iteration #%d failed.", i))
//
// Note that if the comment is constant, a better option is to
// simply use a normal comment right above or next to the line, as
// it will also get printed with any errors:
//
// c.Assert(l, Equals, 8192) // Ensure buffer size is correct (bug #123)
//
func Commentf(format string, args ...interface{}) CommentInterface {
return &comment{format, args}
}
// CommentInterface must be implemented by types that attach extra
// information to failed checks. See the Commentf function for details.
type CommentInterface interface {
CheckCommentString() string
}
func (c *comment) CheckCommentString() string {
return fmt.Sprintf(c.format, c.args...)
}
// -----------------------------------------------------------------------
// The Checker interface.
// The Checker interface must be provided by checkers used with
// the Assert and Check verification methods.
type Checker interface {
Info() *CheckerInfo
Check(params []interface{}, names []string) (result bool, error string)
}
// See the Checker interface.
type CheckerInfo struct {
Name string
Params []string
}
func (info *CheckerInfo) Info() *CheckerInfo {
return info
}
// -----------------------------------------------------------------------
// Not checker logic inverter.
// The Not checker inverts the logic of the provided checker. The
// resulting checker will succeed where the original one failed, and
// vice-versa.
//
// For example:
//
// c.Assert(a, Not(Equals), b)
//
func Not(checker Checker) Checker {
return &notChecker{checker}
}
type notChecker struct {
sub Checker
}
func (checker *notChecker) Info() *CheckerInfo {
info := *checker.sub.Info()
info.Name = "Not(" + info.Name + ")"
return &info
}
func (checker *notChecker) Check(params []interface{}, names []string) (result bool, error string) {
result, error = checker.sub.Check(params, names)
result = !result
return
}
// -----------------------------------------------------------------------
// IsNil checker.
type isNilChecker struct {
*CheckerInfo
}
// The IsNil checker tests whether the obtained value is nil.
//
// For example:
//
// c.Assert(err, IsNil)
//
var IsNil Checker = &isNilChecker{
&CheckerInfo{Name: "IsNil", Params: []string{"value"}},
}
func (checker *isNilChecker) Check(params []interface{}, names []string) (result bool, error string) {
return isNil(params[0]), ""
}
func isNil(obtained interface{}) (result bool) {
if obtained == nil {
result = true
} else {
switch v := reflect.ValueOf(obtained); v.Kind() {
case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return v.IsNil()
}
}
return
}
// -----------------------------------------------------------------------
// NotNil checker. Alias for Not(IsNil), since it's so common.
type notNilChecker struct {
*CheckerInfo
}
// The NotNil checker verifies that the obtained value is not nil.
//
// For example:
//
// c.Assert(iface, NotNil)
//
// This is an alias for Not(IsNil), made available since it's a
// fairly common check.
//
var NotNil Checker = &notNilChecker{
&CheckerInfo{Name: "NotNil", Params: []string{"value"}},
}
func (checker *notNilChecker) Check(params []interface{}, names []string) (result bool, error string) {
return !isNil(params[0]), ""
}
// -----------------------------------------------------------------------
// Equals checker.
type equalsChecker struct {
*CheckerInfo
}
// The Equals checker verifies that the obtained value is equal to
// the expected value, according to usual Go semantics for ==.
//
// For example:
//
// c.Assert(value, Equals, 42)
//
var Equals Checker = &equalsChecker{
&CheckerInfo{Name: "Equals", Params: []string{"obtained", "expected"}},
}
func (checker *equalsChecker) Check(params []interface{}, names []string) (result bool, error string) {
defer func() {
if v := recover(); v != nil {
result = false
error = fmt.Sprint(v)
}
}()
return params[0] == params[1], ""
}
// -----------------------------------------------------------------------
// DeepEquals checker.
type deepEqualsChecker struct {
*CheckerInfo
}
// The DeepEquals checker verifies that the obtained value is deep-equal to
// the expected value. The check will work correctly even when facing
// slices, interfaces, and values of different types (which always fail
// the test).
//
// For example:
//
// c.Assert(value, DeepEquals, 42)
// c.Assert(array, DeepEquals, []string{"hi", "there"})
//
var DeepEquals Checker = &deepEqualsChecker{
&CheckerInfo{Name: "DeepEquals", Params: []string{"obtained", "expected"}},
}
func (checker *deepEqualsChecker) Check(params []interface{}, names []string) (result bool, error string) {
return reflect.DeepEqual(params[0], params[1]), ""
}
// -----------------------------------------------------------------------
// HasLen checker.
type hasLenChecker struct {
*CheckerInfo
}
// The HasLen checker verifies that the obtained value has the
// provided length. In many cases this is superior to using Equals
// in conjuction with the len function because in case the check
// fails the value itself will be printed, instead of its length,
// providing more details for figuring the problem.
//
// For example:
//
// c.Assert(list, HasLen, 5)
//
var HasLen Checker = &hasLenChecker{
&CheckerInfo{Name: "HasLen", Params: []string{"obtained", "n"}},
}
func (checker *hasLenChecker) Check(params []interface{}, names []string) (result bool, error string) {
n, ok := params[1].(int)
if !ok {
return false, "n must be an int"
}
value := reflect.ValueOf(params[0])
switch value.Kind() {
case reflect.Map, reflect.Array, reflect.Slice, reflect.Chan, reflect.String:
default:
return false, "obtained value type has no length"
}
return value.Len() == n, ""
}
// -----------------------------------------------------------------------
// ErrorMatches checker.
type errorMatchesChecker struct {
*CheckerInfo
}
// The ErrorMatches checker verifies that the error value
// is non nil and matches the regular expression provided.
//
// For example:
//
// c.Assert(err, ErrorMatches, "perm.*denied")
//
var ErrorMatches Checker = errorMatchesChecker{
&CheckerInfo{Name: "ErrorMatches", Params: []string{"value", "regex"}},
}
func (checker errorMatchesChecker) Check(params []interface{}, names []string) (result bool, errStr string) {
if params[0] == nil {
return false, "Error value is nil"
}
err, ok := params[0].(error)
if !ok {
return false, "Value is not an error"
}
params[0] = err.Error()
names[0] = "error"
return matches(params[0], params[1])
}
// -----------------------------------------------------------------------
// Matches checker.
type matchesChecker struct {
*CheckerInfo
}
// The Matches checker verifies that the string provided as the obtained
// value (or the string resulting from obtained.String()) matches the
// regular expression provided.
//
// For example:
//
// c.Assert(err, Matches, "perm.*denied")
//
var Matches Checker = &matchesChecker{
&CheckerInfo{Name: "Matches", Params: []string{"value", "regex"}},
}
func (checker *matchesChecker) Check(params []interface{}, names []string) (result bool, error string) {
return matches(params[0], params[1])
}
func matches(value, regex interface{}) (result bool, error string) {
reStr, ok := regex.(string)
if !ok {
return false, "Regex must be a string"
}
valueStr, valueIsStr := value.(string)
if !valueIsStr {
if valueWithStr, valueHasStr := value.(fmt.Stringer); valueHasStr {
valueStr, valueIsStr = valueWithStr.String(), true
}
}
if valueIsStr {
matches, err := regexp.MatchString("^"+reStr+"$", valueStr)
if err != nil {
return false, "Can't compile regex: " + err.Error()
}
return matches, ""
}
return false, "Obtained value is not a string and has no .String()"
}
// -----------------------------------------------------------------------
// Panics checker.
type panicsChecker struct {
*CheckerInfo
}
// The Panics checker verifies that calling the provided zero-argument
// function will cause a panic which is deep-equal to the provided value.
//
// For example:
//
// c.Assert(func() { f(1, 2) }, Panics, &SomeErrorType{"BOOM"}).
//
//
var Panics Checker = &panicsChecker{
&CheckerInfo{Name: "Panics", Params: []string{"function", "expected"}},
}
func (checker *panicsChecker) Check(params []interface{}, names []string) (result bool, error string) {
f := reflect.ValueOf(params[0])
if f.Kind() != reflect.Func || f.Type().NumIn() != 0 {
return false, "Function must take zero arguments"
}
defer func() {
// If the function has not panicked, then don't do the check.
if error != "" {
return
}
params[0] = recover()
names[0] = "panic"
result = reflect.DeepEqual(params[0], params[1])
}()
f.Call(nil)
return false, "Function has not panicked"
}
type panicMatchesChecker struct {
*CheckerInfo
}
// The PanicMatches checker verifies that calling the provided zero-argument
// function will cause a panic with an error value matching
// the regular expression provided.
//
// For example:
//
// c.Assert(func() { f(1, 2) }, PanicMatches, `open.*: no such file or directory`).
//
//
var PanicMatches Checker = &panicMatchesChecker{
&CheckerInfo{Name: "PanicMatches", Params: []string{"function", "expected"}},
}
func (checker *panicMatchesChecker) Check(params []interface{}, names []string) (result bool, errmsg string) {
f := reflect.ValueOf(params[0])
if f.Kind() != reflect.Func || f.Type().NumIn() != 0 {
return false, "Function must take zero arguments"
}
defer func() {
// If the function has not panicked, then don't do the check.
if errmsg != "" {
return
}
obtained := recover()
names[0] = "panic"
if e, ok := obtained.(error); ok {
params[0] = e.Error()
} else if _, ok := obtained.(string); ok {
params[0] = obtained
} else {
errmsg = "Panic value is not a string or an error"
return
}
result, errmsg = matches(params[0], params[1])
}()
f.Call(nil)
return false, "Function has not panicked"
}
// -----------------------------------------------------------------------
// FitsTypeOf checker.
type fitsTypeChecker struct {
*CheckerInfo
}
// The FitsTypeOf checker verifies that the obtained value is
// assignable to a variable with the same type as the provided
// sample value.
//
// For example:
//
// c.Assert(value, FitsTypeOf, int64(0))
// c.Assert(value, FitsTypeOf, os.Error(nil))
//
var FitsTypeOf Checker = &fitsTypeChecker{
&CheckerInfo{Name: "FitsTypeOf", Params: []string{"obtained", "sample"}},
}
func (checker *fitsTypeChecker) Check(params []interface{}, names []string) (result bool, error string) {
obtained := reflect.ValueOf(params[0])
sample := reflect.ValueOf(params[1])
if !obtained.IsValid() {
return false, ""
}
if !sample.IsValid() {
return false, "Invalid sample value"
}
return obtained.Type().AssignableTo(sample.Type()), ""
}
// -----------------------------------------------------------------------
// Implements checker.
type implementsChecker struct {
*CheckerInfo
}
// The Implements checker verifies that the obtained value
// implements the interface specified via a pointer to an interface
// variable.
//
// For example:
//
// var e os.Error
// c.Assert(err, Implements, &e)
//
var Implements Checker = &implementsChecker{
&CheckerInfo{Name: "Implements", Params: []string{"obtained", "ifaceptr"}},
}
func (checker *implementsChecker) Check(params []interface{}, names []string) (result bool, error string) {
obtained := reflect.ValueOf(params[0])
ifaceptr := reflect.ValueOf(params[1])
if !obtained.IsValid() {
return false, ""
}
if !ifaceptr.IsValid() || ifaceptr.Kind() != reflect.Ptr || ifaceptr.Elem().Kind() != reflect.Interface {
return false, "ifaceptr should be a pointer to an interface variable"
}
return obtained.Type().Implements(ifaceptr.Elem().Type()), ""
}

View File

@ -0,0 +1,272 @@
package check_test
import (
"errors"
"github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
"reflect"
"runtime"
)
type CheckersS struct{}
var _ = check.Suite(&CheckersS{})
func testInfo(c *check.C, checker check.Checker, name string, paramNames []string) {
info := checker.Info()
if info.Name != name {
c.Fatalf("Got name %s, expected %s", info.Name, name)
}
if !reflect.DeepEqual(info.Params, paramNames) {
c.Fatalf("Got param names %#v, expected %#v", info.Params, paramNames)
}
}
func testCheck(c *check.C, checker check.Checker, result bool, error string, params ...interface{}) ([]interface{}, []string) {
info := checker.Info()
if len(params) != len(info.Params) {
c.Fatalf("unexpected param count in test; expected %d got %d", len(info.Params), len(params))
}
names := append([]string{}, info.Params...)
result_, error_ := checker.Check(params, names)
if result_ != result || error_ != error {
c.Fatalf("%s.Check(%#v) returned (%#v, %#v) rather than (%#v, %#v)",
info.Name, params, result_, error_, result, error)
}
return params, names
}
func (s *CheckersS) TestComment(c *check.C) {
bug := check.Commentf("a %d bc", 42)
comment := bug.CheckCommentString()
if comment != "a 42 bc" {
c.Fatalf("Commentf returned %#v", comment)
}
}
func (s *CheckersS) TestIsNil(c *check.C) {
testInfo(c, check.IsNil, "IsNil", []string{"value"})
testCheck(c, check.IsNil, true, "", nil)
testCheck(c, check.IsNil, false, "", "a")
testCheck(c, check.IsNil, true, "", (chan int)(nil))
testCheck(c, check.IsNil, false, "", make(chan int))
testCheck(c, check.IsNil, true, "", (error)(nil))
testCheck(c, check.IsNil, false, "", errors.New(""))
testCheck(c, check.IsNil, true, "", ([]int)(nil))
testCheck(c, check.IsNil, false, "", make([]int, 1))
testCheck(c, check.IsNil, false, "", int(0))
}
func (s *CheckersS) TestNotNil(c *check.C) {
testInfo(c, check.NotNil, "NotNil", []string{"value"})
testCheck(c, check.NotNil, false, "", nil)
testCheck(c, check.NotNil, true, "", "a")
testCheck(c, check.NotNil, false, "", (chan int)(nil))
testCheck(c, check.NotNil, true, "", make(chan int))
testCheck(c, check.NotNil, false, "", (error)(nil))
testCheck(c, check.NotNil, true, "", errors.New(""))
testCheck(c, check.NotNil, false, "", ([]int)(nil))
testCheck(c, check.NotNil, true, "", make([]int, 1))
}
func (s *CheckersS) TestNot(c *check.C) {
testInfo(c, check.Not(check.IsNil), "Not(IsNil)", []string{"value"})
testCheck(c, check.Not(check.IsNil), false, "", nil)
testCheck(c, check.Not(check.IsNil), true, "", "a")
}
type simpleStruct struct {
i int
}
func (s *CheckersS) TestEquals(c *check.C) {
testInfo(c, check.Equals, "Equals", []string{"obtained", "expected"})
// The simplest.
testCheck(c, check.Equals, true, "", 42, 42)
testCheck(c, check.Equals, false, "", 42, 43)
// Different native types.
testCheck(c, check.Equals, false, "", int32(42), int64(42))
// With nil.
testCheck(c, check.Equals, false, "", 42, nil)
// Slices
testCheck(c, check.Equals, false, "runtime error: comparing uncomparable type []uint8", []byte{1, 2}, []byte{1, 2})
// Struct values
testCheck(c, check.Equals, true, "", simpleStruct{1}, simpleStruct{1})
testCheck(c, check.Equals, false, "", simpleStruct{1}, simpleStruct{2})
// Struct pointers
testCheck(c, check.Equals, false, "", &simpleStruct{1}, &simpleStruct{1})
testCheck(c, check.Equals, false, "", &simpleStruct{1}, &simpleStruct{2})
}
func (s *CheckersS) TestDeepEquals(c *check.C) {
testInfo(c, check.DeepEquals, "DeepEquals", []string{"obtained", "expected"})
// The simplest.
testCheck(c, check.DeepEquals, true, "", 42, 42)
testCheck(c, check.DeepEquals, false, "", 42, 43)
// Different native types.
testCheck(c, check.DeepEquals, false, "", int32(42), int64(42))
// With nil.
testCheck(c, check.DeepEquals, false, "", 42, nil)
// Slices
testCheck(c, check.DeepEquals, true, "", []byte{1, 2}, []byte{1, 2})
testCheck(c, check.DeepEquals, false, "", []byte{1, 2}, []byte{1, 3})
// Struct values
testCheck(c, check.DeepEquals, true, "", simpleStruct{1}, simpleStruct{1})
testCheck(c, check.DeepEquals, false, "", simpleStruct{1}, simpleStruct{2})
// Struct pointers
testCheck(c, check.DeepEquals, true, "", &simpleStruct{1}, &simpleStruct{1})
testCheck(c, check.DeepEquals, false, "", &simpleStruct{1}, &simpleStruct{2})
}
func (s *CheckersS) TestHasLen(c *check.C) {
testInfo(c, check.HasLen, "HasLen", []string{"obtained", "n"})
testCheck(c, check.HasLen, true, "", "abcd", 4)
testCheck(c, check.HasLen, true, "", []int{1, 2}, 2)
testCheck(c, check.HasLen, false, "", []int{1, 2}, 3)
testCheck(c, check.HasLen, false, "n must be an int", []int{1, 2}, "2")
testCheck(c, check.HasLen, false, "obtained value type has no length", nil, 2)
}
func (s *CheckersS) TestErrorMatches(c *check.C) {
testInfo(c, check.ErrorMatches, "ErrorMatches", []string{"value", "regex"})
testCheck(c, check.ErrorMatches, false, "Error value is nil", nil, "some error")
testCheck(c, check.ErrorMatches, false, "Value is not an error", 1, "some error")
testCheck(c, check.ErrorMatches, true, "", errors.New("some error"), "some error")
testCheck(c, check.ErrorMatches, true, "", errors.New("some error"), "so.*or")
// Verify params mutation
params, names := testCheck(c, check.ErrorMatches, false, "", errors.New("some error"), "other error")
c.Assert(params[0], check.Equals, "some error")
c.Assert(names[0], check.Equals, "error")
}
func (s *CheckersS) TestMatches(c *check.C) {
testInfo(c, check.Matches, "Matches", []string{"value", "regex"})
// Simple matching
testCheck(c, check.Matches, true, "", "abc", "abc")
testCheck(c, check.Matches, true, "", "abc", "a.c")
// Must match fully
testCheck(c, check.Matches, false, "", "abc", "ab")
testCheck(c, check.Matches, false, "", "abc", "bc")
// String()-enabled values accepted
testCheck(c, check.Matches, true, "", reflect.ValueOf("abc"), "a.c")
testCheck(c, check.Matches, false, "", reflect.ValueOf("abc"), "a.d")
// Some error conditions.
testCheck(c, check.Matches, false, "Obtained value is not a string and has no .String()", 1, "a.c")
testCheck(c, check.Matches, false, "Can't compile regex: error parsing regexp: missing closing ]: `[c$`", "abc", "a[c")
}
func (s *CheckersS) TestPanics(c *check.C) {
testInfo(c, check.Panics, "Panics", []string{"function", "expected"})
// Some errors.
testCheck(c, check.Panics, false, "Function has not panicked", func() bool { return false }, "BOOM")
testCheck(c, check.Panics, false, "Function must take zero arguments", 1, "BOOM")
// Plain strings.
testCheck(c, check.Panics, true, "", func() { panic("BOOM") }, "BOOM")
testCheck(c, check.Panics, false, "", func() { panic("KABOOM") }, "BOOM")
testCheck(c, check.Panics, true, "", func() bool { panic("BOOM") }, "BOOM")
// Error values.
testCheck(c, check.Panics, true, "", func() { panic(errors.New("BOOM")) }, errors.New("BOOM"))
testCheck(c, check.Panics, false, "", func() { panic(errors.New("KABOOM")) }, errors.New("BOOM"))
type deep struct{ i int }
// Deep value
testCheck(c, check.Panics, true, "", func() { panic(&deep{99}) }, &deep{99})
// Verify params/names mutation
params, names := testCheck(c, check.Panics, false, "", func() { panic(errors.New("KABOOM")) }, errors.New("BOOM"))
c.Assert(params[0], check.ErrorMatches, "KABOOM")
c.Assert(names[0], check.Equals, "panic")
// Verify a nil panic
testCheck(c, check.Panics, true, "", func() { panic(nil) }, nil)
testCheck(c, check.Panics, false, "", func() { panic(nil) }, "NOPE")
}
func (s *CheckersS) TestPanicMatches(c *check.C) {
testInfo(c, check.PanicMatches, "PanicMatches", []string{"function", "expected"})
// Error matching.
testCheck(c, check.PanicMatches, true, "", func() { panic(errors.New("BOOM")) }, "BO.M")
testCheck(c, check.PanicMatches, false, "", func() { panic(errors.New("KABOOM")) }, "BO.M")
// Some errors.
testCheck(c, check.PanicMatches, false, "Function has not panicked", func() bool { return false }, "BOOM")
testCheck(c, check.PanicMatches, false, "Function must take zero arguments", 1, "BOOM")
// Plain strings.
testCheck(c, check.PanicMatches, true, "", func() { panic("BOOM") }, "BO.M")
testCheck(c, check.PanicMatches, false, "", func() { panic("KABOOM") }, "BOOM")
testCheck(c, check.PanicMatches, true, "", func() bool { panic("BOOM") }, "BO.M")
// Verify params/names mutation
params, names := testCheck(c, check.PanicMatches, false, "", func() { panic(errors.New("KABOOM")) }, "BOOM")
c.Assert(params[0], check.Equals, "KABOOM")
c.Assert(names[0], check.Equals, "panic")
// Verify a nil panic
testCheck(c, check.PanicMatches, false, "Panic value is not a string or an error", func() { panic(nil) }, "")
}
func (s *CheckersS) TestFitsTypeOf(c *check.C) {
testInfo(c, check.FitsTypeOf, "FitsTypeOf", []string{"obtained", "sample"})
// Basic types
testCheck(c, check.FitsTypeOf, true, "", 1, 0)
testCheck(c, check.FitsTypeOf, false, "", 1, int64(0))
// Aliases
testCheck(c, check.FitsTypeOf, false, "", 1, errors.New(""))
testCheck(c, check.FitsTypeOf, false, "", "error", errors.New(""))
testCheck(c, check.FitsTypeOf, true, "", errors.New("error"), errors.New(""))
// Structures
testCheck(c, check.FitsTypeOf, false, "", 1, simpleStruct{})
testCheck(c, check.FitsTypeOf, false, "", simpleStruct{42}, &simpleStruct{})
testCheck(c, check.FitsTypeOf, true, "", simpleStruct{42}, simpleStruct{})
testCheck(c, check.FitsTypeOf, true, "", &simpleStruct{42}, &simpleStruct{})
// Some bad values
testCheck(c, check.FitsTypeOf, false, "Invalid sample value", 1, interface{}(nil))
testCheck(c, check.FitsTypeOf, false, "", interface{}(nil), 0)
}
func (s *CheckersS) TestImplements(c *check.C) {
testInfo(c, check.Implements, "Implements", []string{"obtained", "ifaceptr"})
var e error
var re runtime.Error
testCheck(c, check.Implements, true, "", errors.New(""), &e)
testCheck(c, check.Implements, false, "", errors.New(""), &re)
// Some bad values
testCheck(c, check.Implements, false, "ifaceptr should be a pointer to an interface variable", 0, errors.New(""))
testCheck(c, check.Implements, false, "ifaceptr should be a pointer to an interface variable", 0, interface{}(nil))
testCheck(c, check.Implements, false, "", interface{}(nil), &e)
}

View File

@ -0,0 +1,9 @@
package check
func PrintLine(filename string, line int) (string, error) {
return printLine(filename, line)
}
func Indent(s, with string) string {
return indent(s, with)
}

View File

@ -0,0 +1,484 @@
// Tests for the behavior of the test fixture system.
package check_test
import (
. "github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
)
// -----------------------------------------------------------------------
// Fixture test suite.
type FixtureS struct{}
var fixtureS = Suite(&FixtureS{})
func (s *FixtureS) TestCountSuite(c *C) {
suitesRun += 1
}
// -----------------------------------------------------------------------
// Basic fixture ordering verification.
func (s *FixtureS) TestOrder(c *C) {
helper := FixtureHelper{}
Run(&helper, nil)
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "SetUpTest")
c.Check(helper.calls[5], Equals, "Test2")
c.Check(helper.calls[6], Equals, "TearDownTest")
c.Check(helper.calls[7], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 8)
}
// -----------------------------------------------------------------------
// Check the behavior when panics occur within tests and fixtures.
func (s *FixtureS) TestPanicOnTest(c *C) {
helper := FixtureHelper{panicOn: "Test1"}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "SetUpTest")
c.Check(helper.calls[5], Equals, "Test2")
c.Check(helper.calls[6], Equals, "TearDownTest")
c.Check(helper.calls[7], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 8)
expected := "^\n-+\n" +
"PANIC: check_test\\.go:[0-9]+: FixtureHelper.Test1\n\n" +
"\\.\\.\\. Panic: Test1 \\(PC=[xA-F0-9]+\\)\n\n" +
".+:[0-9]+\n" +
" in (go)?panic\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.trace\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.Test1\n" +
"(.|\n)*$"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnSetUpTest(c *C) {
helper := FixtureHelper{panicOn: "SetUpTest"}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "TearDownTest")
c.Check(helper.calls[3], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 4)
expected := "^\n-+\n" +
"PANIC: check_test\\.go:[0-9]+: " +
"FixtureHelper\\.SetUpTest\n\n" +
"\\.\\.\\. Panic: SetUpTest \\(PC=[xA-F0-9]+\\)\n\n" +
".+:[0-9]+\n" +
" in (go)?panic\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.trace\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.SetUpTest\n" +
"(.|\n)*" +
"\n-+\n" +
"PANIC: check_test\\.go:[0-9]+: " +
"FixtureHelper\\.Test1\n\n" +
"\\.\\.\\. Panic: Fixture has panicked " +
"\\(see related PANIC\\)\n$"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnTearDownTest(c *C) {
helper := FixtureHelper{panicOn: "TearDownTest"}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 5)
expected := "^\n-+\n" +
"PANIC: check_test\\.go:[0-9]+: " +
"FixtureHelper.TearDownTest\n\n" +
"\\.\\.\\. Panic: TearDownTest \\(PC=[xA-F0-9]+\\)\n\n" +
".+:[0-9]+\n" +
" in (go)?panic\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.trace\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.TearDownTest\n" +
"(.|\n)*" +
"\n-+\n" +
"PANIC: check_test\\.go:[0-9]+: " +
"FixtureHelper\\.Test1\n\n" +
"\\.\\.\\. Panic: Fixture has panicked " +
"\\(see related PANIC\\)\n$"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnSetUpSuite(c *C) {
helper := FixtureHelper{panicOn: "SetUpSuite"}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 2)
expected := "^\n-+\n" +
"PANIC: check_test\\.go:[0-9]+: " +
"FixtureHelper.SetUpSuite\n\n" +
"\\.\\.\\. Panic: SetUpSuite \\(PC=[xA-F0-9]+\\)\n\n" +
".+:[0-9]+\n" +
" in (go)?panic\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.trace\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.SetUpSuite\n" +
"(.|\n)*$"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnTearDownSuite(c *C) {
helper := FixtureHelper{panicOn: "TearDownSuite"}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "SetUpTest")
c.Check(helper.calls[5], Equals, "Test2")
c.Check(helper.calls[6], Equals, "TearDownTest")
c.Check(helper.calls[7], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 8)
expected := "^\n-+\n" +
"PANIC: check_test\\.go:[0-9]+: " +
"FixtureHelper.TearDownSuite\n\n" +
"\\.\\.\\. Panic: TearDownSuite \\(PC=[xA-F0-9]+\\)\n\n" +
".+:[0-9]+\n" +
" in (go)?panic\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.trace\n" +
".*check_test.go:[0-9]+\n" +
" in FixtureHelper.TearDownSuite\n" +
"(.|\n)*$"
c.Check(output.value, Matches, expected)
}
// -----------------------------------------------------------------------
// A wrong argument on a test or fixture will produce a nice error.
func (s *FixtureS) TestPanicOnWrongTestArg(c *C) {
helper := WrongTestArgHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "TearDownTest")
c.Check(helper.calls[3], Equals, "SetUpTest")
c.Check(helper.calls[4], Equals, "Test2")
c.Check(helper.calls[5], Equals, "TearDownTest")
c.Check(helper.calls[6], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 7)
expected := "^\n-+\n" +
"PANIC: fixture_test\\.go:[0-9]+: " +
"WrongTestArgHelper\\.Test1\n\n" +
"\\.\\.\\. Panic: WrongTestArgHelper\\.Test1 argument " +
"should be \\*check\\.C\n"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnWrongSetUpTestArg(c *C) {
helper := WrongSetUpTestArgHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(len(helper.calls), Equals, 0)
expected :=
"^\n-+\n" +
"PANIC: fixture_test\\.go:[0-9]+: " +
"WrongSetUpTestArgHelper\\.SetUpTest\n\n" +
"\\.\\.\\. Panic: WrongSetUpTestArgHelper\\.SetUpTest argument " +
"should be \\*check\\.C\n"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnWrongSetUpSuiteArg(c *C) {
helper := WrongSetUpSuiteArgHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(len(helper.calls), Equals, 0)
expected :=
"^\n-+\n" +
"PANIC: fixture_test\\.go:[0-9]+: " +
"WrongSetUpSuiteArgHelper\\.SetUpSuite\n\n" +
"\\.\\.\\. Panic: WrongSetUpSuiteArgHelper\\.SetUpSuite argument " +
"should be \\*check\\.C\n"
c.Check(output.value, Matches, expected)
}
// -----------------------------------------------------------------------
// Nice errors also when tests or fixture have wrong arg count.
func (s *FixtureS) TestPanicOnWrongTestArgCount(c *C) {
helper := WrongTestArgCountHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "TearDownTest")
c.Check(helper.calls[3], Equals, "SetUpTest")
c.Check(helper.calls[4], Equals, "Test2")
c.Check(helper.calls[5], Equals, "TearDownTest")
c.Check(helper.calls[6], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 7)
expected := "^\n-+\n" +
"PANIC: fixture_test\\.go:[0-9]+: " +
"WrongTestArgCountHelper\\.Test1\n\n" +
"\\.\\.\\. Panic: WrongTestArgCountHelper\\.Test1 argument " +
"should be \\*check\\.C\n"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnWrongSetUpTestArgCount(c *C) {
helper := WrongSetUpTestArgCountHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(len(helper.calls), Equals, 0)
expected :=
"^\n-+\n" +
"PANIC: fixture_test\\.go:[0-9]+: " +
"WrongSetUpTestArgCountHelper\\.SetUpTest\n\n" +
"\\.\\.\\. Panic: WrongSetUpTestArgCountHelper\\.SetUpTest argument " +
"should be \\*check\\.C\n"
c.Check(output.value, Matches, expected)
}
func (s *FixtureS) TestPanicOnWrongSetUpSuiteArgCount(c *C) {
helper := WrongSetUpSuiteArgCountHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(len(helper.calls), Equals, 0)
expected :=
"^\n-+\n" +
"PANIC: fixture_test\\.go:[0-9]+: " +
"WrongSetUpSuiteArgCountHelper\\.SetUpSuite\n\n" +
"\\.\\.\\. Panic: WrongSetUpSuiteArgCountHelper" +
"\\.SetUpSuite argument should be \\*check\\.C\n"
c.Check(output.value, Matches, expected)
}
// -----------------------------------------------------------------------
// Helper test suites with wrong function arguments.
type WrongTestArgHelper struct {
FixtureHelper
}
func (s *WrongTestArgHelper) Test1(t int) {
}
type WrongSetUpTestArgHelper struct {
FixtureHelper
}
func (s *WrongSetUpTestArgHelper) SetUpTest(t int) {
}
type WrongSetUpSuiteArgHelper struct {
FixtureHelper
}
func (s *WrongSetUpSuiteArgHelper) SetUpSuite(t int) {
}
type WrongTestArgCountHelper struct {
FixtureHelper
}
func (s *WrongTestArgCountHelper) Test1(c *C, i int) {
}
type WrongSetUpTestArgCountHelper struct {
FixtureHelper
}
func (s *WrongSetUpTestArgCountHelper) SetUpTest(c *C, i int) {
}
type WrongSetUpSuiteArgCountHelper struct {
FixtureHelper
}
func (s *WrongSetUpSuiteArgCountHelper) SetUpSuite(c *C, i int) {
}
// -----------------------------------------------------------------------
// Ensure fixture doesn't run without tests.
type NoTestsHelper struct {
hasRun bool
}
func (s *NoTestsHelper) SetUpSuite(c *C) {
s.hasRun = true
}
func (s *NoTestsHelper) TearDownSuite(c *C) {
s.hasRun = true
}
func (s *FixtureS) TestFixtureDoesntRunWithoutTests(c *C) {
helper := NoTestsHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Check(helper.hasRun, Equals, false)
}
// -----------------------------------------------------------------------
// Verify that checks and assertions work correctly inside the fixture.
type FixtureCheckHelper struct {
fail string
completed bool
}
func (s *FixtureCheckHelper) SetUpSuite(c *C) {
switch s.fail {
case "SetUpSuiteAssert":
c.Assert(false, Equals, true)
case "SetUpSuiteCheck":
c.Check(false, Equals, true)
}
s.completed = true
}
func (s *FixtureCheckHelper) SetUpTest(c *C) {
switch s.fail {
case "SetUpTestAssert":
c.Assert(false, Equals, true)
case "SetUpTestCheck":
c.Check(false, Equals, true)
}
s.completed = true
}
func (s *FixtureCheckHelper) Test(c *C) {
// Do nothing.
}
func (s *FixtureS) TestSetUpSuiteCheck(c *C) {
helper := FixtureCheckHelper{fail: "SetUpSuiteCheck"}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Assert(output.value, Matches,
"\n---+\n"+
"FAIL: fixture_test\\.go:[0-9]+: "+
"FixtureCheckHelper\\.SetUpSuite\n\n"+
"fixture_test\\.go:[0-9]+:\n"+
" c\\.Check\\(false, Equals, true\\)\n"+
"\\.+ obtained bool = false\n"+
"\\.+ expected bool = true\n\n")
c.Assert(helper.completed, Equals, true)
}
func (s *FixtureS) TestSetUpSuiteAssert(c *C) {
helper := FixtureCheckHelper{fail: "SetUpSuiteAssert"}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Assert(output.value, Matches,
"\n---+\n"+
"FAIL: fixture_test\\.go:[0-9]+: "+
"FixtureCheckHelper\\.SetUpSuite\n\n"+
"fixture_test\\.go:[0-9]+:\n"+
" c\\.Assert\\(false, Equals, true\\)\n"+
"\\.+ obtained bool = false\n"+
"\\.+ expected bool = true\n\n")
c.Assert(helper.completed, Equals, false)
}
// -----------------------------------------------------------------------
// Verify that logging within SetUpTest() persists within the test log itself.
type FixtureLogHelper struct {
c *C
}
func (s *FixtureLogHelper) SetUpTest(c *C) {
s.c = c
c.Log("1")
}
func (s *FixtureLogHelper) Test(c *C) {
c.Log("2")
s.c.Log("3")
c.Log("4")
c.Fail()
}
func (s *FixtureLogHelper) TearDownTest(c *C) {
s.c.Log("5")
}
func (s *FixtureS) TestFixtureLogging(c *C) {
helper := FixtureLogHelper{}
output := String{}
Run(&helper, &RunConf{Output: &output})
c.Assert(output.value, Matches,
"\n---+\n"+
"FAIL: fixture_test\\.go:[0-9]+: "+
"FixtureLogHelper\\.Test\n\n"+
"1\n2\n3\n4\n5\n")
}
// -----------------------------------------------------------------------
// Skip() within fixture methods.
func (s *FixtureS) TestSkipSuite(c *C) {
helper := FixtureHelper{skip: true, skipOnN: 0}
output := String{}
result := Run(&helper, &RunConf{Output: &output})
c.Assert(output.value, Equals, "")
c.Assert(helper.calls[0], Equals, "SetUpSuite")
c.Assert(helper.calls[1], Equals, "TearDownSuite")
c.Assert(len(helper.calls), Equals, 2)
c.Assert(result.Skipped, Equals, 2)
}
func (s *FixtureS) TestSkipTest(c *C) {
helper := FixtureHelper{skip: true, skipOnN: 1}
output := String{}
result := Run(&helper, &RunConf{Output: &output})
c.Assert(helper.calls[0], Equals, "SetUpSuite")
c.Assert(helper.calls[1], Equals, "SetUpTest")
c.Assert(helper.calls[2], Equals, "SetUpTest")
c.Assert(helper.calls[3], Equals, "Test2")
c.Assert(helper.calls[4], Equals, "TearDownTest")
c.Assert(helper.calls[5], Equals, "TearDownSuite")
c.Assert(len(helper.calls), Equals, 6)
c.Assert(result.Skipped, Equals, 1)
}

View File

@ -0,0 +1,335 @@
// These tests check that the foundations of gocheck are working properly.
// They already assume that fundamental failing is working already, though,
// since this was tested in bootstrap_test.go. Even then, some care may
// still have to be taken when using external functions, since they should
// of course not rely on functionality tested here.
package check_test
import (
"fmt"
"github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
"log"
"os"
"regexp"
"strings"
)
// -----------------------------------------------------------------------
// Foundation test suite.
type FoundationS struct{}
var foundationS = check.Suite(&FoundationS{})
func (s *FoundationS) TestCountSuite(c *check.C) {
suitesRun += 1
}
func (s *FoundationS) TestErrorf(c *check.C) {
// Do not use checkState() here. It depends on Errorf() working.
expectedLog := fmt.Sprintf("foundation_test.go:%d:\n"+
" c.Errorf(\"Error %%v!\", \"message\")\n"+
"... Error: Error message!\n\n",
getMyLine()+1)
c.Errorf("Error %v!", "message")
failed := c.Failed()
c.Succeed()
if log := c.GetTestLog(); log != expectedLog {
c.Logf("Errorf() logged %#v rather than %#v", log, expectedLog)
c.Fail()
}
if !failed {
c.Logf("Errorf() didn't put the test in a failed state")
c.Fail()
}
}
func (s *FoundationS) TestError(c *check.C) {
expectedLog := fmt.Sprintf("foundation_test.go:%d:\n"+
" c\\.Error\\(\"Error \", \"message!\"\\)\n"+
"\\.\\.\\. Error: Error message!\n\n",
getMyLine()+1)
c.Error("Error ", "message!")
checkState(c, nil,
&expectedState{
name: "Error(`Error `, `message!`)",
failed: true,
log: expectedLog,
})
}
func (s *FoundationS) TestFailNow(c *check.C) {
defer (func() {
if !c.Failed() {
c.Error("FailNow() didn't fail the test")
} else {
c.Succeed()
if c.GetTestLog() != "" {
c.Error("Something got logged:\n" + c.GetTestLog())
}
}
})()
c.FailNow()
c.Log("FailNow() didn't stop the test")
}
func (s *FoundationS) TestSucceedNow(c *check.C) {
defer (func() {
if c.Failed() {
c.Error("SucceedNow() didn't succeed the test")
}
if c.GetTestLog() != "" {
c.Error("Something got logged:\n" + c.GetTestLog())
}
})()
c.Fail()
c.SucceedNow()
c.Log("SucceedNow() didn't stop the test")
}
func (s *FoundationS) TestFailureHeader(c *check.C) {
output := String{}
failHelper := FailHelper{}
check.Run(&failHelper, &check.RunConf{Output: &output})
header := fmt.Sprintf(""+
"\n-----------------------------------"+
"-----------------------------------\n"+
"FAIL: check_test.go:%d: FailHelper.TestLogAndFail\n",
failHelper.testLine)
if strings.Index(output.value, header) == -1 {
c.Errorf(""+
"Failure didn't print a proper header.\n"+
"... Got:\n%s... Expected something with:\n%s",
output.value, header)
}
}
func (s *FoundationS) TestFatal(c *check.C) {
var line int
defer (func() {
if !c.Failed() {
c.Error("Fatal() didn't fail the test")
} else {
c.Succeed()
expected := fmt.Sprintf("foundation_test.go:%d:\n"+
" c.Fatal(\"Die \", \"now!\")\n"+
"... Error: Die now!\n\n",
line)
if c.GetTestLog() != expected {
c.Error("Incorrect log:", c.GetTestLog())
}
}
})()
line = getMyLine() + 1
c.Fatal("Die ", "now!")
c.Log("Fatal() didn't stop the test")
}
func (s *FoundationS) TestFatalf(c *check.C) {
var line int
defer (func() {
if !c.Failed() {
c.Error("Fatalf() didn't fail the test")
} else {
c.Succeed()
expected := fmt.Sprintf("foundation_test.go:%d:\n"+
" c.Fatalf(\"Die %%s!\", \"now\")\n"+
"... Error: Die now!\n\n",
line)
if c.GetTestLog() != expected {
c.Error("Incorrect log:", c.GetTestLog())
}
}
})()
line = getMyLine() + 1
c.Fatalf("Die %s!", "now")
c.Log("Fatalf() didn't stop the test")
}
func (s *FoundationS) TestCallerLoggingInsideTest(c *check.C) {
log := fmt.Sprintf(""+
"foundation_test.go:%d:\n"+
" result := c.Check\\(10, check.Equals, 20\\)\n"+
"\\.\\.\\. obtained int = 10\n"+
"\\.\\.\\. expected int = 20\n\n",
getMyLine()+1)
result := c.Check(10, check.Equals, 20)
checkState(c, result,
&expectedState{
name: "Check(10, Equals, 20)",
result: false,
failed: true,
log: log,
})
}
func (s *FoundationS) TestCallerLoggingInDifferentFile(c *check.C) {
result, line := checkEqualWrapper(c, 10, 20)
testLine := getMyLine() - 1
log := fmt.Sprintf(""+
"foundation_test.go:%d:\n"+
" result, line := checkEqualWrapper\\(c, 10, 20\\)\n"+
"check_test.go:%d:\n"+
" return c.Check\\(obtained, check.Equals, expected\\), getMyLine\\(\\)\n"+
"\\.\\.\\. obtained int = 10\n"+
"\\.\\.\\. expected int = 20\n\n",
testLine, line)
checkState(c, result,
&expectedState{
name: "Check(10, Equals, 20)",
result: false,
failed: true,
log: log,
})
}
// -----------------------------------------------------------------------
// ExpectFailure() inverts the logic of failure.
type ExpectFailureSucceedHelper struct{}
func (s *ExpectFailureSucceedHelper) TestSucceed(c *check.C) {
c.ExpectFailure("It booms!")
c.Error("Boom!")
}
type ExpectFailureFailHelper struct{}
func (s *ExpectFailureFailHelper) TestFail(c *check.C) {
c.ExpectFailure("Bug #XYZ")
}
func (s *FoundationS) TestExpectFailureFail(c *check.C) {
helper := ExpectFailureFailHelper{}
output := String{}
result := check.Run(&helper, &check.RunConf{Output: &output})
expected := "" +
"^\n-+\n" +
"FAIL: foundation_test\\.go:[0-9]+:" +
" ExpectFailureFailHelper\\.TestFail\n\n" +
"\\.\\.\\. Error: Test succeeded, but was expected to fail\n" +
"\\.\\.\\. Reason: Bug #XYZ\n$"
matched, err := regexp.MatchString(expected, output.value)
if err != nil {
c.Error("Bad expression: ", expected)
} else if !matched {
c.Error("ExpectFailure() didn't log properly:\n", output.value)
}
c.Assert(result.ExpectedFailures, check.Equals, 0)
}
func (s *FoundationS) TestExpectFailureSucceed(c *check.C) {
helper := ExpectFailureSucceedHelper{}
output := String{}
result := check.Run(&helper, &check.RunConf{Output: &output})
c.Assert(output.value, check.Equals, "")
c.Assert(result.ExpectedFailures, check.Equals, 1)
}
func (s *FoundationS) TestExpectFailureSucceedVerbose(c *check.C) {
helper := ExpectFailureSucceedHelper{}
output := String{}
result := check.Run(&helper, &check.RunConf{Output: &output, Verbose: true})
expected := "" +
"FAIL EXPECTED: foundation_test\\.go:[0-9]+:" +
" ExpectFailureSucceedHelper\\.TestSucceed \\(It booms!\\)\t *[.0-9]+s\n"
matched, err := regexp.MatchString(expected, output.value)
if err != nil {
c.Error("Bad expression: ", expected)
} else if !matched {
c.Error("ExpectFailure() didn't log properly:\n", output.value)
}
c.Assert(result.ExpectedFailures, check.Equals, 1)
}
// -----------------------------------------------------------------------
// Skip() allows stopping a test without positive/negative results.
type SkipTestHelper struct{}
func (s *SkipTestHelper) TestFail(c *check.C) {
c.Skip("Wrong platform or whatever")
c.Error("Boom!")
}
func (s *FoundationS) TestSkip(c *check.C) {
helper := SkipTestHelper{}
output := String{}
check.Run(&helper, &check.RunConf{Output: &output})
if output.value != "" {
c.Error("Skip() logged something:\n", output.value)
}
}
func (s *FoundationS) TestSkipVerbose(c *check.C) {
helper := SkipTestHelper{}
output := String{}
check.Run(&helper, &check.RunConf{Output: &output, Verbose: true})
expected := "SKIP: foundation_test\\.go:[0-9]+: SkipTestHelper\\.TestFail" +
" \\(Wrong platform or whatever\\)"
matched, err := regexp.MatchString(expected, output.value)
if err != nil {
c.Error("Bad expression: ", expected)
} else if !matched {
c.Error("Skip() didn't log properly:\n", output.value)
}
}
// -----------------------------------------------------------------------
// Check minimum *log.Logger interface provided by *check.C.
type minLogger interface {
Output(calldepth int, s string) error
}
func (s *BootstrapS) TestMinLogger(c *check.C) {
var logger minLogger
logger = log.New(os.Stderr, "", 0)
logger = c
logger.Output(0, "Hello there")
expected := `\[LOG\] [0-9]+:[0-9][0-9]\.[0-9][0-9][0-9] +Hello there\n`
output := c.GetTestLog()
c.Assert(output, check.Matches, expected)
}
// -----------------------------------------------------------------------
// Ensure that suites with embedded types are working fine, including the
// the workaround for issue 906.
type EmbeddedInternalS struct {
called bool
}
type EmbeddedS struct {
EmbeddedInternalS
}
var embeddedS = check.Suite(&EmbeddedS{})
func (s *EmbeddedS) TestCountSuite(c *check.C) {
suitesRun += 1
}
func (s *EmbeddedInternalS) TestMethod(c *check.C) {
c.Error("TestMethod() of the embedded type was called!?")
}
func (s *EmbeddedS) TestMethod(c *check.C) {
// http://code.google.com/p/go/issues/detail?id=906
c.Check(s.called, check.Equals, false) // Go issue 906 is affecting the runner?
s.called = true
}

View File

@ -0,0 +1,231 @@
package check
import (
"fmt"
"strings"
"time"
)
// TestName returns the current test name in the form "SuiteName.TestName"
func (c *C) TestName() string {
return c.testName
}
// -----------------------------------------------------------------------
// Basic succeeding/failing logic.
// Failed returns whether the currently running test has already failed.
func (c *C) Failed() bool {
return c.status == failedSt
}
// Fail marks the currently running test as failed.
//
// Something ought to have been previously logged so the developer can tell
// what went wrong. The higher level helper functions will fail the test
// and do the logging properly.
func (c *C) Fail() {
c.status = failedSt
}
// FailNow marks the currently running test as failed and stops running it.
// Something ought to have been previously logged so the developer can tell
// what went wrong. The higher level helper functions will fail the test
// and do the logging properly.
func (c *C) FailNow() {
c.Fail()
c.stopNow()
}
// Succeed marks the currently running test as succeeded, undoing any
// previous failures.
func (c *C) Succeed() {
c.status = succeededSt
}
// SucceedNow marks the currently running test as succeeded, undoing any
// previous failures, and stops running the test.
func (c *C) SucceedNow() {
c.Succeed()
c.stopNow()
}
// ExpectFailure informs that the running test is knowingly broken for
// the provided reason. If the test does not fail, an error will be reported
// to raise attention to this fact. This method is useful to temporarily
// disable tests which cover well known problems until a better time to
// fix the problem is found, without forgetting about the fact that a
// failure still exists.
func (c *C) ExpectFailure(reason string) {
if reason == "" {
panic("Missing reason why the test is expected to fail")
}
c.mustFail = true
c.reason = reason
}
// Skip skips the running test for the provided reason. If run from within
// SetUpTest, the individual test being set up will be skipped, and if run
// from within SetUpSuite, the whole suite is skipped.
func (c *C) Skip(reason string) {
if reason == "" {
panic("Missing reason why the test is being skipped")
}
c.reason = reason
c.status = skippedSt
c.stopNow()
}
// -----------------------------------------------------------------------
// Basic logging.
// GetTestLog returns the current test error output.
func (c *C) GetTestLog() string {
return c.logb.String()
}
// Log logs some information into the test error output.
// The provided arguments are assembled together into a string with fmt.Sprint.
func (c *C) Log(args ...interface{}) {
c.log(args...)
}
// Log logs some information into the test error output.
// The provided arguments are assembled together into a string with fmt.Sprintf.
func (c *C) Logf(format string, args ...interface{}) {
c.logf(format, args...)
}
// Output enables *C to be used as a logger in functions that require only
// the minimum interface of *log.Logger.
func (c *C) Output(calldepth int, s string) error {
d := time.Now().Sub(c.startTime)
msec := d / time.Millisecond
sec := d / time.Second
min := d / time.Minute
c.Logf("[LOG] %d:%02d.%03d %s", min, sec%60, msec%1000, s)
return nil
}
// Error logs an error into the test error output and marks the test as failed.
// The provided arguments are assembled together into a string with fmt.Sprint.
func (c *C) Error(args ...interface{}) {
c.logCaller(1)
c.logString(fmt.Sprint("Error: ", fmt.Sprint(args...)))
c.logNewLine()
c.Fail()
}
// Errorf logs an error into the test error output and marks the test as failed.
// The provided arguments are assembled together into a string with fmt.Sprintf.
func (c *C) Errorf(format string, args ...interface{}) {
c.logCaller(1)
c.logString(fmt.Sprintf("Error: "+format, args...))
c.logNewLine()
c.Fail()
}
// Fatal logs an error into the test error output, marks the test as failed, and
// stops the test execution. The provided arguments are assembled together into
// a string with fmt.Sprint.
func (c *C) Fatal(args ...interface{}) {
c.logCaller(1)
c.logString(fmt.Sprint("Error: ", fmt.Sprint(args...)))
c.logNewLine()
c.FailNow()
}
// Fatlaf logs an error into the test error output, marks the test as failed, and
// stops the test execution. The provided arguments are assembled together into
// a string with fmt.Sprintf.
func (c *C) Fatalf(format string, args ...interface{}) {
c.logCaller(1)
c.logString(fmt.Sprint("Error: ", fmt.Sprintf(format, args...)))
c.logNewLine()
c.FailNow()
}
// -----------------------------------------------------------------------
// Generic checks and assertions based on checkers.
// Check verifies if the first value matches the expected value according
// to the provided checker. If they do not match, an error is logged, the
// test is marked as failed, and the test execution continues.
//
// Some checkers may not need the expected argument (e.g. IsNil).
//
// Extra arguments provided to the function are logged next to the reported
// problem when the matching fails.
func (c *C) Check(obtained interface{}, checker Checker, args ...interface{}) bool {
return c.internalCheck("Check", obtained, checker, args...)
}
// Assert ensures that the first value matches the expected value according
// to the provided checker. If they do not match, an error is logged, the
// test is marked as failed, and the test execution stops.
//
// Some checkers may not need the expected argument (e.g. IsNil).
//
// Extra arguments provided to the function are logged next to the reported
// problem when the matching fails.
func (c *C) Assert(obtained interface{}, checker Checker, args ...interface{}) {
if !c.internalCheck("Assert", obtained, checker, args...) {
c.stopNow()
}
}
func (c *C) internalCheck(funcName string, obtained interface{}, checker Checker, args ...interface{}) bool {
if checker == nil {
c.logCaller(2)
c.logString(fmt.Sprintf("%s(obtained, nil!?, ...):", funcName))
c.logString("Oops.. you've provided a nil checker!")
c.logNewLine()
c.Fail()
return false
}
// If the last argument is a bug info, extract it out.
var comment CommentInterface
if len(args) > 0 {
if c, ok := args[len(args)-1].(CommentInterface); ok {
comment = c
args = args[:len(args)-1]
}
}
params := append([]interface{}{obtained}, args...)
info := checker.Info()
if len(params) != len(info.Params) {
names := append([]string{info.Params[0], info.Name}, info.Params[1:]...)
c.logCaller(2)
c.logString(fmt.Sprintf("%s(%s):", funcName, strings.Join(names, ", ")))
c.logString(fmt.Sprintf("Wrong number of parameters for %s: want %d, got %d", info.Name, len(names), len(params)+1))
c.logNewLine()
c.Fail()
return false
}
// Copy since it may be mutated by Check.
names := append([]string{}, info.Params...)
// Do the actual check.
result, error := checker.Check(params, names)
if !result || error != "" {
c.logCaller(2)
for i := 0; i != len(params); i++ {
c.logValue(names[i], params[i])
}
if comment != nil {
c.logString(comment.CheckCommentString())
}
if error != "" {
c.logString(error)
}
c.logNewLine()
c.Fail()
return false
}
return true
}

View File

@ -0,0 +1,519 @@
// These tests verify the inner workings of the helper methods associated
// with check.T.
package check_test
import (
"github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
"os"
"reflect"
"runtime"
"sync"
)
var helpersS = check.Suite(&HelpersS{})
type HelpersS struct{}
func (s *HelpersS) TestCountSuite(c *check.C) {
suitesRun += 1
}
// -----------------------------------------------------------------------
// Fake checker and bug info to verify the behavior of Assert() and Check().
type MyChecker struct {
info *check.CheckerInfo
params []interface{}
names []string
result bool
error string
}
func (checker *MyChecker) Info() *check.CheckerInfo {
if checker.info == nil {
return &check.CheckerInfo{Name: "MyChecker", Params: []string{"myobtained", "myexpected"}}
}
return checker.info
}
func (checker *MyChecker) Check(params []interface{}, names []string) (bool, string) {
rparams := checker.params
rnames := checker.names
checker.params = append([]interface{}{}, params...)
checker.names = append([]string{}, names...)
if rparams != nil {
copy(params, rparams)
}
if rnames != nil {
copy(names, rnames)
}
return checker.result, checker.error
}
type myCommentType string
func (c myCommentType) CheckCommentString() string {
return string(c)
}
func myComment(s string) myCommentType {
return myCommentType(s)
}
// -----------------------------------------------------------------------
// Ensure a real checker actually works fine.
func (s *HelpersS) TestCheckerInterface(c *check.C) {
testHelperSuccess(c, "Check(1, Equals, 1)", true, func() interface{} {
return c.Check(1, check.Equals, 1)
})
}
// -----------------------------------------------------------------------
// Tests for Check(), mostly the same as for Assert() following these.
func (s *HelpersS) TestCheckSucceedWithExpected(c *check.C) {
checker := &MyChecker{result: true}
testHelperSuccess(c, "Check(1, checker, 2)", true, func() interface{} {
return c.Check(1, checker, 2)
})
if !reflect.DeepEqual(checker.params, []interface{}{1, 2}) {
c.Fatalf("Bad params for check: %#v", checker.params)
}
}
func (s *HelpersS) TestCheckSucceedWithoutExpected(c *check.C) {
checker := &MyChecker{result: true, info: &check.CheckerInfo{Params: []string{"myvalue"}}}
testHelperSuccess(c, "Check(1, checker)", true, func() interface{} {
return c.Check(1, checker)
})
if !reflect.DeepEqual(checker.params, []interface{}{1}) {
c.Fatalf("Bad params for check: %#v", checker.params)
}
}
func (s *HelpersS) TestCheckFailWithExpected(c *check.C) {
checker := &MyChecker{result: false}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker, 2\\)\n" +
"\\.+ myobtained int = 1\n" +
"\\.+ myexpected int = 2\n\n"
testHelperFailure(c, "Check(1, checker, 2)", false, false, log,
func() interface{} {
return c.Check(1, checker, 2)
})
}
func (s *HelpersS) TestCheckFailWithExpectedAndComment(c *check.C) {
checker := &MyChecker{result: false}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker, 2, myComment\\(\"Hello world!\"\\)\\)\n" +
"\\.+ myobtained int = 1\n" +
"\\.+ myexpected int = 2\n" +
"\\.+ Hello world!\n\n"
testHelperFailure(c, "Check(1, checker, 2, msg)", false, false, log,
func() interface{} {
return c.Check(1, checker, 2, myComment("Hello world!"))
})
}
func (s *HelpersS) TestCheckFailWithExpectedAndStaticComment(c *check.C) {
checker := &MyChecker{result: false}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" // Nice leading comment\\.\n" +
" return c\\.Check\\(1, checker, 2\\) // Hello there\n" +
"\\.+ myobtained int = 1\n" +
"\\.+ myexpected int = 2\n\n"
testHelperFailure(c, "Check(1, checker, 2, msg)", false, false, log,
func() interface{} {
// Nice leading comment.
return c.Check(1, checker, 2) // Hello there
})
}
func (s *HelpersS) TestCheckFailWithoutExpected(c *check.C) {
checker := &MyChecker{result: false, info: &check.CheckerInfo{Params: []string{"myvalue"}}}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker\\)\n" +
"\\.+ myvalue int = 1\n\n"
testHelperFailure(c, "Check(1, checker)", false, false, log,
func() interface{} {
return c.Check(1, checker)
})
}
func (s *HelpersS) TestCheckFailWithoutExpectedAndMessage(c *check.C) {
checker := &MyChecker{result: false, info: &check.CheckerInfo{Params: []string{"myvalue"}}}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker, myComment\\(\"Hello world!\"\\)\\)\n" +
"\\.+ myvalue int = 1\n" +
"\\.+ Hello world!\n\n"
testHelperFailure(c, "Check(1, checker, msg)", false, false, log,
func() interface{} {
return c.Check(1, checker, myComment("Hello world!"))
})
}
func (s *HelpersS) TestCheckWithMissingExpected(c *check.C) {
checker := &MyChecker{result: true}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker\\)\n" +
"\\.+ Check\\(myobtained, MyChecker, myexpected\\):\n" +
"\\.+ Wrong number of parameters for MyChecker: " +
"want 3, got 2\n\n"
testHelperFailure(c, "Check(1, checker, !?)", false, false, log,
func() interface{} {
return c.Check(1, checker)
})
}
func (s *HelpersS) TestCheckWithTooManyExpected(c *check.C) {
checker := &MyChecker{result: true}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker, 2, 3\\)\n" +
"\\.+ Check\\(myobtained, MyChecker, myexpected\\):\n" +
"\\.+ Wrong number of parameters for MyChecker: " +
"want 3, got 4\n\n"
testHelperFailure(c, "Check(1, checker, 2, 3)", false, false, log,
func() interface{} {
return c.Check(1, checker, 2, 3)
})
}
func (s *HelpersS) TestCheckWithError(c *check.C) {
checker := &MyChecker{result: false, error: "Some not so cool data provided!"}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker, 2\\)\n" +
"\\.+ myobtained int = 1\n" +
"\\.+ myexpected int = 2\n" +
"\\.+ Some not so cool data provided!\n\n"
testHelperFailure(c, "Check(1, checker, 2)", false, false, log,
func() interface{} {
return c.Check(1, checker, 2)
})
}
func (s *HelpersS) TestCheckWithNilChecker(c *check.C) {
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, nil\\)\n" +
"\\.+ Check\\(obtained, nil!\\?, \\.\\.\\.\\):\n" +
"\\.+ Oops\\.\\. you've provided a nil checker!\n\n"
testHelperFailure(c, "Check(obtained, nil)", false, false, log,
func() interface{} {
return c.Check(1, nil)
})
}
func (s *HelpersS) TestCheckWithParamsAndNamesMutation(c *check.C) {
checker := &MyChecker{result: false, params: []interface{}{3, 4}, names: []string{"newobtained", "newexpected"}}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" return c\\.Check\\(1, checker, 2\\)\n" +
"\\.+ newobtained int = 3\n" +
"\\.+ newexpected int = 4\n\n"
testHelperFailure(c, "Check(1, checker, 2) with mutation", false, false, log,
func() interface{} {
return c.Check(1, checker, 2)
})
}
// -----------------------------------------------------------------------
// Tests for Assert(), mostly the same as for Check() above.
func (s *HelpersS) TestAssertSucceedWithExpected(c *check.C) {
checker := &MyChecker{result: true}
testHelperSuccess(c, "Assert(1, checker, 2)", nil, func() interface{} {
c.Assert(1, checker, 2)
return nil
})
if !reflect.DeepEqual(checker.params, []interface{}{1, 2}) {
c.Fatalf("Bad params for check: %#v", checker.params)
}
}
func (s *HelpersS) TestAssertSucceedWithoutExpected(c *check.C) {
checker := &MyChecker{result: true, info: &check.CheckerInfo{Params: []string{"myvalue"}}}
testHelperSuccess(c, "Assert(1, checker)", nil, func() interface{} {
c.Assert(1, checker)
return nil
})
if !reflect.DeepEqual(checker.params, []interface{}{1}) {
c.Fatalf("Bad params for check: %#v", checker.params)
}
}
func (s *HelpersS) TestAssertFailWithExpected(c *check.C) {
checker := &MyChecker{result: false}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" c\\.Assert\\(1, checker, 2\\)\n" +
"\\.+ myobtained int = 1\n" +
"\\.+ myexpected int = 2\n\n"
testHelperFailure(c, "Assert(1, checker, 2)", nil, true, log,
func() interface{} {
c.Assert(1, checker, 2)
return nil
})
}
func (s *HelpersS) TestAssertFailWithExpectedAndMessage(c *check.C) {
checker := &MyChecker{result: false}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" c\\.Assert\\(1, checker, 2, myComment\\(\"Hello world!\"\\)\\)\n" +
"\\.+ myobtained int = 1\n" +
"\\.+ myexpected int = 2\n" +
"\\.+ Hello world!\n\n"
testHelperFailure(c, "Assert(1, checker, 2, msg)", nil, true, log,
func() interface{} {
c.Assert(1, checker, 2, myComment("Hello world!"))
return nil
})
}
func (s *HelpersS) TestAssertFailWithoutExpected(c *check.C) {
checker := &MyChecker{result: false, info: &check.CheckerInfo{Params: []string{"myvalue"}}}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" c\\.Assert\\(1, checker\\)\n" +
"\\.+ myvalue int = 1\n\n"
testHelperFailure(c, "Assert(1, checker)", nil, true, log,
func() interface{} {
c.Assert(1, checker)
return nil
})
}
func (s *HelpersS) TestAssertFailWithoutExpectedAndMessage(c *check.C) {
checker := &MyChecker{result: false, info: &check.CheckerInfo{Params: []string{"myvalue"}}}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" c\\.Assert\\(1, checker, myComment\\(\"Hello world!\"\\)\\)\n" +
"\\.+ myvalue int = 1\n" +
"\\.+ Hello world!\n\n"
testHelperFailure(c, "Assert(1, checker, msg)", nil, true, log,
func() interface{} {
c.Assert(1, checker, myComment("Hello world!"))
return nil
})
}
func (s *HelpersS) TestAssertWithMissingExpected(c *check.C) {
checker := &MyChecker{result: true}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" c\\.Assert\\(1, checker\\)\n" +
"\\.+ Assert\\(myobtained, MyChecker, myexpected\\):\n" +
"\\.+ Wrong number of parameters for MyChecker: " +
"want 3, got 2\n\n"
testHelperFailure(c, "Assert(1, checker, !?)", nil, true, log,
func() interface{} {
c.Assert(1, checker)
return nil
})
}
func (s *HelpersS) TestAssertWithError(c *check.C) {
checker := &MyChecker{result: false, error: "Some not so cool data provided!"}
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" c\\.Assert\\(1, checker, 2\\)\n" +
"\\.+ myobtained int = 1\n" +
"\\.+ myexpected int = 2\n" +
"\\.+ Some not so cool data provided!\n\n"
testHelperFailure(c, "Assert(1, checker, 2)", nil, true, log,
func() interface{} {
c.Assert(1, checker, 2)
return nil
})
}
func (s *HelpersS) TestAssertWithNilChecker(c *check.C) {
log := "(?s)helpers_test\\.go:[0-9]+:.*\nhelpers_test\\.go:[0-9]+:\n" +
" c\\.Assert\\(1, nil\\)\n" +
"\\.+ Assert\\(obtained, nil!\\?, \\.\\.\\.\\):\n" +
"\\.+ Oops\\.\\. you've provided a nil checker!\n\n"
testHelperFailure(c, "Assert(obtained, nil)", nil, true, log,
func() interface{} {
c.Assert(1, nil)
return nil
})
}
// -----------------------------------------------------------------------
// Ensure that values logged work properly in some interesting cases.
func (s *HelpersS) TestValueLoggingWithArrays(c *check.C) {
checker := &MyChecker{result: false}
log := "(?s)helpers_test.go:[0-9]+:.*\nhelpers_test.go:[0-9]+:\n" +
" return c\\.Check\\(\\[\\]byte{1, 2}, checker, \\[\\]byte{1, 3}\\)\n" +
"\\.+ myobtained \\[\\]uint8 = \\[\\]byte{0x1, 0x2}\n" +
"\\.+ myexpected \\[\\]uint8 = \\[\\]byte{0x1, 0x3}\n\n"
testHelperFailure(c, "Check([]byte{1}, chk, []byte{3})", false, false, log,
func() interface{} {
return c.Check([]byte{1, 2}, checker, []byte{1, 3})
})
}
func (s *HelpersS) TestValueLoggingWithMultiLine(c *check.C) {
checker := &MyChecker{result: false}
log := "(?s)helpers_test.go:[0-9]+:.*\nhelpers_test.go:[0-9]+:\n" +
" return c\\.Check\\(\"a\\\\nb\\\\n\", checker, \"a\\\\nb\\\\nc\"\\)\n" +
"\\.+ myobtained string = \"\" \\+\n" +
"\\.+ \"a\\\\n\" \\+\n" +
"\\.+ \"b\\\\n\"\n" +
"\\.+ myexpected string = \"\" \\+\n" +
"\\.+ \"a\\\\n\" \\+\n" +
"\\.+ \"b\\\\n\" \\+\n" +
"\\.+ \"c\"\n\n"
testHelperFailure(c, `Check("a\nb\n", chk, "a\nb\nc")`, false, false, log,
func() interface{} {
return c.Check("a\nb\n", checker, "a\nb\nc")
})
}
func (s *HelpersS) TestValueLoggingWithMultiLineException(c *check.C) {
// If the newline is at the end of the string, don't log as multi-line.
checker := &MyChecker{result: false}
log := "(?s)helpers_test.go:[0-9]+:.*\nhelpers_test.go:[0-9]+:\n" +
" return c\\.Check\\(\"a b\\\\n\", checker, \"a\\\\nb\"\\)\n" +
"\\.+ myobtained string = \"a b\\\\n\"\n" +
"\\.+ myexpected string = \"\" \\+\n" +
"\\.+ \"a\\\\n\" \\+\n" +
"\\.+ \"b\"\n\n"
testHelperFailure(c, `Check("a b\n", chk, "a\nb")`, false, false, log,
func() interface{} {
return c.Check("a b\n", checker, "a\nb")
})
}
// -----------------------------------------------------------------------
// MakeDir() tests.
type MkDirHelper struct {
path1 string
path2 string
isDir1 bool
isDir2 bool
isDir3 bool
isDir4 bool
}
func (s *MkDirHelper) SetUpSuite(c *check.C) {
s.path1 = c.MkDir()
s.isDir1 = isDir(s.path1)
}
func (s *MkDirHelper) Test(c *check.C) {
s.path2 = c.MkDir()
s.isDir2 = isDir(s.path2)
}
func (s *MkDirHelper) TearDownSuite(c *check.C) {
s.isDir3 = isDir(s.path1)
s.isDir4 = isDir(s.path2)
}
func (s *HelpersS) TestMkDir(c *check.C) {
helper := MkDirHelper{}
output := String{}
check.Run(&helper, &check.RunConf{Output: &output})
c.Assert(output.value, check.Equals, "")
c.Check(helper.isDir1, check.Equals, true)
c.Check(helper.isDir2, check.Equals, true)
c.Check(helper.isDir3, check.Equals, true)
c.Check(helper.isDir4, check.Equals, true)
c.Check(helper.path1, check.Not(check.Equals),
helper.path2)
c.Check(isDir(helper.path1), check.Equals, false)
c.Check(isDir(helper.path2), check.Equals, false)
}
func isDir(path string) bool {
if stat, err := os.Stat(path); err == nil {
return stat.IsDir()
}
return false
}
// Concurrent logging should not corrupt the underling buffer.
// Use go test -race to detect the race in this test.
func (s *HelpersS) TestConcurrentLogging(c *check.C) {
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(runtime.NumCPU()))
var start, stop sync.WaitGroup
start.Add(1)
for i, n := 0, runtime.NumCPU()*2; i < n; i++ {
stop.Add(1)
go func(i int) {
start.Wait()
for j := 0; j < 30; j++ {
c.Logf("Worker %d: line %d", i, j)
}
stop.Done()
}(i)
}
start.Done()
stop.Wait()
}
// -----------------------------------------------------------------------
// Test the TestName function
type TestNameHelper struct {
name1 string
name2 string
name3 string
name4 string
name5 string
}
func (s *TestNameHelper) SetUpSuite(c *check.C) { s.name1 = c.TestName() }
func (s *TestNameHelper) SetUpTest(c *check.C) { s.name2 = c.TestName() }
func (s *TestNameHelper) Test(c *check.C) { s.name3 = c.TestName() }
func (s *TestNameHelper) TearDownTest(c *check.C) { s.name4 = c.TestName() }
func (s *TestNameHelper) TearDownSuite(c *check.C) { s.name5 = c.TestName() }
func (s *HelpersS) TestTestName(c *check.C) {
helper := TestNameHelper{}
output := String{}
check.Run(&helper, &check.RunConf{Output: &output})
c.Check(helper.name1, check.Equals, "")
c.Check(helper.name2, check.Equals, "TestNameHelper.Test")
c.Check(helper.name3, check.Equals, "TestNameHelper.Test")
c.Check(helper.name4, check.Equals, "TestNameHelper.Test")
c.Check(helper.name5, check.Equals, "")
}
// -----------------------------------------------------------------------
// A couple of helper functions to test helper functions. :-)
func testHelperSuccess(c *check.C, name string, expectedResult interface{}, closure func() interface{}) {
var result interface{}
defer (func() {
if err := recover(); err != nil {
panic(err)
}
checkState(c, result,
&expectedState{
name: name,
result: expectedResult,
failed: false,
log: "",
})
})()
result = closure()
}
func testHelperFailure(c *check.C, name string, expectedResult interface{}, shouldStop bool, log string, closure func() interface{}) {
var result interface{}
defer (func() {
if err := recover(); err != nil {
panic(err)
}
checkState(c, result,
&expectedState{
name: name,
result: expectedResult,
failed: true,
log: log,
})
})()
result = closure()
if shouldStop {
c.Logf("%s didn't stop when it should", name)
}
}

View File

@ -0,0 +1,168 @@
package check
import (
"bytes"
"go/ast"
"go/parser"
"go/printer"
"go/token"
"os"
)
func indent(s, with string) (r string) {
eol := true
for i := 0; i != len(s); i++ {
c := s[i]
switch {
case eol && c == '\n' || c == '\r':
case c == '\n' || c == '\r':
eol = true
case eol:
eol = false
s = s[:i] + with + s[i:]
i += len(with)
}
}
return s
}
func printLine(filename string, line int) (string, error) {
fset := token.NewFileSet()
file, err := os.Open(filename)
if err != nil {
return "", err
}
fnode, err := parser.ParseFile(fset, filename, file, parser.ParseComments)
if err != nil {
return "", err
}
config := &printer.Config{Mode: printer.UseSpaces, Tabwidth: 4}
lp := &linePrinter{fset: fset, fnode: fnode, line: line, config: config}
ast.Walk(lp, fnode)
result := lp.output.Bytes()
// Comments leave \n at the end.
n := len(result)
for n > 0 && result[n-1] == '\n' {
n--
}
return string(result[:n]), nil
}
type linePrinter struct {
config *printer.Config
fset *token.FileSet
fnode *ast.File
line int
output bytes.Buffer
stmt ast.Stmt
}
func (lp *linePrinter) emit() bool {
if lp.stmt != nil {
lp.trim(lp.stmt)
lp.printWithComments(lp.stmt)
lp.stmt = nil
return true
}
return false
}
func (lp *linePrinter) printWithComments(n ast.Node) {
nfirst := lp.fset.Position(n.Pos()).Line
nlast := lp.fset.Position(n.End()).Line
for _, g := range lp.fnode.Comments {
cfirst := lp.fset.Position(g.Pos()).Line
clast := lp.fset.Position(g.End()).Line
if clast == nfirst-1 && lp.fset.Position(n.Pos()).Column == lp.fset.Position(g.Pos()).Column {
for _, c := range g.List {
lp.output.WriteString(c.Text)
lp.output.WriteByte('\n')
}
}
if cfirst >= nfirst && cfirst <= nlast && n.End() <= g.List[0].Slash {
// The printer will not include the comment if it starts past
// the node itself. Trick it into printing by overlapping the
// slash with the end of the statement.
g.List[0].Slash = n.End() - 1
}
}
node := &printer.CommentedNode{n, lp.fnode.Comments}
lp.config.Fprint(&lp.output, lp.fset, node)
}
func (lp *linePrinter) Visit(n ast.Node) (w ast.Visitor) {
if n == nil {
if lp.output.Len() == 0 {
lp.emit()
}
return nil
}
first := lp.fset.Position(n.Pos()).Line
last := lp.fset.Position(n.End()).Line
if first <= lp.line && last >= lp.line {
// Print the innermost statement containing the line.
if stmt, ok := n.(ast.Stmt); ok {
if _, ok := n.(*ast.BlockStmt); !ok {
lp.stmt = stmt
}
}
if first == lp.line && lp.emit() {
return nil
}
return lp
}
return nil
}
func (lp *linePrinter) trim(n ast.Node) bool {
stmt, ok := n.(ast.Stmt)
if !ok {
return true
}
line := lp.fset.Position(n.Pos()).Line
if line != lp.line {
return false
}
switch stmt := stmt.(type) {
case *ast.IfStmt:
stmt.Body = lp.trimBlock(stmt.Body)
case *ast.SwitchStmt:
stmt.Body = lp.trimBlock(stmt.Body)
case *ast.TypeSwitchStmt:
stmt.Body = lp.trimBlock(stmt.Body)
case *ast.CaseClause:
stmt.Body = lp.trimList(stmt.Body)
case *ast.CommClause:
stmt.Body = lp.trimList(stmt.Body)
case *ast.BlockStmt:
stmt.List = lp.trimList(stmt.List)
}
return true
}
func (lp *linePrinter) trimBlock(stmt *ast.BlockStmt) *ast.BlockStmt {
if !lp.trim(stmt) {
return lp.emptyBlock(stmt)
}
stmt.Rbrace = stmt.Lbrace
return stmt
}
func (lp *linePrinter) trimList(stmts []ast.Stmt) []ast.Stmt {
for i := 0; i != len(stmts); i++ {
if !lp.trim(stmts[i]) {
stmts[i] = lp.emptyStmt(stmts[i])
break
}
}
return stmts
}
func (lp *linePrinter) emptyStmt(n ast.Node) *ast.ExprStmt {
return &ast.ExprStmt{&ast.Ellipsis{n.Pos(), nil}}
}
func (lp *linePrinter) emptyBlock(n ast.Node) *ast.BlockStmt {
p := n.Pos()
return &ast.BlockStmt{p, []ast.Stmt{lp.emptyStmt(n)}, p}
}

View File

@ -0,0 +1,109 @@
package check_test
import (
. "github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
)
var _ = Suite(&PrinterS{})
type PrinterS struct{}
func (s *PrinterS) TestCountSuite(c *C) {
suitesRun += 1
}
var printTestFuncLine int
func init() {
printTestFuncLine = getMyLine() + 3
}
func printTestFunc() {
println(1) // Comment1
if 2 == 2 { // Comment2
println(3) // Comment3
}
switch 5 {
case 6:
println(6) // Comment6
println(7)
}
switch interface{}(9).(type) { // Comment9
case int:
println(10)
println(11)
}
select {
case <-(chan bool)(nil):
println(14)
println(15)
default:
println(16)
println(17)
}
println(19,
20)
_ = func() {
println(21)
println(22)
}
println(24, func() {
println(25)
})
// Leading comment
// with multiple lines.
println(29) // Comment29
}
var printLineTests = []struct {
line int
output string
}{
{1, "println(1) // Comment1"},
{2, "if 2 == 2 { // Comment2\n ...\n}"},
{3, "println(3) // Comment3"},
{5, "switch 5 {\n...\n}"},
{6, "case 6:\n println(6) // Comment6\n ..."},
{7, "println(7)"},
{9, "switch interface{}(9).(type) { // Comment9\n...\n}"},
{10, "case int:\n println(10)\n ..."},
{14, "case <-(chan bool)(nil):\n println(14)\n ..."},
{15, "println(15)"},
{16, "default:\n println(16)\n ..."},
{17, "println(17)"},
{19, "println(19,\n 20)"},
{20, "println(19,\n 20)"},
{21, "_ = func() {\n println(21)\n println(22)\n}"},
{22, "println(22)"},
{24, "println(24, func() {\n println(25)\n})"},
{25, "println(25)"},
{26, "println(24, func() {\n println(25)\n})"},
{29, "// Leading comment\n// with multiple lines.\nprintln(29) // Comment29"},
}
func (s *PrinterS) TestPrintLine(c *C) {
for _, test := range printLineTests {
output, err := PrintLine("printer_test.go", printTestFuncLine+test.line)
c.Assert(err, IsNil)
c.Assert(output, Equals, test.output)
}
}
var indentTests = []struct {
in, out string
}{
{"", ""},
{"\n", "\n"},
{"a", ">>>a"},
{"a\n", ">>>a\n"},
{"a\nb", ">>>a\n>>>b"},
{" ", ">>> "},
}
func (s *PrinterS) TestIndent(c *C) {
for _, test := range indentTests {
out := Indent(test.in, ">>>")
c.Assert(out, Equals, test.out)
}
}

View File

@ -0,0 +1,175 @@
package check
import (
"bufio"
"flag"
"fmt"
"os"
"testing"
"time"
)
// -----------------------------------------------------------------------
// Test suite registry.
var allSuites []interface{}
// Suite registers the given value as a test suite to be run. Any methods
// starting with the Test prefix in the given value will be considered as
// a test method.
func Suite(suite interface{}) interface{} {
allSuites = append(allSuites, suite)
return suite
}
// -----------------------------------------------------------------------
// Public running interface.
var (
oldFilterFlag = flag.String("gocheck.f", "", "Regular expression selecting which tests and/or suites to run")
oldVerboseFlag = flag.Bool("gocheck.v", false, "Verbose mode")
oldStreamFlag = flag.Bool("gocheck.vv", false, "Super verbose mode (disables output caching)")
oldBenchFlag = flag.Bool("gocheck.b", false, "Run benchmarks")
oldBenchTime = flag.Duration("gocheck.btime", 1*time.Second, "approximate run time for each benchmark")
oldListFlag = flag.Bool("gocheck.list", false, "List the names of all tests that will be run")
oldWorkFlag = flag.Bool("gocheck.work", false, "Display and do not remove the test working directory")
newFilterFlag = flag.String("check.f", "", "Regular expression selecting which tests and/or suites to run")
newVerboseFlag = flag.Bool("check.v", false, "Verbose mode")
newStreamFlag = flag.Bool("check.vv", false, "Super verbose mode (disables output caching)")
newBenchFlag = flag.Bool("check.b", false, "Run benchmarks")
newBenchTime = flag.Duration("check.btime", 1*time.Second, "approximate run time for each benchmark")
newBenchMem = flag.Bool("check.bmem", false, "Report memory benchmarks")
newListFlag = flag.Bool("check.list", false, "List the names of all tests that will be run")
newWorkFlag = flag.Bool("check.work", false, "Display and do not remove the test working directory")
)
// TestingT runs all test suites registered with the Suite function,
// printing results to stdout, and reporting any failures back to
// the "testing" package.
func TestingT(testingT *testing.T) {
benchTime := *newBenchTime
if benchTime == 1*time.Second {
benchTime = *oldBenchTime
}
conf := &RunConf{
Filter: *oldFilterFlag + *newFilterFlag,
Verbose: *oldVerboseFlag || *newVerboseFlag,
Stream: *oldStreamFlag || *newStreamFlag,
Benchmark: *oldBenchFlag || *newBenchFlag,
BenchmarkTime: benchTime,
BenchmarkMem: *newBenchMem,
KeepWorkDir: *oldWorkFlag || *newWorkFlag,
}
if *oldListFlag || *newListFlag {
w := bufio.NewWriter(os.Stdout)
for _, name := range ListAll(conf) {
fmt.Fprintln(w, name)
}
w.Flush()
return
}
result := RunAll(conf)
println(result.String())
if !result.Passed() {
testingT.Fail()
}
}
// RunAll runs all test suites registered with the Suite function, using the
// provided run configuration.
func RunAll(runConf *RunConf) *Result {
result := Result{}
for _, suite := range allSuites {
result.Add(Run(suite, runConf))
}
return &result
}
// Run runs the provided test suite using the provided run configuration.
func Run(suite interface{}, runConf *RunConf) *Result {
runner := newSuiteRunner(suite, runConf)
return runner.run()
}
// ListAll returns the names of all the test functions registered with the
// Suite function that will be run with the provided run configuration.
func ListAll(runConf *RunConf) []string {
var names []string
for _, suite := range allSuites {
names = append(names, List(suite, runConf)...)
}
return names
}
// List returns the names of the test functions in the given
// suite that will be run with the provided run configuration.
func List(suite interface{}, runConf *RunConf) []string {
var names []string
runner := newSuiteRunner(suite, runConf)
for _, t := range runner.tests {
names = append(names, t.String())
}
return names
}
// -----------------------------------------------------------------------
// Result methods.
func (r *Result) Add(other *Result) {
r.Succeeded += other.Succeeded
r.Skipped += other.Skipped
r.Failed += other.Failed
r.Panicked += other.Panicked
r.FixturePanicked += other.FixturePanicked
r.ExpectedFailures += other.ExpectedFailures
r.Missed += other.Missed
if r.WorkDir != "" && other.WorkDir != "" {
r.WorkDir += ":" + other.WorkDir
} else if other.WorkDir != "" {
r.WorkDir = other.WorkDir
}
}
func (r *Result) Passed() bool {
return (r.Failed == 0 && r.Panicked == 0 &&
r.FixturePanicked == 0 && r.Missed == 0 &&
r.RunError == nil)
}
func (r *Result) String() string {
if r.RunError != nil {
return "ERROR: " + r.RunError.Error()
}
var value string
if r.Failed == 0 && r.Panicked == 0 && r.FixturePanicked == 0 &&
r.Missed == 0 {
value = "OK: "
} else {
value = "OOPS: "
}
value += fmt.Sprintf("%d passed", r.Succeeded)
if r.Skipped != 0 {
value += fmt.Sprintf(", %d skipped", r.Skipped)
}
if r.ExpectedFailures != 0 {
value += fmt.Sprintf(", %d expected failures", r.ExpectedFailures)
}
if r.Failed != 0 {
value += fmt.Sprintf(", %d FAILED", r.Failed)
}
if r.Panicked != 0 {
value += fmt.Sprintf(", %d PANICKED", r.Panicked)
}
if r.FixturePanicked != 0 {
value += fmt.Sprintf(", %d FIXTURE-PANICKED", r.FixturePanicked)
}
if r.Missed != 0 {
value += fmt.Sprintf(", %d MISSED", r.Missed)
}
if r.WorkDir != "" {
value += "\nWORK=" + r.WorkDir
}
return value
}

View File

@ -0,0 +1,419 @@
// These tests verify the test running logic.
package check_test
import (
"errors"
. "github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
"os"
"sync"
)
var runnerS = Suite(&RunS{})
type RunS struct{}
func (s *RunS) TestCountSuite(c *C) {
suitesRun += 1
}
// -----------------------------------------------------------------------
// Tests ensuring result counting works properly.
func (s *RunS) TestSuccess(c *C) {
output := String{}
result := Run(&SuccessHelper{}, &RunConf{Output: &output})
c.Check(result.Succeeded, Equals, 1)
c.Check(result.Failed, Equals, 0)
c.Check(result.Skipped, Equals, 0)
c.Check(result.Panicked, Equals, 0)
c.Check(result.FixturePanicked, Equals, 0)
c.Check(result.Missed, Equals, 0)
c.Check(result.RunError, IsNil)
}
func (s *RunS) TestFailure(c *C) {
output := String{}
result := Run(&FailHelper{}, &RunConf{Output: &output})
c.Check(result.Succeeded, Equals, 0)
c.Check(result.Failed, Equals, 1)
c.Check(result.Skipped, Equals, 0)
c.Check(result.Panicked, Equals, 0)
c.Check(result.FixturePanicked, Equals, 0)
c.Check(result.Missed, Equals, 0)
c.Check(result.RunError, IsNil)
}
func (s *RunS) TestFixture(c *C) {
output := String{}
result := Run(&FixtureHelper{}, &RunConf{Output: &output})
c.Check(result.Succeeded, Equals, 2)
c.Check(result.Failed, Equals, 0)
c.Check(result.Skipped, Equals, 0)
c.Check(result.Panicked, Equals, 0)
c.Check(result.FixturePanicked, Equals, 0)
c.Check(result.Missed, Equals, 0)
c.Check(result.RunError, IsNil)
}
func (s *RunS) TestPanicOnTest(c *C) {
output := String{}
helper := &FixtureHelper{panicOn: "Test1"}
result := Run(helper, &RunConf{Output: &output})
c.Check(result.Succeeded, Equals, 1)
c.Check(result.Failed, Equals, 0)
c.Check(result.Skipped, Equals, 0)
c.Check(result.Panicked, Equals, 1)
c.Check(result.FixturePanicked, Equals, 0)
c.Check(result.Missed, Equals, 0)
c.Check(result.RunError, IsNil)
}
func (s *RunS) TestPanicOnSetUpTest(c *C) {
output := String{}
helper := &FixtureHelper{panicOn: "SetUpTest"}
result := Run(helper, &RunConf{Output: &output})
c.Check(result.Succeeded, Equals, 0)
c.Check(result.Failed, Equals, 0)
c.Check(result.Skipped, Equals, 0)
c.Check(result.Panicked, Equals, 0)
c.Check(result.FixturePanicked, Equals, 1)
c.Check(result.Missed, Equals, 2)
c.Check(result.RunError, IsNil)
}
func (s *RunS) TestPanicOnSetUpSuite(c *C) {
output := String{}
helper := &FixtureHelper{panicOn: "SetUpSuite"}
result := Run(helper, &RunConf{Output: &output})
c.Check(result.Succeeded, Equals, 0)
c.Check(result.Failed, Equals, 0)
c.Check(result.Skipped, Equals, 0)
c.Check(result.Panicked, Equals, 0)
c.Check(result.FixturePanicked, Equals, 1)
c.Check(result.Missed, Equals, 2)
c.Check(result.RunError, IsNil)
}
// -----------------------------------------------------------------------
// Check result aggregation.
func (s *RunS) TestAdd(c *C) {
result := &Result{
Succeeded: 1,
Skipped: 2,
Failed: 3,
Panicked: 4,
FixturePanicked: 5,
Missed: 6,
ExpectedFailures: 7,
}
result.Add(&Result{
Succeeded: 10,
Skipped: 20,
Failed: 30,
Panicked: 40,
FixturePanicked: 50,
Missed: 60,
ExpectedFailures: 70,
})
c.Check(result.Succeeded, Equals, 11)
c.Check(result.Skipped, Equals, 22)
c.Check(result.Failed, Equals, 33)
c.Check(result.Panicked, Equals, 44)
c.Check(result.FixturePanicked, Equals, 55)
c.Check(result.Missed, Equals, 66)
c.Check(result.ExpectedFailures, Equals, 77)
c.Check(result.RunError, IsNil)
}
// -----------------------------------------------------------------------
// Check the Passed() method.
func (s *RunS) TestPassed(c *C) {
c.Assert((&Result{}).Passed(), Equals, true)
c.Assert((&Result{Succeeded: 1}).Passed(), Equals, true)
c.Assert((&Result{Skipped: 1}).Passed(), Equals, true)
c.Assert((&Result{Failed: 1}).Passed(), Equals, false)
c.Assert((&Result{Panicked: 1}).Passed(), Equals, false)
c.Assert((&Result{FixturePanicked: 1}).Passed(), Equals, false)
c.Assert((&Result{Missed: 1}).Passed(), Equals, false)
c.Assert((&Result{RunError: errors.New("!")}).Passed(), Equals, false)
}
// -----------------------------------------------------------------------
// Check that result printing is working correctly.
func (s *RunS) TestPrintSuccess(c *C) {
result := &Result{Succeeded: 5}
c.Check(result.String(), Equals, "OK: 5 passed")
}
func (s *RunS) TestPrintFailure(c *C) {
result := &Result{Failed: 5}
c.Check(result.String(), Equals, "OOPS: 0 passed, 5 FAILED")
}
func (s *RunS) TestPrintSkipped(c *C) {
result := &Result{Skipped: 5}
c.Check(result.String(), Equals, "OK: 0 passed, 5 skipped")
}
func (s *RunS) TestPrintExpectedFailures(c *C) {
result := &Result{ExpectedFailures: 5}
c.Check(result.String(), Equals, "OK: 0 passed, 5 expected failures")
}
func (s *RunS) TestPrintPanicked(c *C) {
result := &Result{Panicked: 5}
c.Check(result.String(), Equals, "OOPS: 0 passed, 5 PANICKED")
}
func (s *RunS) TestPrintFixturePanicked(c *C) {
result := &Result{FixturePanicked: 5}
c.Check(result.String(), Equals, "OOPS: 0 passed, 5 FIXTURE-PANICKED")
}
func (s *RunS) TestPrintMissed(c *C) {
result := &Result{Missed: 5}
c.Check(result.String(), Equals, "OOPS: 0 passed, 5 MISSED")
}
func (s *RunS) TestPrintAll(c *C) {
result := &Result{Succeeded: 1, Skipped: 2, ExpectedFailures: 3,
Panicked: 4, FixturePanicked: 5, Missed: 6}
c.Check(result.String(), Equals,
"OOPS: 1 passed, 2 skipped, 3 expected failures, 4 PANICKED, "+
"5 FIXTURE-PANICKED, 6 MISSED")
}
func (s *RunS) TestPrintRunError(c *C) {
result := &Result{Succeeded: 1, Failed: 1,
RunError: errors.New("Kaboom!")}
c.Check(result.String(), Equals, "ERROR: Kaboom!")
}
// -----------------------------------------------------------------------
// Verify that the method pattern flag works correctly.
func (s *RunS) TestFilterTestName(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Filter: "Test[91]"}
Run(&helper, &runConf)
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 5)
}
func (s *RunS) TestFilterTestNameWithAll(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Filter: ".*"}
Run(&helper, &runConf)
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "SetUpTest")
c.Check(helper.calls[5], Equals, "Test2")
c.Check(helper.calls[6], Equals, "TearDownTest")
c.Check(helper.calls[7], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 8)
}
func (s *RunS) TestFilterSuiteName(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Filter: "FixtureHelper"}
Run(&helper, &runConf)
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test1")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "SetUpTest")
c.Check(helper.calls[5], Equals, "Test2")
c.Check(helper.calls[6], Equals, "TearDownTest")
c.Check(helper.calls[7], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 8)
}
func (s *RunS) TestFilterSuiteNameAndTestName(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Filter: "FixtureHelper\\.Test2"}
Run(&helper, &runConf)
c.Check(helper.calls[0], Equals, "SetUpSuite")
c.Check(helper.calls[1], Equals, "SetUpTest")
c.Check(helper.calls[2], Equals, "Test2")
c.Check(helper.calls[3], Equals, "TearDownTest")
c.Check(helper.calls[4], Equals, "TearDownSuite")
c.Check(len(helper.calls), Equals, 5)
}
func (s *RunS) TestFilterAllOut(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Filter: "NotFound"}
Run(&helper, &runConf)
c.Check(len(helper.calls), Equals, 0)
}
func (s *RunS) TestRequirePartialMatch(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Filter: "est"}
Run(&helper, &runConf)
c.Check(len(helper.calls), Equals, 8)
}
func (s *RunS) TestFilterError(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Filter: "]["}
result := Run(&helper, &runConf)
c.Check(result.String(), Equals,
"ERROR: Bad filter expression: error parsing regexp: missing closing ]: `[`")
c.Check(len(helper.calls), Equals, 0)
}
// -----------------------------------------------------------------------
// Verify that List works correctly.
func (s *RunS) TestListFiltered(c *C) {
names := List(&FixtureHelper{}, &RunConf{Filter: "1"})
c.Assert(names, DeepEquals, []string{
"FixtureHelper.Test1",
})
}
func (s *RunS) TestList(c *C) {
names := List(&FixtureHelper{}, &RunConf{})
c.Assert(names, DeepEquals, []string{
"FixtureHelper.Test1",
"FixtureHelper.Test2",
})
}
// -----------------------------------------------------------------------
// Verify that verbose mode prints tests which pass as well.
func (s *RunS) TestVerboseMode(c *C) {
helper := FixtureHelper{}
output := String{}
runConf := RunConf{Output: &output, Verbose: true}
Run(&helper, &runConf)
expected := "PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Test1\t *[.0-9]+s\n" +
"PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Test2\t *[.0-9]+s\n"
c.Assert(output.value, Matches, expected)
}
func (s *RunS) TestVerboseModeWithFailBeforePass(c *C) {
helper := FixtureHelper{panicOn: "Test1"}
output := String{}
runConf := RunConf{Output: &output, Verbose: true}
Run(&helper, &runConf)
expected := "(?s).*PANIC.*\n-+\n" + // Should have an extra line.
"PASS: check_test\\.go:[0-9]+: FixtureHelper\\.Test2\t *[.0-9]+s\n"
c.Assert(output.value, Matches, expected)
}
// -----------------------------------------------------------------------
// Verify the stream output mode. In this mode there's no output caching.
type StreamHelper struct {
l2 sync.Mutex
l3 sync.Mutex
}
func (s *StreamHelper) SetUpSuite(c *C) {
c.Log("0")
}
func (s *StreamHelper) Test1(c *C) {
c.Log("1")
s.l2.Lock()
s.l3.Lock()
go func() {
s.l2.Lock() // Wait for "2".
c.Log("3")
s.l3.Unlock()
}()
}
func (s *StreamHelper) Test2(c *C) {
c.Log("2")
s.l2.Unlock()
s.l3.Lock() // Wait for "3".
c.Fail()
c.Log("4")
}
func (s *RunS) TestStreamMode(c *C) {
helper := &StreamHelper{}
output := String{}
runConf := RunConf{Output: &output, Stream: true}
Run(helper, &runConf)
expected := "START: run_test\\.go:[0-9]+: StreamHelper\\.SetUpSuite\n0\n" +
"PASS: run_test\\.go:[0-9]+: StreamHelper\\.SetUpSuite\t *[.0-9]+s\n\n" +
"START: run_test\\.go:[0-9]+: StreamHelper\\.Test1\n1\n" +
"PASS: run_test\\.go:[0-9]+: StreamHelper\\.Test1\t *[.0-9]+s\n\n" +
"START: run_test\\.go:[0-9]+: StreamHelper\\.Test2\n2\n3\n4\n" +
"FAIL: run_test\\.go:[0-9]+: StreamHelper\\.Test2\n\n"
c.Assert(output.value, Matches, expected)
}
type StreamMissHelper struct{}
func (s *StreamMissHelper) SetUpSuite(c *C) {
c.Log("0")
c.Fail()
}
func (s *StreamMissHelper) Test1(c *C) {
c.Log("1")
}
func (s *RunS) TestStreamModeWithMiss(c *C) {
helper := &StreamMissHelper{}
output := String{}
runConf := RunConf{Output: &output, Stream: true}
Run(helper, &runConf)
expected := "START: run_test\\.go:[0-9]+: StreamMissHelper\\.SetUpSuite\n0\n" +
"FAIL: run_test\\.go:[0-9]+: StreamMissHelper\\.SetUpSuite\n\n" +
"START: run_test\\.go:[0-9]+: StreamMissHelper\\.Test1\n" +
"MISS: run_test\\.go:[0-9]+: StreamMissHelper\\.Test1\n\n"
c.Assert(output.value, Matches, expected)
}
// -----------------------------------------------------------------------
// Verify that that the keep work dir request indeed does so.
type WorkDirSuite struct{}
func (s *WorkDirSuite) Test(c *C) {
c.MkDir()
}
func (s *RunS) TestKeepWorkDir(c *C) {
output := String{}
runConf := RunConf{Output: &output, Verbose: true, KeepWorkDir: true}
result := Run(&WorkDirSuite{}, &runConf)
c.Assert(result.String(), Matches, ".*\nWORK="+result.WorkDir)
stat, err := os.Stat(result.WorkDir)
c.Assert(err, IsNil)
c.Assert(stat.IsDir(), Equals, true)
}

View File

@ -0,0 +1,22 @@
// Copyright 2013-2014 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"fmt"
"testing"
)
// Benchmarks the decoder by creating a property file with 1000 key/value pairs.
func BenchmarkLoad(b *testing.B) {
input := ""
for i := 0; i < 1000; i++ {
input += fmt.Sprintf("key%d=value%d\n", i, i)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
Load([]byte(input), ISO_8859_1)
}
}

290
vendor/github.com/magiconair/properties/decode.go generated vendored Normal file
View File

@ -0,0 +1,290 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"fmt"
"reflect"
"strconv"
"strings"
"time"
)
// Decode assigns property values to exported fields of a struct.
//
// Decode traverses v recursively and returns an error if a value cannot be
// converted to the field type or a required value is missing for a field.
//
// The following type dependent decodings are used:
//
// String, boolean, numeric fields have the value of the property key assigned.
// The property key name is the name of the field. A different key and a default
// value can be set in the field's tag. Fields without default value are
// required. If the value cannot be converted to the field type an error is
// returned.
//
// time.Duration fields have the result of time.ParseDuration() assigned.
//
// time.Time fields have the vaule of time.Parse() assigned. The default layout
// is time.RFC3339 but can be set in the field's tag.
//
// Arrays and slices of string, boolean, numeric, time.Duration and time.Time
// fields have the value interpreted as a comma separated list of values. The
// individual values are trimmed of whitespace and empty values are ignored. A
// default value can be provided as a semicolon separated list in the field's
// tag.
//
// Struct fields are decoded recursively using the field name plus "." as
// prefix. The prefix (without dot) can be overridden in the field's tag.
// Default values are not supported in the field's tag. Specify them on the
// fields of the inner struct instead.
//
// Map fields must have a key of type string and are decoded recursively by
// using the field's name plus ".' as prefix and the next element of the key
// name as map key. The prefix (without dot) can be overridden in the field's
// tag. Default values are not supported.
//
// Examples:
//
// // Field is ignored.
// Field int `properties:"-"`
//
// // Field is assigned value of 'Field'.
// Field int
//
// // Field is assigned value of 'myName'.
// Field int `properties:"myName"`
//
// // Field is assigned value of key 'myName' and has a default
// // value 15 if the key does not exist.
// Field int `properties:"myName,default=15"`
//
// // Field is assigned value of key 'Field' and has a default
// // value 15 if the key does not exist.
// Field int `properties:",default=15"`
//
// // Field is assigned value of key 'date' and the date
// // is in format 2006-01-02
// Field time.Time `properties:"date,layout=2006-01-02"`
//
// // Field is assigned the non-empty and whitespace trimmed
// // values of key 'Field' split by commas.
// Field []string
//
// // Field is assigned the non-empty and whitespace trimmed
// // values of key 'Field' split by commas and has a default
// // value ["a", "b", "c"] if the key does not exist.
// Field []string `properties:",default=a;b;c"`
//
// // Field is decoded recursively with "Field." as key prefix.
// Field SomeStruct
//
// // Field is decoded recursively with "myName." as key prefix.
// Field SomeStruct `properties:"myName"`
//
// // Field is decoded recursively with "Field." as key prefix
// // and the next dotted element of the key as map key.
// Field map[string]string
//
// // Field is decoded recursively with "myName." as key prefix
// // and the next dotted element of the key as map key.
// Field map[string]string `properties:"myName"`
func (p *Properties) Decode(x interface{}) error {
t, v := reflect.TypeOf(x), reflect.ValueOf(x)
if t.Kind() != reflect.Ptr || v.Elem().Type().Kind() != reflect.Struct {
return fmt.Errorf("not a pointer to struct: %s", t)
}
if err := dec(p, "", nil, nil, v); err != nil {
return err
}
return nil
}
func dec(p *Properties, key string, def *string, opts map[string]string, v reflect.Value) error {
t := v.Type()
// value returns the property value for key or the default if provided.
value := func() (string, error) {
if val, ok := p.Get(key); ok {
return val, nil
}
if def != nil {
return *def, nil
}
return "", fmt.Errorf("missing required key %s", key)
}
// conv converts a string to a value of the given type.
conv := func(s string, t reflect.Type) (val reflect.Value, err error) {
var v interface{}
switch {
case isDuration(t):
v, err = time.ParseDuration(s)
case isTime(t):
layout := opts["layout"]
if layout == "" {
layout = time.RFC3339
}
v, err = time.Parse(layout, s)
case isBool(t):
v, err = boolVal(s), nil
case isString(t):
v, err = s, nil
case isFloat(t):
v, err = strconv.ParseFloat(s, 64)
case isInt(t):
v, err = strconv.ParseInt(s, 10, 64)
case isUint(t):
v, err = strconv.ParseUint(s, 10, 64)
default:
return reflect.Zero(t), fmt.Errorf("unsupported type %s", t)
}
if err != nil {
return reflect.Zero(t), err
}
return reflect.ValueOf(v).Convert(t), nil
}
// keydef returns the property key and the default value based on the
// name of the struct field and the options in the tag.
keydef := func(f reflect.StructField) (string, *string, map[string]string) {
key, opts := parseTag(f.Tag.Get("properties"))
var def *string
if d, ok := opts["default"]; ok {
def = &d
}
if key != "" {
return key, def, opts
}
return f.Name, def, opts
}
switch {
case isDuration(t) || isTime(t) || isBool(t) || isString(t) || isFloat(t) || isInt(t) || isUint(t):
s, err := value()
if err != nil {
return err
}
val, err := conv(s, t)
if err != nil {
return err
}
v.Set(val)
case isPtr(t):
return dec(p, key, def, opts, v.Elem())
case isStruct(t):
for i := 0; i < v.NumField(); i++ {
fv := v.Field(i)
fk, def, opts := keydef(t.Field(i))
if !fv.CanSet() {
return fmt.Errorf("cannot set %s", t.Field(i).Name)
}
if fk == "-" {
continue
}
if key != "" {
fk = key + "." + fk
}
if err := dec(p, fk, def, opts, fv); err != nil {
return err
}
}
return nil
case isArray(t):
val, err := value()
if err != nil {
return err
}
vals := split(val, ";")
a := reflect.MakeSlice(t, 0, len(vals))
for _, s := range vals {
val, err := conv(s, t.Elem())
if err != nil {
return err
}
a = reflect.Append(a, val)
}
v.Set(a)
case isMap(t):
valT := t.Elem()
m := reflect.MakeMap(t)
for postfix, _ := range p.FilterStripPrefix(key + ".").m {
pp := strings.SplitN(postfix, ".", 2)
mk, mv := pp[0], reflect.New(valT)
if err := dec(p, key+"."+mk, nil, nil, mv); err != nil {
return err
}
m.SetMapIndex(reflect.ValueOf(mk), mv.Elem())
}
v.Set(m)
default:
return fmt.Errorf("unsupported type %s", t)
}
return nil
}
// split splits a string on sep, trims whitespace of elements
// and omits empty elements
func split(s string, sep string) []string {
var a []string
for _, v := range strings.Split(s, sep) {
if v = strings.TrimSpace(v); v != "" {
a = append(a, v)
}
}
return a
}
// parseTag parses a "key,k=v,k=v,..."
func parseTag(tag string) (key string, opts map[string]string) {
opts = map[string]string{}
for i, s := range strings.Split(tag, ",") {
if i == 0 {
key = s
continue
}
pp := strings.SplitN(s, "=", 2)
if len(pp) == 1 {
opts[pp[0]] = ""
} else {
opts[pp[0]] = pp[1]
}
}
return key, opts
}
func isArray(t reflect.Type) bool { return t.Kind() == reflect.Array || t.Kind() == reflect.Slice }
func isBool(t reflect.Type) bool { return t.Kind() == reflect.Bool }
func isDuration(t reflect.Type) bool { return t == reflect.TypeOf(time.Second) }
func isMap(t reflect.Type) bool { return t.Kind() == reflect.Map }
func isNumeric(t reflect.Type) bool { return isInt(t) || isUint(t) || isFloat(t) }
func isPtr(t reflect.Type) bool { return t.Kind() == reflect.Ptr }
func isString(t reflect.Type) bool { return t.Kind() == reflect.String }
func isStruct(t reflect.Type) bool { return t.Kind() == reflect.Struct }
func isTime(t reflect.Type) bool { return t == reflect.TypeOf(time.Time{}) }
func isFloat(t reflect.Type) bool {
return t.Kind() == reflect.Float32 || t.Kind() == reflect.Float64
}
func isInt(t reflect.Type) bool {
return t.Kind() == reflect.Int || t.Kind() == reflect.Int8 || t.Kind() == reflect.Int16 || t.Kind() == reflect.Int32 || t.Kind() == reflect.Int64
}
func isUint(t reflect.Type) bool {
return t.Kind() == reflect.Uint || t.Kind() == reflect.Uint8 || t.Kind() == reflect.Uint16 || t.Kind() == reflect.Uint32 || t.Kind() == reflect.Uint64
}

299
vendor/github.com/magiconair/properties/decode_test.go generated vendored Normal file
View File

@ -0,0 +1,299 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"reflect"
"testing"
"time"
)
func TestDecodeValues(t *testing.T) {
type S struct {
S string
BT bool
BF bool
I int
I8 int8
I16 int16
I32 int32
I64 int64
U uint
U8 uint8
U16 uint16
U32 uint32
U64 uint64
F32 float32
F64 float64
D time.Duration
TM time.Time
}
in := `
S=abc
BT=true
BF=false
I=-1
I8=-8
I16=-16
I32=-32
I64=-64
U=1
U8=8
U16=16
U32=32
U64=64
F32=3.2
F64=6.4
D=5s
TM=2015-01-02T12:34:56Z
`
out := &S{
S: "abc",
BT: true,
BF: false,
I: -1,
I8: -8,
I16: -16,
I32: -32,
I64: -64,
U: 1,
U8: 8,
U16: 16,
U32: 32,
U64: 64,
F32: 3.2,
F64: 6.4,
D: 5 * time.Second,
TM: tm(t, time.RFC3339, "2015-01-02T12:34:56Z"),
}
testDecode(t, in, &S{}, out)
}
func TestDecodeValueDefaults(t *testing.T) {
type S struct {
S string `properties:",default=abc"`
BT bool `properties:",default=true"`
BF bool `properties:",default=false"`
I int `properties:",default=-1"`
I8 int8 `properties:",default=-8"`
I16 int16 `properties:",default=-16"`
I32 int32 `properties:",default=-32"`
I64 int64 `properties:",default=-64"`
U uint `properties:",default=1"`
U8 uint8 `properties:",default=8"`
U16 uint16 `properties:",default=16"`
U32 uint32 `properties:",default=32"`
U64 uint64 `properties:",default=64"`
F32 float32 `properties:",default=3.2"`
F64 float64 `properties:",default=6.4"`
D time.Duration `properties:",default=5s"`
TM time.Time `properties:",default=2015-01-02T12:34:56Z"`
}
out := &S{
S: "abc",
BT: true,
BF: false,
I: -1,
I8: -8,
I16: -16,
I32: -32,
I64: -64,
U: 1,
U8: 8,
U16: 16,
U32: 32,
U64: 64,
F32: 3.2,
F64: 6.4,
D: 5 * time.Second,
TM: tm(t, time.RFC3339, "2015-01-02T12:34:56Z"),
}
testDecode(t, "", &S{}, out)
}
func TestDecodeArrays(t *testing.T) {
type S struct {
S []string
B []bool
I []int
I8 []int8
I16 []int16
I32 []int32
I64 []int64
U []uint
U8 []uint8
U16 []uint16
U32 []uint32
U64 []uint64
F32 []float32
F64 []float64
D []time.Duration
TM []time.Time
}
in := `
S=a;b
B=true;false
I=-1;-2
I8=-8;-9
I16=-16;-17
I32=-32;-33
I64=-64;-65
U=1;2
U8=8;9
U16=16;17
U32=32;33
U64=64;65
F32=3.2;3.3
F64=6.4;6.5
D=4s;5s
TM=2015-01-01T00:00:00Z;2016-01-01T00:00:00Z
`
out := &S{
S: []string{"a", "b"},
B: []bool{true, false},
I: []int{-1, -2},
I8: []int8{-8, -9},
I16: []int16{-16, -17},
I32: []int32{-32, -33},
I64: []int64{-64, -65},
U: []uint{1, 2},
U8: []uint8{8, 9},
U16: []uint16{16, 17},
U32: []uint32{32, 33},
U64: []uint64{64, 65},
F32: []float32{3.2, 3.3},
F64: []float64{6.4, 6.5},
D: []time.Duration{4 * time.Second, 5 * time.Second},
TM: []time.Time{tm(t, time.RFC3339, "2015-01-01T00:00:00Z"), tm(t, time.RFC3339, "2016-01-01T00:00:00Z")},
}
testDecode(t, in, &S{}, out)
}
func TestDecodeArrayDefaults(t *testing.T) {
type S struct {
S []string `properties:",default=a;b"`
B []bool `properties:",default=true;false"`
I []int `properties:",default=-1;-2"`
I8 []int8 `properties:",default=-8;-9"`
I16 []int16 `properties:",default=-16;-17"`
I32 []int32 `properties:",default=-32;-33"`
I64 []int64 `properties:",default=-64;-65"`
U []uint `properties:",default=1;2"`
U8 []uint8 `properties:",default=8;9"`
U16 []uint16 `properties:",default=16;17"`
U32 []uint32 `properties:",default=32;33"`
U64 []uint64 `properties:",default=64;65"`
F32 []float32 `properties:",default=3.2;3.3"`
F64 []float64 `properties:",default=6.4;6.5"`
D []time.Duration `properties:",default=4s;5s"`
TM []time.Time `properties:",default=2015-01-01T00:00:00Z;2016-01-01T00:00:00Z"`
}
out := &S{
S: []string{"a", "b"},
B: []bool{true, false},
I: []int{-1, -2},
I8: []int8{-8, -9},
I16: []int16{-16, -17},
I32: []int32{-32, -33},
I64: []int64{-64, -65},
U: []uint{1, 2},
U8: []uint8{8, 9},
U16: []uint16{16, 17},
U32: []uint32{32, 33},
U64: []uint64{64, 65},
F32: []float32{3.2, 3.3},
F64: []float64{6.4, 6.5},
D: []time.Duration{4 * time.Second, 5 * time.Second},
TM: []time.Time{tm(t, time.RFC3339, "2015-01-01T00:00:00Z"), tm(t, time.RFC3339, "2016-01-01T00:00:00Z")},
}
testDecode(t, "", &S{}, out)
}
func TestDecodeSkipUndef(t *testing.T) {
type S struct {
X string `properties:"-"`
Undef string `properties:",default=some value"`
}
in := `X=ignore`
out := &S{"", "some value"}
testDecode(t, in, &S{}, out)
}
func TestDecodeStruct(t *testing.T) {
type A struct {
S string
T string `properties:"t"`
U string `properties:"u,default=uuu"`
}
type S struct {
A A
B A `properties:"b"`
}
in := `
A.S=sss
A.t=ttt
b.S=SSS
b.t=TTT
`
out := &S{
A{S: "sss", T: "ttt", U: "uuu"},
A{S: "SSS", T: "TTT", U: "uuu"},
}
testDecode(t, in, &S{}, out)
}
func TestDecodeMap(t *testing.T) {
type S struct {
A string `properties:"a"`
}
type X struct {
A map[string]string
B map[string][]string
C map[string]map[string]string
D map[string]S
E map[string]int
F map[string]int `properties:"-"`
}
in := `
A.foo=bar
A.bar=bang
B.foo=a;b;c
B.bar=1;2;3
C.foo.one=1
C.foo.two=2
C.bar.three=3
C.bar.four=4
D.foo.a=bar
`
out := &X{
A: map[string]string{"foo": "bar", "bar": "bang"},
B: map[string][]string{"foo": []string{"a", "b", "c"}, "bar": []string{"1", "2", "3"}},
C: map[string]map[string]string{"foo": map[string]string{"one": "1", "two": "2"}, "bar": map[string]string{"three": "3", "four": "4"}},
D: map[string]S{"foo": S{"bar"}},
E: map[string]int{},
}
testDecode(t, in, &X{}, out)
}
func testDecode(t *testing.T, in string, v, out interface{}) {
p, err := parse(in)
if err != nil {
t.Fatalf("got %v want nil", err)
}
if err := p.Decode(v); err != nil {
t.Fatalf("got %v want nil", err)
}
if got, want := v, out; !reflect.DeepEqual(got, want) {
t.Fatalf("\ngot %+v\nwant %+v", got, want)
}
}
func tm(t *testing.T, layout, s string) time.Time {
tm, err := time.Parse(layout, s)
if err != nil {
t.Fatalf("got %v want nil", err)
}
return tm
}

156
vendor/github.com/magiconair/properties/doc.go generated vendored Normal file
View File

@ -0,0 +1,156 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package properties provides functions for reading and writing
// ISO-8859-1 and UTF-8 encoded .properties files and has
// support for recursive property expansion.
//
// Java properties files are ISO-8859-1 encoded and use Unicode
// literals for characters outside the ISO character set. Unicode
// literals can be used in UTF-8 encoded properties files but
// aren't necessary.
//
// To load a single properties file use MustLoadFile():
//
// p := properties.MustLoadFile(filename, properties.UTF8)
//
// To load multiple properties files use MustLoadFiles()
// which loads the files in the given order and merges the
// result. Missing properties files can be ignored if the
// 'ignoreMissing' flag is set to true.
//
// Filenames can contain environment variables which are expanded
// before loading.
//
// f1 := "/etc/myapp/myapp.conf"
// f2 := "/home/${USER}/myapp.conf"
// p := MustLoadFiles([]string{f1, f2}, properties.UTF8, true)
//
// All of the different key/value delimiters ' ', ':' and '=' are
// supported as well as the comment characters '!' and '#' and
// multi-line values.
//
// ! this is a comment
// # and so is this
//
// # the following expressions are equal
// key value
// key=value
// key:value
// key = value
// key : value
// key = val\
// ue
//
// Properties stores all comments preceding a key and provides
// GetComments() and SetComments() methods to retrieve and
// update them. The convenience functions GetComment() and
// SetComment() allow access to the last comment. The
// WriteComment() method writes properties files including
// the comments and with the keys in the original order.
// This can be used for sanitizing properties files.
//
// Property expansion is recursive and circular references
// and malformed expressions are not allowed and cause an
// error. Expansion of environment variables is supported.
//
// # standard property
// key = value
//
// # property expansion: key2 = value
// key2 = ${key}
//
// # recursive expansion: key3 = value
// key3 = ${key2}
//
// # circular reference (error)
// key = ${key}
//
// # malformed expression (error)
// key = ${ke
//
// # refers to the users' home dir
// home = ${HOME}
//
// # local key takes precendence over env var: u = foo
// USER = foo
// u = ${USER}
//
// The default property expansion format is ${key} but can be
// changed by setting different pre- and postfix values on the
// Properties object.
//
// p := properties.NewProperties()
// p.Prefix = "#["
// p.Postfix = "]#"
//
// Properties provides convenience functions for getting typed
// values with default values if the key does not exist or the
// type conversion failed.
//
// # Returns true if the value is either "1", "on", "yes" or "true"
// # Returns false for every other value and the default value if
// # the key does not exist.
// v = p.GetBool("key", false)
//
// # Returns the value if the key exists and the format conversion
// # was successful. Otherwise, the default value is returned.
// v = p.GetInt64("key", 999)
// v = p.GetUint64("key", 999)
// v = p.GetFloat64("key", 123.0)
// v = p.GetString("key", "def")
// v = p.GetDuration("key", 999)
//
// As an alterantive properties may be applied with the standard
// library's flag implementation at any time.
//
// # Standard configuration
// v = flag.Int("key", 999, "help message")
// flag.Parse()
//
// # Merge p into the flag set
// p.MustFlag(flag.CommandLine)
//
// Properties provides several MustXXX() convenience functions
// which will terminate the app if an error occurs. The behavior
// of the failure is configurable and the default is to call
// log.Fatal(err). To have the MustXXX() functions panic instead
// of logging the error set a different ErrorHandler before
// you use the Properties package.
//
// properties.ErrorHandler = properties.PanicHandler
//
// # Will panic instead of logging an error
// p := properties.MustLoadFile("config.properties")
//
// You can also provide your own ErrorHandler function. The only requirement
// is that the error handler function must exit after handling the error.
//
// properties.ErrorHandler = func(err error) {
// fmt.Println(err)
// os.Exit(1)
// }
//
// # Will write to stdout and then exit
// p := properties.MustLoadFile("config.properties")
//
// Properties can also be loaded into a struct via the `Decode`
// method, e.g.
//
// type S struct {
// A string `properties:"a,default=foo"`
// D time.Duration `properties:"timeout,default=5s"`
// E time.Time `properties:"expires,layout=2006-01-02,default=2015-01-01"`
// }
//
// See `Decode()` method for the full documentation.
//
// The following documents provide a description of the properties
// file format.
//
// http://en.wikipedia.org/wiki/.properties
//
// http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html#load%28java.io.Reader%29
//
package properties

View File

@ -0,0 +1,93 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"fmt"
"log"
)
func ExampleLoad_iso88591() {
buf := []byte("key = ISO-8859-1 value with unicode literal \\u2318 and umlaut \xE4") // 0xE4 == ä
p, _ := Load(buf, ISO_8859_1)
v, ok := p.Get("key")
fmt.Println(ok)
fmt.Println(v)
// Output:
// true
// ISO-8859-1 value with unicode literal ⌘ and umlaut ä
}
func ExampleLoad_utf8() {
p, _ := Load([]byte("key = UTF-8 value with unicode character ⌘ and umlaut ä"), UTF8)
v, ok := p.Get("key")
fmt.Println(ok)
fmt.Println(v)
// Output:
// true
// UTF-8 value with unicode character ⌘ and umlaut ä
}
func ExampleProperties_GetBool() {
var input = `
key=1
key2=On
key3=YES
key4=true`
p, _ := Load([]byte(input), ISO_8859_1)
fmt.Println(p.GetBool("key", false))
fmt.Println(p.GetBool("key2", false))
fmt.Println(p.GetBool("key3", false))
fmt.Println(p.GetBool("key4", false))
fmt.Println(p.GetBool("keyX", false))
// Output:
// true
// true
// true
// true
// false
}
func ExampleProperties_GetString() {
p, _ := Load([]byte("key=value"), ISO_8859_1)
v := p.GetString("another key", "default value")
fmt.Println(v)
// Output:
// default value
}
func Example() {
// Decode some key/value pairs with expressions
p, err := Load([]byte("key=value\nkey2=${key}"), ISO_8859_1)
if err != nil {
log.Fatal(err)
}
// Get a valid key
if v, ok := p.Get("key"); ok {
fmt.Println(v)
}
// Get an invalid key
if _, ok := p.Get("does not exist"); !ok {
fmt.Println("invalid key")
}
// Get a key with a default value
v := p.GetString("does not exist", "some value")
fmt.Println(v)
// Dump the expanded key/value pairs of the Properties
fmt.Println("Expanded key/value pairs")
fmt.Println(p)
// Output:
// value
// invalid key
// some value
// Expanded key/value pairs
// key = value
// key2 = value
}

34
vendor/github.com/magiconair/properties/integrate.go generated vendored Normal file
View File

@ -0,0 +1,34 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import "flag"
// MustFlag sets flags that are skipped by dst.Parse when p contains
// the respective key for flag.Flag.Name.
//
// It's use is recommended with command line arguments as in:
// flag.Parse()
// p.MustFlag(flag.CommandLine)
func (p *Properties) MustFlag(dst *flag.FlagSet) {
m := make(map[string]*flag.Flag)
dst.VisitAll(func(f *flag.Flag) {
m[f.Name] = f
})
dst.Visit(func(f *flag.Flag) {
delete(m, f.Name) // overridden
})
for name, f := range m {
v, ok := p.Get(name)
if !ok {
continue
}
if err := f.Value.Set(v); err != nil {
ErrorHandler(err)
}
}
}

View File

@ -0,0 +1,74 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"flag"
"fmt"
"testing"
)
// TestFlag verifies Properties.MustFlag without flag.FlagSet.Parse
func TestFlag(t *testing.T) {
f := flag.NewFlagSet("src", flag.PanicOnError)
gotS := f.String("s", "?", "string flag")
gotI := f.Int("i", -1, "int flag")
p := NewProperties()
p.Set("s", "t")
p.Set("i", "9")
p.MustFlag(f)
if want := "t"; *gotS != want {
t.Errorf("Got string s=%q, want %q", *gotS, want)
}
if want := 9; *gotI != want {
t.Errorf("Got int i=%d, want %d", *gotI, want)
}
}
// TestFlagOverride verifies Properties.MustFlag with flag.FlagSet.Parse.
func TestFlagOverride(t *testing.T) {
f := flag.NewFlagSet("src", flag.PanicOnError)
gotA := f.Int("a", 1, "remain default")
gotB := f.Int("b", 2, "customized")
gotC := f.Int("c", 3, "overridden")
f.Parse([]string{"-c", "4"})
p := NewProperties()
p.Set("b", "5")
p.Set("c", "6")
p.MustFlag(f)
if want := 1; *gotA != want {
t.Errorf("Got remain default a=%d, want %d", *gotA, want)
}
if want := 5; *gotB != want {
t.Errorf("Got customized b=%d, want %d", *gotB, want)
}
if want := 4; *gotC != want {
t.Errorf("Got overriden c=%d, want %d", *gotC, want)
}
}
func ExampleProperties_MustFlag() {
x := flag.Int("x", 0, "demo customize")
y := flag.Int("y", 0, "demo override")
// Demo alternative for flag.Parse():
flag.CommandLine.Parse([]string{"-y", "10"})
fmt.Printf("flagged as x=%d, y=%d\n", *x, *y)
p := NewProperties()
p.Set("x", "7")
p.Set("y", "42") // note discard
p.MustFlag(flag.CommandLine)
fmt.Printf("configured to x=%d, y=%d\n", *x, *y)
// Output:
// flagged as x=0, y=10
// configured to x=7, y=10
}

409
vendor/github.com/magiconair/properties/lex.go generated vendored Normal file
View File

@ -0,0 +1,409 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// Parts of the lexer are from the template/text/parser package
// For these parts the following applies:
//
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file of the go 1.2
// distribution.
package properties
import (
"fmt"
"strconv"
"strings"
"unicode/utf8"
)
// item represents a token or text string returned from the scanner.
type item struct {
typ itemType // The type of this item.
pos int // The starting position, in bytes, of this item in the input string.
val string // The value of this item.
}
func (i item) String() string {
switch {
case i.typ == itemEOF:
return "EOF"
case i.typ == itemError:
return i.val
case len(i.val) > 10:
return fmt.Sprintf("%.10q...", i.val)
}
return fmt.Sprintf("%q", i.val)
}
// itemType identifies the type of lex items.
type itemType int
const (
itemError itemType = iota // error occurred; value is text of error
itemEOF
itemKey // a key
itemValue // a value
itemComment // a comment
)
// defines a constant for EOF
const eof = -1
// permitted whitespace characters space, FF and TAB
const whitespace = " \f\t"
// stateFn represents the state of the scanner as a function that returns the next state.
type stateFn func(*lexer) stateFn
// lexer holds the state of the scanner.
type lexer struct {
input string // the string being scanned
state stateFn // the next lexing function to enter
pos int // current position in the input
start int // start position of this item
width int // width of last rune read from input
lastPos int // position of most recent item returned by nextItem
runes []rune // scanned runes for this item
items chan item // channel of scanned items
}
// next returns the next rune in the input.
func (l *lexer) next() rune {
if int(l.pos) >= len(l.input) {
l.width = 0
return eof
}
r, w := utf8.DecodeRuneInString(l.input[l.pos:])
l.width = w
l.pos += l.width
return r
}
// peek returns but does not consume the next rune in the input.
func (l *lexer) peek() rune {
r := l.next()
l.backup()
return r
}
// backup steps back one rune. Can only be called once per call of next.
func (l *lexer) backup() {
l.pos -= l.width
}
// emit passes an item back to the client.
func (l *lexer) emit(t itemType) {
item := item{t, l.start, string(l.runes)}
l.items <- item
l.start = l.pos
l.runes = l.runes[:0]
}
// ignore skips over the pending input before this point.
func (l *lexer) ignore() {
l.start = l.pos
}
// appends the rune to the current value
func (l *lexer) appendRune(r rune) {
l.runes = append(l.runes, r)
}
// accept consumes the next rune if it's from the valid set.
func (l *lexer) accept(valid string) bool {
if strings.IndexRune(valid, l.next()) >= 0 {
return true
}
l.backup()
return false
}
// acceptRun consumes a run of runes from the valid set.
func (l *lexer) acceptRun(valid string) {
for strings.IndexRune(valid, l.next()) >= 0 {
}
l.backup()
}
// acceptRunUntil consumes a run of runes up to a terminator.
func (l *lexer) acceptRunUntil(term rune) {
for term != l.next() {
}
l.backup()
}
// hasText returns true if the current parsed text is not empty.
func (l *lexer) isNotEmpty() bool {
return l.pos > l.start
}
// lineNumber reports which line we're on, based on the position of
// the previous item returned by nextItem. Doing it this way
// means we don't have to worry about peek double counting.
func (l *lexer) lineNumber() int {
return 1 + strings.Count(l.input[:l.lastPos], "\n")
}
// errorf returns an error token and terminates the scan by passing
// back a nil pointer that will be the next state, terminating l.nextItem.
func (l *lexer) errorf(format string, args ...interface{}) stateFn {
l.items <- item{itemError, l.start, fmt.Sprintf(format, args...)}
return nil
}
// nextItem returns the next item from the input.
func (l *lexer) nextItem() item {
item := <-l.items
l.lastPos = item.pos
return item
}
// lex creates a new scanner for the input string.
func lex(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
runes: make([]rune, 0, 32),
}
go l.run()
return l
}
// run runs the state machine for the lexer.
func (l *lexer) run() {
for l.state = lexBeforeKey(l); l.state != nil; {
l.state = l.state(l)
}
}
// state functions
// lexBeforeKey scans until a key begins.
func lexBeforeKey(l *lexer) stateFn {
switch r := l.next(); {
case isEOF(r):
l.emit(itemEOF)
return nil
case isEOL(r):
l.ignore()
return lexBeforeKey
case isComment(r):
return lexComment
case isWhitespace(r):
l.acceptRun(whitespace)
l.ignore()
return lexKey
default:
l.backup()
return lexKey
}
}
// lexComment scans a comment line. The comment character has already been scanned.
func lexComment(l *lexer) stateFn {
l.acceptRun(whitespace)
l.ignore()
for {
switch r := l.next(); {
case isEOF(r):
l.ignore()
l.emit(itemEOF)
return nil
case isEOL(r):
l.emit(itemComment)
return lexBeforeKey
default:
l.appendRune(r)
}
}
}
// lexKey scans the key up to a delimiter
func lexKey(l *lexer) stateFn {
var r rune
Loop:
for {
switch r = l.next(); {
case isEscape(r):
err := l.scanEscapeSequence()
if err != nil {
return l.errorf(err.Error())
}
case isEndOfKey(r):
l.backup()
break Loop
case isEOF(r):
break Loop
default:
l.appendRune(r)
}
}
if len(l.runes) > 0 {
l.emit(itemKey)
}
if isEOF(r) {
l.emit(itemEOF)
return nil
}
return lexBeforeValue
}
// lexBeforeValue scans the delimiter between key and value.
// Leading and trailing whitespace is ignored.
// We expect to be just after the key.
func lexBeforeValue(l *lexer) stateFn {
l.acceptRun(whitespace)
l.accept(":=")
l.acceptRun(whitespace)
l.ignore()
return lexValue
}
// lexValue scans text until the end of the line. We expect to be just after the delimiter.
func lexValue(l *lexer) stateFn {
for {
switch r := l.next(); {
case isEscape(r):
r := l.peek()
if isEOL(r) {
l.next()
l.acceptRun(whitespace)
} else {
err := l.scanEscapeSequence()
if err != nil {
return l.errorf(err.Error())
}
}
case isEOL(r):
l.emit(itemValue)
l.ignore()
return lexBeforeKey
case isEOF(r):
l.emit(itemValue)
l.emit(itemEOF)
return nil
default:
l.appendRune(r)
}
}
}
// scanEscapeSequence scans either one of the escaped characters
// or a unicode literal. We expect to be after the escape character.
func (l *lexer) scanEscapeSequence() error {
switch r := l.next(); {
case isEscapedCharacter(r):
l.appendRune(decodeEscapedCharacter(r))
return nil
case atUnicodeLiteral(r):
return l.scanUnicodeLiteral()
case isEOF(r):
return fmt.Errorf("premature EOF")
// silently drop the escape character and append the rune as is
default:
l.appendRune(r)
return nil
}
}
// scans a unicode literal in the form \uXXXX. We expect to be after the \u.
func (l *lexer) scanUnicodeLiteral() error {
// scan the digits
d := make([]rune, 4)
for i := 0; i < 4; i++ {
d[i] = l.next()
if d[i] == eof || !strings.ContainsRune("0123456789abcdefABCDEF", d[i]) {
return fmt.Errorf("invalid unicode literal")
}
}
// decode the digits into a rune
r, err := strconv.ParseInt(string(d), 16, 0)
if err != nil {
return err
}
l.appendRune(rune(r))
return nil
}
// decodeEscapedCharacter returns the unescaped rune. We expect to be after the escape character.
func decodeEscapedCharacter(r rune) rune {
switch r {
case 'f':
return '\f'
case 'n':
return '\n'
case 'r':
return '\r'
case 't':
return '\t'
default:
return r
}
}
// atUnicodeLiteral reports whether we are at a unicode literal.
// The escape character has already been consumed.
func atUnicodeLiteral(r rune) bool {
return r == 'u'
}
// isComment reports whether we are at the start of a comment.
func isComment(r rune) bool {
return r == '#' || r == '!'
}
// isEndOfKey reports whether the rune terminates the current key.
func isEndOfKey(r rune) bool {
return strings.ContainsRune(" \f\t\r\n:=", r)
}
// isEOF reports whether we are at EOF.
func isEOF(r rune) bool {
return r == eof
}
// isEOL reports whether we are at a new line character.
func isEOL(r rune) bool {
return r == '\n' || r == '\r'
}
// isEscape reports whether the rune is the escape character which
// prefixes unicode literals and other escaped characters.
func isEscape(r rune) bool {
return r == '\\'
}
// isEscapedCharacter reports whether we are at one of the characters that need escaping.
// The escape character has already been consumed.
func isEscapedCharacter(r rune) bool {
return strings.ContainsRune(" :=fnrt", r)
}
// isWhitespace reports whether the rune is a whitespace character.
func isWhitespace(r rune) bool {
return strings.ContainsRune(whitespace, r)
}

230
vendor/github.com/magiconair/properties/load.go generated vendored Normal file
View File

@ -0,0 +1,230 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"fmt"
"io/ioutil"
"net/http"
"os"
"strings"
)
// Encoding specifies encoding of the input data.
type Encoding uint
const (
// UTF8 interprets the input data as UTF-8.
UTF8 Encoding = 1 << iota
// ISO_8859_1 interprets the input data as ISO-8859-1.
ISO_8859_1
)
// Load reads a buffer into a Properties struct.
func Load(buf []byte, enc Encoding) (*Properties, error) {
return loadBuf(buf, enc)
}
// LoadString reads an UTF8 string into a properties struct.
func LoadString(s string) (*Properties, error) {
return loadBuf([]byte(s), UTF8)
}
// LoadFile reads a file into a Properties struct.
func LoadFile(filename string, enc Encoding) (*Properties, error) {
return loadAll([]string{filename}, enc, false)
}
// LoadFiles reads multiple files in the given order into
// a Properties struct. If 'ignoreMissing' is true then
// non-existent files will not be reported as error.
func LoadFiles(filenames []string, enc Encoding, ignoreMissing bool) (*Properties, error) {
return loadAll(filenames, enc, ignoreMissing)
}
// LoadURL reads the content of the URL into a Properties struct.
//
// The encoding is determined via the Content-Type header which
// should be set to 'text/plain'. If the 'charset' parameter is
// missing, 'iso-8859-1' or 'latin1' the encoding is set to
// ISO-8859-1. If the 'charset' parameter is set to 'utf-8' the
// encoding is set to UTF-8. A missing content type header is
// interpreted as 'text/plain; charset=utf-8'.
func LoadURL(url string) (*Properties, error) {
return loadAll([]string{url}, UTF8, false)
}
// LoadURLs reads the content of multiple URLs in the given order into a
// Properties struct. If 'ignoreMissing' is true then a 404 status code will
// not be reported as error. See LoadURL for the Content-Type header
// and the encoding.
func LoadURLs(urls []string, ignoreMissing bool) (*Properties, error) {
return loadAll(urls, UTF8, ignoreMissing)
}
// LoadAll reads the content of multiple URLs or files in the given order into a
// Properties struct. If 'ignoreMissing' is true then a 404 status code or missing file will
// not be reported as error. Encoding sets the encoding for files. For the URLs please see
// LoadURL for the Content-Type header and the encoding.
func LoadAll(names []string, enc Encoding, ignoreMissing bool) (*Properties, error) {
return loadAll(names, enc, ignoreMissing)
}
// MustLoadString reads an UTF8 string into a Properties struct and
// panics on error.
func MustLoadString(s string) *Properties {
return must(LoadString(s))
}
// MustLoadFile reads a file into a Properties struct and
// panics on error.
func MustLoadFile(filename string, enc Encoding) *Properties {
return must(LoadFile(filename, enc))
}
// MustLoadFiles reads multiple files in the given order into
// a Properties struct and panics on error. If 'ignoreMissing'
// is true then non-existent files will not be reported as error.
func MustLoadFiles(filenames []string, enc Encoding, ignoreMissing bool) *Properties {
return must(LoadFiles(filenames, enc, ignoreMissing))
}
// MustLoadURL reads the content of a URL into a Properties struct and
// panics on error.
func MustLoadURL(url string) *Properties {
return must(LoadURL(url))
}
// MustLoadFiles reads the content of multiple URLs in the given order into a
// Properties struct and panics on error. If 'ignoreMissing' is true then a 404
// status code will not be reported as error.
func MustLoadURLs(urls []string, ignoreMissing bool) *Properties {
return must(LoadURLs(urls, ignoreMissing))
}
// MustLoadAll reads the content of multiple URLs or files in the given order into a
// Properties struct. If 'ignoreMissing' is true then a 404 status code or missing file will
// not be reported as error. Encoding sets the encoding for files. For the URLs please see
// LoadURL for the Content-Type header and the encoding. It panics on error.
func MustLoadAll(names []string, enc Encoding, ignoreMissing bool) *Properties {
return must(LoadAll(names, enc, ignoreMissing))
}
func loadBuf(buf []byte, enc Encoding) (*Properties, error) {
p, err := parse(convert(buf, enc))
if err != nil {
return nil, err
}
return p, p.check()
}
func loadAll(names []string, enc Encoding, ignoreMissing bool) (*Properties, error) {
result := NewProperties()
for _, name := range names {
n, err := expandName(name)
if err != nil {
return nil, err
}
var p *Properties
if strings.HasPrefix(n, "http://") || strings.HasPrefix(n, "https://") {
p, err = loadURL(n, ignoreMissing)
} else {
p, err = loadFile(n, enc, ignoreMissing)
}
if err != nil {
return nil, err
}
result.Merge(p)
}
return result, result.check()
}
func loadFile(filename string, enc Encoding, ignoreMissing bool) (*Properties, error) {
data, err := ioutil.ReadFile(filename)
if err != nil {
if ignoreMissing && os.IsNotExist(err) {
LogPrintf("properties: %s not found. skipping", filename)
return NewProperties(), nil
}
return nil, err
}
p, err := parse(convert(data, enc))
if err != nil {
return nil, err
}
return p, nil
}
func loadURL(url string, ignoreMissing bool) (*Properties, error) {
resp, err := http.Get(url)
if err != nil {
return nil, fmt.Errorf("properties: error fetching %q. %s", url, err)
}
if resp.StatusCode == 404 && ignoreMissing {
LogPrintf("properties: %s returned %d. skipping", url, resp.StatusCode)
return NewProperties(), nil
}
if resp.StatusCode != 200 {
return nil, fmt.Errorf("properties: %s returned %d", url, resp.StatusCode)
}
body, err := ioutil.ReadAll(resp.Body)
resp.Body.Close()
if err != nil {
return nil, fmt.Errorf("properties: %s error reading response. %s", url, err)
}
ct := resp.Header.Get("Content-Type")
var enc Encoding
switch strings.ToLower(ct) {
case "text/plain", "text/plain; charset=iso-8859-1", "text/plain; charset=latin1":
enc = ISO_8859_1
case "", "text/plain; charset=utf-8":
enc = UTF8
default:
return nil, fmt.Errorf("properties: invalid content type %s", ct)
}
p, err := parse(convert(body, enc))
if err != nil {
return nil, err
}
return p, nil
}
func must(p *Properties, err error) *Properties {
if err != nil {
ErrorHandler(err)
}
return p
}
// expandName expands ${ENV_VAR} expressions in a name.
// If the environment variable does not exist then it will be replaced
// with an empty string. Malformed expressions like "${ENV_VAR" will
// be reported as error.
func expandName(name string) (string, error) {
return expand(name, make(map[string]bool), "${", "}", make(map[string]string))
}
// Interprets a byte buffer either as an ISO-8859-1 or UTF-8 encoded string.
// For ISO-8859-1 we can convert each byte straight into a rune since the
// first 256 unicode code points cover ISO-8859-1.
func convert(buf []byte, enc Encoding) string {
switch enc {
case UTF8:
return string(buf)
case ISO_8859_1:
runes := make([]rune, len(buf))
for i, b := range buf {
runes[i] = rune(b)
}
return string(runes)
default:
ErrorHandler(fmt.Errorf("unsupported encoding %v", enc))
}
panic("ErrorHandler should exit")
}

215
vendor/github.com/magiconair/properties/load_test.go generated vendored Normal file
View File

@ -0,0 +1,215 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"fmt"
"io/ioutil"
"net/http"
"net/http/httptest"
"os"
"strings"
. "github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
)
type LoadSuite struct {
tempFiles []string
}
var _ = Suite(&LoadSuite{})
func (s *LoadSuite) TestLoadFailsWithNotExistingFile(c *C) {
_, err := LoadFile("doesnotexist.properties", ISO_8859_1)
c.Assert(err, NotNil)
c.Assert(err, ErrorMatches, "open.*no such file or directory")
}
func (s *LoadSuite) TestLoadFilesFailsOnNotExistingFile(c *C) {
_, err := LoadFiles([]string{"doesnotexist.properties"}, ISO_8859_1, false)
c.Assert(err, NotNil)
c.Assert(err, ErrorMatches, "open.*no such file or directory")
}
func (s *LoadSuite) TestLoadFilesDoesNotFailOnNotExistingFileAndIgnoreMissing(c *C) {
p, err := LoadFiles([]string{"doesnotexist.properties"}, ISO_8859_1, true)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 0)
}
func (s *LoadSuite) TestLoadString(c *C) {
x := "key=äüö"
p1 := MustLoadString(x)
p2 := must(Load([]byte(x), UTF8))
c.Assert(p1, DeepEquals, p2)
}
func (s *LoadSuite) TestLoadFile(c *C) {
filename := s.makeFile(c, "key=value")
p := MustLoadFile(filename, ISO_8859_1)
c.Assert(p.Len(), Equals, 1)
assertKeyValues(c, "", p, "key", "value")
}
func (s *LoadSuite) TestLoadFiles(c *C) {
filename := s.makeFile(c, "key=value")
filename2 := s.makeFile(c, "key2=value2")
p := MustLoadFiles([]string{filename, filename2}, ISO_8859_1, false)
assertKeyValues(c, "", p, "key", "value", "key2", "value2")
}
func (s *LoadSuite) TestLoadExpandedFile(c *C) {
os.Setenv("_VARX", "some-value")
filename := s.makeFilePrefix(c, os.Getenv("_VARX"), "key=value")
filename = strings.Replace(filename, os.Getenv("_VARX"), "${_VARX}", -1)
p := MustLoadFile(filename, ISO_8859_1)
assertKeyValues(c, "", p, "key", "value")
}
func (s *LoadSuite) TestLoadFilesAndIgnoreMissing(c *C) {
filename := s.makeFile(c, "key=value")
filename2 := s.makeFile(c, "key2=value2")
p := MustLoadFiles([]string{filename, filename + "foo", filename2, filename2 + "foo"}, ISO_8859_1, true)
assertKeyValues(c, "", p, "key", "value", "key2", "value2")
}
func (s *LoadSuite) TestLoadURL(c *C) {
srv := testServer()
defer srv.Close()
p := MustLoadURL(srv.URL + "/a")
assertKeyValues(c, "", p, "key", "value")
}
func (s *LoadSuite) TestLoadURLs(c *C) {
srv := testServer()
defer srv.Close()
p := MustLoadURLs([]string{srv.URL + "/a", srv.URL + "/b"}, false)
assertKeyValues(c, "", p, "key", "value", "key2", "value2")
}
func (s *LoadSuite) TestLoadURLsAndFailMissing(c *C) {
srv := testServer()
defer srv.Close()
p, err := LoadURLs([]string{srv.URL + "/a", srv.URL + "/c"}, false)
c.Assert(p, IsNil)
c.Assert(err, ErrorMatches, ".*returned 404.*")
}
func (s *LoadSuite) TestLoadURLsAndIgnoreMissing(c *C) {
srv := testServer()
defer srv.Close()
p := MustLoadURLs([]string{srv.URL + "/a", srv.URL + "/b", srv.URL + "/c"}, true)
assertKeyValues(c, "", p, "key", "value", "key2", "value2")
}
func (s *LoadSuite) TestLoadURLEncoding(c *C) {
srv := testServer()
defer srv.Close()
uris := []string{"/none", "/utf8", "/plain", "/latin1", "/iso88591"}
for i, uri := range uris {
p := MustLoadURL(srv.URL + uri)
c.Assert(p.GetString("key", ""), Equals, "äöü", Commentf("%d", i))
}
}
func (s *LoadSuite) TestLoadURLFailInvalidEncoding(c *C) {
srv := testServer()
defer srv.Close()
p, err := LoadURL(srv.URL + "/json")
c.Assert(p, IsNil)
c.Assert(err, ErrorMatches, ".*invalid content type.*")
}
func (s *LoadSuite) TestLoadAll(c *C) {
filename := s.makeFile(c, "key=value")
filename2 := s.makeFile(c, "key2=value3")
filename3 := s.makeFile(c, "key=value4")
srv := testServer()
defer srv.Close()
p := MustLoadAll([]string{filename, filename2, srv.URL + "/a", srv.URL + "/b", filename3}, UTF8, false)
assertKeyValues(c, "", p, "key", "value4", "key2", "value2")
}
func (s *LoadSuite) SetUpSuite(c *C) {
s.tempFiles = make([]string, 0)
}
func (s *LoadSuite) TearDownSuite(c *C) {
for _, path := range s.tempFiles {
err := os.Remove(path)
if err != nil {
fmt.Printf("os.Remove: %v", err)
}
}
}
func (s *LoadSuite) makeFile(c *C, data string) string {
return s.makeFilePrefix(c, "properties", data)
}
func (s *LoadSuite) makeFilePrefix(c *C, prefix, data string) string {
f, err := ioutil.TempFile("", prefix)
if err != nil {
fmt.Printf("ioutil.TempFile: %v", err)
c.FailNow()
}
// remember the temp file so that we can remove it later
s.tempFiles = append(s.tempFiles, f.Name())
n, err := fmt.Fprint(f, data)
if err != nil {
fmt.Printf("fmt.Fprintln: %v", err)
c.FailNow()
}
if n != len(data) {
fmt.Printf("Data size mismatch. expected=%d wrote=%d\n", len(data), n)
c.FailNow()
}
err = f.Close()
if err != nil {
fmt.Printf("f.Close: %v", err)
c.FailNow()
}
return f.Name()
}
func testServer() *httptest.Server {
return httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
send := func(data []byte, contentType string) {
w.Header().Set("Content-Type", contentType)
w.Write(data)
}
utf8 := []byte("key=äöü")
iso88591 := []byte{0x6b, 0x65, 0x79, 0x3d, 0xe4, 0xf6, 0xfc} // key=äöü
switch r.RequestURI {
case "/a":
send([]byte("key=value"), "")
case "/b":
send([]byte("key2=value2"), "")
case "/none":
send(utf8, "")
case "/utf8":
send(utf8, "text/plain; charset=utf-8")
case "/json":
send(utf8, "application/json; charset=utf-8")
case "/plain":
send(iso88591, "text/plain")
case "/latin1":
send(iso88591, "text/plain; charset=latin1")
case "/iso88591":
send(iso88591, "text/plain; charset=iso-8859-1")
default:
w.WriteHeader(404)
}
}))
}

95
vendor/github.com/magiconair/properties/parser.go generated vendored Normal file
View File

@ -0,0 +1,95 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"fmt"
"runtime"
)
type parser struct {
lex *lexer
}
func parse(input string) (properties *Properties, err error) {
p := &parser{lex: lex(input)}
defer p.recover(&err)
properties = NewProperties()
key := ""
comments := []string{}
for {
token := p.expectOneOf(itemComment, itemKey, itemEOF)
switch token.typ {
case itemEOF:
goto done
case itemComment:
comments = append(comments, token.val)
continue
case itemKey:
key = token.val
if _, ok := properties.m[key]; !ok {
properties.k = append(properties.k, key)
}
}
token = p.expectOneOf(itemValue, itemEOF)
if len(comments) > 0 {
properties.c[key] = comments
comments = []string{}
}
switch token.typ {
case itemEOF:
properties.m[key] = ""
goto done
case itemValue:
properties.m[key] = token.val
}
}
done:
return properties, nil
}
func (p *parser) errorf(format string, args ...interface{}) {
format = fmt.Sprintf("properties: Line %d: %s", p.lex.lineNumber(), format)
panic(fmt.Errorf(format, args...))
}
func (p *parser) expect(expected itemType) (token item) {
token = p.lex.nextItem()
if token.typ != expected {
p.unexpected(token)
}
return token
}
func (p *parser) expectOneOf(expected ...itemType) (token item) {
token = p.lex.nextItem()
for _, v := range expected {
if token.typ == v {
return token
}
}
p.unexpected(token)
panic("unexpected token")
}
func (p *parser) unexpected(token item) {
p.errorf(token.String())
}
// recover is the handler that turns panics into returns from the top level of Parse.
func (p *parser) recover(errp *error) {
e := recover()
if e != nil {
if _, ok := e.(runtime.Error); ok {
panic(e)
}
*errp = e.(error)
}
return
}

770
vendor/github.com/magiconair/properties/properties.go generated vendored Normal file
View File

@ -0,0 +1,770 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
// BUG(frank): Set() does not check for invalid unicode literals since this is currently handled by the lexer.
// BUG(frank): Write() does not allow to configure the newline character. Therefore, on Windows LF is used.
import (
"fmt"
"io"
"log"
"os"
"regexp"
"strconv"
"strings"
"time"
"unicode/utf8"
)
// ErrorHandlerFunc defines the type of function which handles failures
// of the MustXXX() functions. An error handler function must exit
// the application after handling the error.
type ErrorHandlerFunc func(error)
// ErrorHandler is the function which handles failures of the MustXXX()
// functions. The default is LogFatalHandler.
var ErrorHandler ErrorHandlerFunc = LogFatalHandler
type LogHandlerFunc func(fmt string, args ...interface{})
var LogPrintf LogHandlerFunc = log.Printf
// LogFatalHandler handles the error by logging a fatal error and exiting.
func LogFatalHandler(err error) {
log.Fatal(err)
}
// PanicHandler handles the error by panicking.
func PanicHandler(err error) {
panic(err)
}
// -----------------------------------------------------------------------------
// A Properties contains the key/value pairs from the properties input.
// All values are stored in unexpanded form and are expanded at runtime
type Properties struct {
// Pre-/Postfix for property expansion.
Prefix string
Postfix string
// DisableExpansion controls the expansion of properties on Get()
// and the check for circular references on Set(). When set to
// true Properties behaves like a simple key/value store and does
// not check for circular references on Get() or on Set().
DisableExpansion bool
// Stores the key/value pairs
m map[string]string
// Stores the comments per key.
c map[string][]string
// Stores the keys in order of appearance.
k []string
}
// NewProperties creates a new Properties struct with the default
// configuration for "${key}" expressions.
func NewProperties() *Properties {
return &Properties{
Prefix: "${",
Postfix: "}",
m: map[string]string{},
c: map[string][]string{},
k: []string{},
}
}
// Get returns the expanded value for the given key if exists.
// Otherwise, ok is false.
func (p *Properties) Get(key string) (value string, ok bool) {
v, ok := p.m[key]
if p.DisableExpansion {
return v, ok
}
if !ok {
return "", false
}
expanded, err := p.expand(v)
// we guarantee that the expanded value is free of
// circular references and malformed expressions
// so we panic if we still get an error here.
if err != nil {
ErrorHandler(fmt.Errorf("%s in %q", err, key+" = "+v))
}
return expanded, true
}
// MustGet returns the expanded value for the given key if exists.
// Otherwise, it panics.
func (p *Properties) MustGet(key string) string {
if v, ok := p.Get(key); ok {
return v
}
ErrorHandler(invalidKeyError(key))
panic("ErrorHandler should exit")
}
// ----------------------------------------------------------------------------
// ClearComments removes the comments for all keys.
func (p *Properties) ClearComments() {
p.c = map[string][]string{}
}
// ----------------------------------------------------------------------------
// GetComment returns the last comment before the given key or an empty string.
func (p *Properties) GetComment(key string) string {
comments, ok := p.c[key]
if !ok || len(comments) == 0 {
return ""
}
return comments[len(comments)-1]
}
// ----------------------------------------------------------------------------
// GetComments returns all comments that appeared before the given key or nil.
func (p *Properties) GetComments(key string) []string {
if comments, ok := p.c[key]; ok {
return comments
}
return nil
}
// ----------------------------------------------------------------------------
// SetComment sets the comment for the key.
func (p *Properties) SetComment(key, comment string) {
p.c[key] = []string{comment}
}
// ----------------------------------------------------------------------------
// SetComments sets the comments for the key. If the comments are nil then
// all comments for this key are deleted.
func (p *Properties) SetComments(key string, comments []string) {
if comments == nil {
delete(p.c, key)
return
}
p.c[key] = comments
}
// ----------------------------------------------------------------------------
// GetBool checks if the expanded value is one of '1', 'yes',
// 'true' or 'on' if the key exists. The comparison is case-insensitive.
// If the key does not exist the default value is returned.
func (p *Properties) GetBool(key string, def bool) bool {
v, err := p.getBool(key)
if err != nil {
return def
}
return v
}
// MustGetBool checks if the expanded value is one of '1', 'yes',
// 'true' or 'on' if the key exists. The comparison is case-insensitive.
// If the key does not exist the function panics.
func (p *Properties) MustGetBool(key string) bool {
v, err := p.getBool(key)
if err != nil {
ErrorHandler(err)
}
return v
}
func (p *Properties) getBool(key string) (value bool, err error) {
if v, ok := p.Get(key); ok {
return boolVal(v), nil
}
return false, invalidKeyError(key)
}
func boolVal(v string) bool {
v = strings.ToLower(v)
return v == "1" || v == "true" || v == "yes" || v == "on"
}
// ----------------------------------------------------------------------------
// GetDuration parses the expanded value as an time.Duration (in ns) if the
// key exists. If key does not exist or the value cannot be parsed the default
// value is returned. In almost all cases you want to use GetParsedDuration().
func (p *Properties) GetDuration(key string, def time.Duration) time.Duration {
v, err := p.getInt64(key)
if err != nil {
return def
}
return time.Duration(v)
}
// MustGetDuration parses the expanded value as an time.Duration (in ns) if
// the key exists. If key does not exist or the value cannot be parsed the
// function panics. In almost all cases you want to use MustGetParsedDuration().
func (p *Properties) MustGetDuration(key string) time.Duration {
v, err := p.getInt64(key)
if err != nil {
ErrorHandler(err)
}
return time.Duration(v)
}
// ----------------------------------------------------------------------------
// GetParsedDuration parses the expanded value with time.ParseDuration() if the key exists.
// If key does not exist or the value cannot be parsed the default
// value is returned.
func (p *Properties) GetParsedDuration(key string, def time.Duration) time.Duration {
s, ok := p.Get(key)
if !ok {
return def
}
v, err := time.ParseDuration(s)
if err != nil {
return def
}
return v
}
// MustGetParsedDuration parses the expanded value with time.ParseDuration() if the key exists.
// If key does not exist or the value cannot be parsed the function panics.
func (p *Properties) MustGetParsedDuration(key string) time.Duration {
s, ok := p.Get(key)
if !ok {
ErrorHandler(invalidKeyError(key))
}
v, err := time.ParseDuration(s)
if err != nil {
ErrorHandler(err)
}
return v
}
// ----------------------------------------------------------------------------
// GetFloat64 parses the expanded value as a float64 if the key exists.
// If key does not exist or the value cannot be parsed the default
// value is returned.
func (p *Properties) GetFloat64(key string, def float64) float64 {
v, err := p.getFloat64(key)
if err != nil {
return def
}
return v
}
// MustGetFloat64 parses the expanded value as a float64 if the key exists.
// If key does not exist or the value cannot be parsed the function panics.
func (p *Properties) MustGetFloat64(key string) float64 {
v, err := p.getFloat64(key)
if err != nil {
ErrorHandler(err)
}
return v
}
func (p *Properties) getFloat64(key string) (value float64, err error) {
if v, ok := p.Get(key); ok {
value, err = strconv.ParseFloat(v, 64)
if err != nil {
return 0, err
}
return value, nil
}
return 0, invalidKeyError(key)
}
// ----------------------------------------------------------------------------
// GetInt parses the expanded value as an int if the key exists.
// If key does not exist or the value cannot be parsed the default
// value is returned. If the value does not fit into an int the
// function panics with an out of range error.
func (p *Properties) GetInt(key string, def int) int {
v, err := p.getInt64(key)
if err != nil {
return def
}
return intRangeCheck(key, v)
}
// MustGetInt parses the expanded value as an int if the key exists.
// If key does not exist or the value cannot be parsed the function panics.
// If the value does not fit into an int the function panics with
// an out of range error.
func (p *Properties) MustGetInt(key string) int {
v, err := p.getInt64(key)
if err != nil {
ErrorHandler(err)
}
return intRangeCheck(key, v)
}
// ----------------------------------------------------------------------------
// GetInt64 parses the expanded value as an int64 if the key exists.
// If key does not exist or the value cannot be parsed the default
// value is returned.
func (p *Properties) GetInt64(key string, def int64) int64 {
v, err := p.getInt64(key)
if err != nil {
return def
}
return v
}
// MustGetInt64 parses the expanded value as an int if the key exists.
// If key does not exist or the value cannot be parsed the function panics.
func (p *Properties) MustGetInt64(key string) int64 {
v, err := p.getInt64(key)
if err != nil {
ErrorHandler(err)
}
return v
}
func (p *Properties) getInt64(key string) (value int64, err error) {
if v, ok := p.Get(key); ok {
value, err = strconv.ParseInt(v, 10, 64)
if err != nil {
return 0, err
}
return value, nil
}
return 0, invalidKeyError(key)
}
// ----------------------------------------------------------------------------
// GetUint parses the expanded value as an uint if the key exists.
// If key does not exist or the value cannot be parsed the default
// value is returned. If the value does not fit into an int the
// function panics with an out of range error.
func (p *Properties) GetUint(key string, def uint) uint {
v, err := p.getUint64(key)
if err != nil {
return def
}
return uintRangeCheck(key, v)
}
// MustGetUint parses the expanded value as an int if the key exists.
// If key does not exist or the value cannot be parsed the function panics.
// If the value does not fit into an int the function panics with
// an out of range error.
func (p *Properties) MustGetUint(key string) uint {
v, err := p.getUint64(key)
if err != nil {
ErrorHandler(err)
}
return uintRangeCheck(key, v)
}
// ----------------------------------------------------------------------------
// GetUint64 parses the expanded value as an uint64 if the key exists.
// If key does not exist or the value cannot be parsed the default
// value is returned.
func (p *Properties) GetUint64(key string, def uint64) uint64 {
v, err := p.getUint64(key)
if err != nil {
return def
}
return v
}
// MustGetUint64 parses the expanded value as an int if the key exists.
// If key does not exist or the value cannot be parsed the function panics.
func (p *Properties) MustGetUint64(key string) uint64 {
v, err := p.getUint64(key)
if err != nil {
ErrorHandler(err)
}
return v
}
func (p *Properties) getUint64(key string) (value uint64, err error) {
if v, ok := p.Get(key); ok {
value, err = strconv.ParseUint(v, 10, 64)
if err != nil {
return 0, err
}
return value, nil
}
return 0, invalidKeyError(key)
}
// ----------------------------------------------------------------------------
// GetString returns the expanded value for the given key if exists or
// the default value otherwise.
func (p *Properties) GetString(key, def string) string {
if v, ok := p.Get(key); ok {
return v
}
return def
}
// MustGetString returns the expanded value for the given key if exists or
// panics otherwise.
func (p *Properties) MustGetString(key string) string {
if v, ok := p.Get(key); ok {
return v
}
ErrorHandler(invalidKeyError(key))
panic("ErrorHandler should exit")
}
// ----------------------------------------------------------------------------
// Filter returns a new properties object which contains all properties
// for which the key matches the pattern.
func (p *Properties) Filter(pattern string) (*Properties, error) {
re, err := regexp.Compile(pattern)
if err != nil {
return nil, err
}
return p.FilterRegexp(re), nil
}
// FilterRegexp returns a new properties object which contains all properties
// for which the key matches the regular expression.
func (p *Properties) FilterRegexp(re *regexp.Regexp) *Properties {
pp := NewProperties()
for _, k := range p.k {
if re.MatchString(k) {
pp.Set(k, p.m[k])
}
}
return pp
}
// FilterPrefix returns a new properties object with a subset of all keys
// with the given prefix.
func (p *Properties) FilterPrefix(prefix string) *Properties {
pp := NewProperties()
for _, k := range p.k {
if strings.HasPrefix(k, prefix) {
pp.Set(k, p.m[k])
}
}
return pp
}
// FilterStripPrefix returns a new properties object with a subset of all keys
// with the given prefix and the prefix removed from the keys.
func (p *Properties) FilterStripPrefix(prefix string) *Properties {
pp := NewProperties()
n := len(prefix)
for _, k := range p.k {
if len(k) > len(prefix) && strings.HasPrefix(k, prefix) {
pp.Set(k[n:], p.m[k])
}
}
return pp
}
// Len returns the number of keys.
func (p *Properties) Len() int {
return len(p.m)
}
// Keys returns all keys in the same order as in the input.
func (p *Properties) Keys() []string {
keys := make([]string, len(p.k))
for i, k := range p.k {
keys[i] = k
}
return keys
}
// Set sets the property key to the corresponding value.
// If a value for key existed before then ok is true and prev
// contains the previous value. If the value contains a
// circular reference or a malformed expression then
// an error is returned.
// An empty key is silently ignored.
func (p *Properties) Set(key, value string) (prev string, ok bool, err error) {
if key == "" {
return "", false, nil
}
// if expansion is disabled we allow circular references
if p.DisableExpansion {
prev, ok = p.Get(key)
p.m[key] = value
return prev, ok, nil
}
// to check for a circular reference we temporarily need
// to set the new value. If there is an error then revert
// to the previous state. Only if all tests are successful
// then we add the key to the p.k list.
prev, ok = p.Get(key)
p.m[key] = value
// now check for a circular reference
_, err = p.expand(value)
if err != nil {
// revert to the previous state
if ok {
p.m[key] = prev
} else {
delete(p.m, key)
}
return "", false, err
}
if !ok {
p.k = append(p.k, key)
}
return prev, ok, nil
}
// MustSet sets the property key to the corresponding value.
// If a value for key existed before then ok is true and prev
// contains the previous value. An empty key is silently ignored.
func (p *Properties) MustSet(key, value string) (prev string, ok bool) {
prev, ok, err := p.Set(key, value)
if err != nil {
ErrorHandler(err)
}
return prev, ok
}
// String returns a string of all expanded 'key = value' pairs.
func (p *Properties) String() string {
var s string
for _, key := range p.k {
value, _ := p.Get(key)
s = fmt.Sprintf("%s%s = %s\n", s, key, value)
}
return s
}
// Write writes all unexpanded 'key = value' pairs to the given writer.
// Write returns the number of bytes written and any write error encountered.
func (p *Properties) Write(w io.Writer, enc Encoding) (n int, err error) {
return p.WriteComment(w, "", enc)
}
// WriteComment writes all unexpanced 'key = value' pairs to the given writer.
// If prefix is not empty then comments are written with a blank line and the
// given prefix. The prefix should be either "# " or "! " to be compatible with
// the properties file format. Otherwise, the properties parser will not be
// able to read the file back in. It returns the number of bytes written and
// any write error encountered.
func (p *Properties) WriteComment(w io.Writer, prefix string, enc Encoding) (n int, err error) {
var x int
for _, key := range p.k {
value := p.m[key]
if prefix != "" {
if comments, ok := p.c[key]; ok {
// don't print comments if they are all empty
allEmpty := true
for _, c := range comments {
if c != "" {
allEmpty = false
break
}
}
if !allEmpty {
// add a blank line between entries but not at the top
if len(comments) > 0 && n > 0 {
x, err = fmt.Fprintln(w)
if err != nil {
return
}
n += x
}
for _, c := range comments {
x, err = fmt.Fprintf(w, "%s%s\n", prefix, encode(c, "", enc))
if err != nil {
return
}
n += x
}
}
}
}
x, err = fmt.Fprintf(w, "%s = %s\n", encode(key, " :", enc), encode(value, "", enc))
if err != nil {
return
}
n += x
}
return
}
// ----------------------------------------------------------------------------
// Delete removes the key and its comments.
func (p *Properties) Delete(key string) {
delete(p.m, key)
delete(p.c, key)
newKeys := []string{}
for _, k := range p.k {
if k != key {
newKeys = append(newKeys, key)
}
}
p.k = newKeys
}
// Merge merges properties, comments and keys from other *Properties into p
func (p *Properties) Merge(other *Properties) {
for k,v := range other.m {
p.m[k] = v
}
for k,v := range other.c {
p.c[k] = v
}
outer:
for _, otherKey := range other.k {
for _, key := range p.k {
if otherKey == key {
continue outer
}
}
p.k = append(p.k, otherKey)
}
}
// ----------------------------------------------------------------------------
// check expands all values and returns an error if a circular reference or
// a malformed expression was found.
func (p *Properties) check() error {
for _, value := range p.m {
if _, err := p.expand(value); err != nil {
return err
}
}
return nil
}
func (p *Properties) expand(input string) (string, error) {
// no pre/postfix -> nothing to expand
if p.Prefix == "" && p.Postfix == "" {
return input, nil
}
return expand(input, make(map[string]bool), p.Prefix, p.Postfix, p.m)
}
// expand recursively expands expressions of '(prefix)key(postfix)' to their corresponding values.
// The function keeps track of the keys that were already expanded and stops if it
// detects a circular reference or a malformed expression of the form '(prefix)key'.
func expand(s string, keys map[string]bool, prefix, postfix string, values map[string]string) (string, error) {
start := strings.Index(s, prefix)
if start == -1 {
return s, nil
}
keyStart := start + len(prefix)
keyLen := strings.Index(s[keyStart:], postfix)
if keyLen == -1 {
return "", fmt.Errorf("malformed expression")
}
end := keyStart + keyLen + len(postfix) - 1
key := s[keyStart : keyStart+keyLen]
// fmt.Printf("s:%q pp:%q start:%d end:%d keyStart:%d keyLen:%d key:%q\n", s, prefix + "..." + postfix, start, end, keyStart, keyLen, key)
if _, ok := keys[key]; ok {
return "", fmt.Errorf("circular reference")
}
val, ok := values[key]
if !ok {
val = os.Getenv(key)
}
// remember that we've seen the key
keys[key] = true
return expand(s[:start]+val+s[end+1:], keys, prefix, postfix, values)
}
// encode encodes a UTF-8 string to ISO-8859-1 and escapes some characters.
func encode(s string, special string, enc Encoding) string {
switch enc {
case UTF8:
return encodeUtf8(s, special)
case ISO_8859_1:
return encodeIso(s, special)
default:
panic(fmt.Sprintf("unsupported encoding %v", enc))
}
}
func encodeUtf8(s string, special string) string {
v := ""
for pos := 0; pos < len(s); {
r, w := utf8.DecodeRuneInString(s[pos:])
pos += w
v += escape(r, special)
}
return v
}
func encodeIso(s string, special string) string {
var r rune
var w int
var v string
for pos := 0; pos < len(s); {
switch r, w = utf8.DecodeRuneInString(s[pos:]); {
case r < 1<<8: // single byte rune -> escape special chars only
v += escape(r, special)
case r < 1<<16: // two byte rune -> unicode literal
v += fmt.Sprintf("\\u%04x", r)
default: // more than two bytes per rune -> can't encode
v += "?"
}
pos += w
}
return v
}
func escape(r rune, special string) string {
switch r {
case '\f':
return "\\f"
case '\n':
return "\\n"
case '\r':
return "\\r"
case '\t':
return "\\t"
default:
if strings.ContainsRune(special, r) {
return "\\" + string(r)
}
return string(r)
}
}
func invalidKeyError(key string) error {
return fmt.Errorf("unknown property: %s", key)
}

View File

@ -0,0 +1,920 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"bytes"
"flag"
"fmt"
"math"
"os"
"strings"
"testing"
"time"
. "github.com/magiconair/properties/_third_party/gopkg.in/check.v1"
)
func Test(t *testing.T) { TestingT(t) }
type TestSuite struct {
prevHandler ErrorHandlerFunc
}
var (
_ = Suite(&TestSuite{})
verbose = flag.Bool("verbose", false, "Verbose output")
)
// --------------------------------------------------------------------
func (s *TestSuite) SetUpSuite(c *C) {
s.prevHandler = ErrorHandler
ErrorHandler = PanicHandler
}
// --------------------------------------------------------------------
func (s *TestSuite) TearDownSuite(c *C) {
ErrorHandler = s.prevHandler
}
// ----------------------------------------------------------------------------
// define test cases in the form of
// {"input", "key1", "value1", "key2", "value2", ...}
var complexTests = [][]string{
// whitespace prefix
{" key=value", "key", "value"}, // SPACE prefix
{"\fkey=value", "key", "value"}, // FF prefix
{"\tkey=value", "key", "value"}, // TAB prefix
{" \f\tkey=value", "key", "value"}, // mix prefix
// multiple keys
{"key1=value1\nkey2=value2\n", "key1", "value1", "key2", "value2"},
{"key1=value1\rkey2=value2\r", "key1", "value1", "key2", "value2"},
{"key1=value1\r\nkey2=value2\r\n", "key1", "value1", "key2", "value2"},
// blank lines
{"\nkey=value\n", "key", "value"},
{"\rkey=value\r", "key", "value"},
{"\r\nkey=value\r\n", "key", "value"},
// escaped chars in key
{"k\\ ey = value", "k ey", "value"},
{"k\\:ey = value", "k:ey", "value"},
{"k\\=ey = value", "k=ey", "value"},
{"k\\fey = value", "k\fey", "value"},
{"k\\ney = value", "k\ney", "value"},
{"k\\rey = value", "k\rey", "value"},
{"k\\tey = value", "k\tey", "value"},
// escaped chars in value
{"key = v\\ alue", "key", "v alue"},
{"key = v\\:alue", "key", "v:alue"},
{"key = v\\=alue", "key", "v=alue"},
{"key = v\\falue", "key", "v\falue"},
{"key = v\\nalue", "key", "v\nalue"},
{"key = v\\ralue", "key", "v\ralue"},
{"key = v\\talue", "key", "v\talue"},
// silently dropped escape character
{"k\\zey = value", "kzey", "value"},
{"key = v\\zalue", "key", "vzalue"},
// unicode literals
{"key\\u2318 = value", "key⌘", "value"},
{"k\\u2318ey = value", "k⌘ey", "value"},
{"key = value\\u2318", "key", "value⌘"},
{"key = valu\\u2318e", "key", "valu⌘e"},
// multiline values
{"key = valueA,\\\n valueB", "key", "valueA,valueB"}, // SPACE indent
{"key = valueA,\\\n\f\f\fvalueB", "key", "valueA,valueB"}, // FF indent
{"key = valueA,\\\n\t\t\tvalueB", "key", "valueA,valueB"}, // TAB indent
{"key = valueA,\\\n \f\tvalueB", "key", "valueA,valueB"}, // mix indent
// comments
{"# this is a comment\n! and so is this\nkey1=value1\nkey#2=value#2\n\nkey!3=value!3\n# and another one\n! and the final one", "key1", "value1", "key#2", "value#2", "key!3", "value!3"},
// expansion tests
{"key=value\nkey2=${key}", "key", "value", "key2", "value"},
{"key=value\nkey2=aa${key}", "key", "value", "key2", "aavalue"},
{"key=value\nkey2=${key}bb", "key", "value", "key2", "valuebb"},
{"key=value\nkey2=aa${key}bb", "key", "value", "key2", "aavaluebb"},
{"key=value\nkey2=${key}\nkey3=${key2}", "key", "value", "key2", "value", "key3", "value"},
{"key=${USER}", "key", os.Getenv("USER")},
{"key=${USER}\nUSER=value", "key", "value", "USER", "value"},
}
// ----------------------------------------------------------------------------
var commentTests = []struct {
input, key, value string
comments []string
}{
{"key=value", "key", "value", nil},
{"#\nkey=value", "key", "value", []string{""}},
{"#comment\nkey=value", "key", "value", []string{"comment"}},
{"# comment\nkey=value", "key", "value", []string{"comment"}},
{"# comment\nkey=value", "key", "value", []string{"comment"}},
{"# comment\n\nkey=value", "key", "value", []string{"comment"}},
{"# comment1\n# comment2\nkey=value", "key", "value", []string{"comment1", "comment2"}},
{"# comment1\n\n# comment2\n\nkey=value", "key", "value", []string{"comment1", "comment2"}},
{"!comment\nkey=value", "key", "value", []string{"comment"}},
{"! comment\nkey=value", "key", "value", []string{"comment"}},
{"! comment\nkey=value", "key", "value", []string{"comment"}},
{"! comment\n\nkey=value", "key", "value", []string{"comment"}},
{"! comment1\n! comment2\nkey=value", "key", "value", []string{"comment1", "comment2"}},
{"! comment1\n\n! comment2\n\nkey=value", "key", "value", []string{"comment1", "comment2"}},
}
// ----------------------------------------------------------------------------
var errorTests = []struct {
input, msg string
}{
// unicode literals
{"key\\u1 = value", "invalid unicode literal"},
{"key\\u12 = value", "invalid unicode literal"},
{"key\\u123 = value", "invalid unicode literal"},
{"key\\u123g = value", "invalid unicode literal"},
{"key\\u123", "invalid unicode literal"},
// circular references
{"key=${key}", "circular reference"},
{"key1=${key2}\nkey2=${key1}", "circular reference"},
// malformed expressions
{"key=${ke", "malformed expression"},
{"key=valu${ke", "malformed expression"},
}
// ----------------------------------------------------------------------------
var writeTests = []struct {
input, output, encoding string
}{
// ISO-8859-1 tests
{"key = value", "key = value\n", "ISO-8859-1"},
{"key = value \\\n continued", "key = value continued\n", "ISO-8859-1"},
{"key⌘ = value", "key\\u2318 = value\n", "ISO-8859-1"},
{"ke\\ \\:y = value", "ke\\ \\:y = value\n", "ISO-8859-1"},
// UTF-8 tests
{"key = value", "key = value\n", "UTF-8"},
{"key = value \\\n continued", "key = value continued\n", "UTF-8"},
{"key⌘ = value⌘", "key⌘ = value⌘\n", "UTF-8"},
{"ke\\ \\:y = value", "ke\\ \\:y = value\n", "UTF-8"},
}
// ----------------------------------------------------------------------------
var writeCommentTests = []struct {
input, output, encoding string
}{
// ISO-8859-1 tests
{"key = value", "key = value\n", "ISO-8859-1"},
{"#\nkey = value", "key = value\n", "ISO-8859-1"},
{"#\n#\n#\nkey = value", "key = value\n", "ISO-8859-1"},
{"# comment\nkey = value", "# comment\nkey = value\n", "ISO-8859-1"},
{"\n# comment\nkey = value", "# comment\nkey = value\n", "ISO-8859-1"},
{"# comment\n\nkey = value", "# comment\nkey = value\n", "ISO-8859-1"},
{"# comment1\n# comment2\nkey = value", "# comment1\n# comment2\nkey = value\n", "ISO-8859-1"},
{"#comment1\nkey1 = value1\n#comment2\nkey2 = value2", "# comment1\nkey1 = value1\n\n# comment2\nkey2 = value2\n", "ISO-8859-1"},
// UTF-8 tests
{"key = value", "key = value\n", "UTF-8"},
{"# comment⌘\nkey = value⌘", "# comment⌘\nkey = value⌘\n", "UTF-8"},
{"\n# comment⌘\nkey = value⌘", "# comment⌘\nkey = value⌘\n", "UTF-8"},
{"# comment⌘\n\nkey = value⌘", "# comment⌘\nkey = value⌘\n", "UTF-8"},
{"# comment1⌘\n# comment2⌘\nkey = value⌘", "# comment1⌘\n# comment2⌘\nkey = value⌘\n", "UTF-8"},
{"#comment1⌘\nkey1 = value1⌘\n#comment2⌘\nkey2 = value2⌘", "# comment1⌘\nkey1 = value1⌘\n\n# comment2⌘\nkey2 = value2⌘\n", "UTF-8"},
}
// ----------------------------------------------------------------------------
var boolTests = []struct {
input, key string
def, value bool
}{
// valid values for TRUE
{"key = 1", "key", false, true},
{"key = on", "key", false, true},
{"key = On", "key", false, true},
{"key = ON", "key", false, true},
{"key = true", "key", false, true},
{"key = True", "key", false, true},
{"key = TRUE", "key", false, true},
{"key = yes", "key", false, true},
{"key = Yes", "key", false, true},
{"key = YES", "key", false, true},
// valid values for FALSE (all other)
{"key = 0", "key", true, false},
{"key = off", "key", true, false},
{"key = false", "key", true, false},
{"key = no", "key", true, false},
// non existent key
{"key = true", "key2", false, false},
}
// ----------------------------------------------------------------------------
var durationTests = []struct {
input, key string
def, value time.Duration
}{
// valid values
{"key = 1", "key", 999, 1},
{"key = 0", "key", 999, 0},
{"key = -1", "key", 999, -1},
{"key = 0123", "key", 999, 123},
// invalid values
{"key = 0xff", "key", 999, 999},
{"key = 1.0", "key", 999, 999},
{"key = a", "key", 999, 999},
// non existent key
{"key = 1", "key2", 999, 999},
}
// ----------------------------------------------------------------------------
var parsedDurationTests = []struct {
input, key string
def, value time.Duration
}{
// valid values
{"key = -1ns", "key", 999, -1 * time.Nanosecond},
{"key = 300ms", "key", 999, 300 * time.Millisecond},
{"key = 5s", "key", 999, 5 * time.Second},
{"key = 3h", "key", 999, 3 * time.Hour},
{"key = 2h45m", "key", 999, 2*time.Hour + 45*time.Minute},
// invalid values
{"key = 0xff", "key", 999, 999},
{"key = 1.0", "key", 999, 999},
{"key = a", "key", 999, 999},
{"key = 1", "key", 999, 999},
{"key = 0", "key", 999, 0},
// non existent key
{"key = 1", "key2", 999, 999},
}
// ----------------------------------------------------------------------------
var floatTests = []struct {
input, key string
def, value float64
}{
// valid values
{"key = 1.0", "key", 999, 1.0},
{"key = 0.0", "key", 999, 0.0},
{"key = -1.0", "key", 999, -1.0},
{"key = 1", "key", 999, 1},
{"key = 0", "key", 999, 0},
{"key = -1", "key", 999, -1},
{"key = 0123", "key", 999, 123},
// invalid values
{"key = 0xff", "key", 999, 999},
{"key = a", "key", 999, 999},
// non existent key
{"key = 1", "key2", 999, 999},
}
// ----------------------------------------------------------------------------
var int64Tests = []struct {
input, key string
def, value int64
}{
// valid values
{"key = 1", "key", 999, 1},
{"key = 0", "key", 999, 0},
{"key = -1", "key", 999, -1},
{"key = 0123", "key", 999, 123},
// invalid values
{"key = 0xff", "key", 999, 999},
{"key = 1.0", "key", 999, 999},
{"key = a", "key", 999, 999},
// non existent key
{"key = 1", "key2", 999, 999},
}
// ----------------------------------------------------------------------------
var uint64Tests = []struct {
input, key string
def, value uint64
}{
// valid values
{"key = 1", "key", 999, 1},
{"key = 0", "key", 999, 0},
{"key = 0123", "key", 999, 123},
// invalid values
{"key = -1", "key", 999, 999},
{"key = 0xff", "key", 999, 999},
{"key = 1.0", "key", 999, 999},
{"key = a", "key", 999, 999},
// non existent key
{"key = 1", "key2", 999, 999},
}
// ----------------------------------------------------------------------------
var stringTests = []struct {
input, key string
def, value string
}{
// valid values
{"key = abc", "key", "def", "abc"},
// non existent key
{"key = abc", "key2", "def", "def"},
}
// ----------------------------------------------------------------------------
var keysTests = []struct {
input string
keys []string
}{
{"", []string{}},
{"key = abc", []string{"key"}},
{"key = abc\nkey2=def", []string{"key", "key2"}},
{"key2 = abc\nkey=def", []string{"key2", "key"}},
{"key = abc\nkey=def", []string{"key"}},
}
// ----------------------------------------------------------------------------
var filterTests = []struct {
input string
pattern string
keys []string
err string
}{
{"", "", []string{}, ""},
{"", "abc", []string{}, ""},
{"key=value", "", []string{"key"}, ""},
{"key=value", "key=", []string{}, ""},
{"key=value\nfoo=bar", "", []string{"foo", "key"}, ""},
{"key=value\nfoo=bar", "f", []string{"foo"}, ""},
{"key=value\nfoo=bar", "fo", []string{"foo"}, ""},
{"key=value\nfoo=bar", "foo", []string{"foo"}, ""},
{"key=value\nfoo=bar", "fooo", []string{}, ""},
{"key=value\nkey2=value2\nfoo=bar", "ey", []string{"key", "key2"}, ""},
{"key=value\nkey2=value2\nfoo=bar", "key", []string{"key", "key2"}, ""},
{"key=value\nkey2=value2\nfoo=bar", "^key", []string{"key", "key2"}, ""},
{"key=value\nkey2=value2\nfoo=bar", "^(key|foo)", []string{"foo", "key", "key2"}, ""},
{"key=value\nkey2=value2\nfoo=bar", "[ abc", nil, "error parsing regexp.*"},
}
// ----------------------------------------------------------------------------
var filterPrefixTests = []struct {
input string
prefix string
keys []string
}{
{"", "", []string{}},
{"", "abc", []string{}},
{"key=value", "", []string{"key"}},
{"key=value", "key=", []string{}},
{"key=value\nfoo=bar", "", []string{"foo", "key"}},
{"key=value\nfoo=bar", "f", []string{"foo"}},
{"key=value\nfoo=bar", "fo", []string{"foo"}},
{"key=value\nfoo=bar", "foo", []string{"foo"}},
{"key=value\nfoo=bar", "fooo", []string{}},
{"key=value\nkey2=value2\nfoo=bar", "key", []string{"key", "key2"}},
}
// ----------------------------------------------------------------------------
var filterStripPrefixTests = []struct {
input string
prefix string
keys []string
}{
{"", "", []string{}},
{"", "abc", []string{}},
{"key=value", "", []string{"key"}},
{"key=value", "key=", []string{}},
{"key=value\nfoo=bar", "", []string{"foo", "key"}},
{"key=value\nfoo=bar", "f", []string{"foo"}},
{"key=value\nfoo=bar", "fo", []string{"foo"}},
{"key=value\nfoo=bar", "foo", []string{"foo"}},
{"key=value\nfoo=bar", "fooo", []string{}},
{"key=value\nkey2=value2\nfoo=bar", "key", []string{"key", "key2"}},
}
// ----------------------------------------------------------------------------
var setTests = []struct {
input string
key, value string
prev string
ok bool
err string
keys []string
}{
{"", "", "", "", false, "", []string{}},
{"", "key", "value", "", false, "", []string{"key"}},
{"key=value", "key2", "value2", "", false, "", []string{"key", "key2"}},
{"key=value", "abc", "value3", "", false, "", []string{"key", "abc"}},
{"key=value", "key", "value3", "value", true, "", []string{"key"}},
}
// ----------------------------------------------------------------------------
// TestBasic tests basic single key/value combinations with all possible
// whitespace, delimiter and newline permutations.
func (s *TestSuite) TestBasic(c *C) {
testWhitespaceAndDelimiterCombinations(c, "key", "")
testWhitespaceAndDelimiterCombinations(c, "key", "value")
testWhitespaceAndDelimiterCombinations(c, "key", "value ")
}
func (s *TestSuite) TestComplex(c *C) {
for _, test := range complexTests {
testKeyValue(c, test[0], test[1:]...)
}
}
func (s *TestSuite) TestErrors(c *C) {
for _, test := range errorTests {
_, err := Load([]byte(test.input), ISO_8859_1)
c.Assert(err, NotNil)
c.Assert(strings.Contains(err.Error(), test.msg), Equals, true, Commentf("Expected %q got %q", test.msg, err.Error()))
}
}
func (s *TestSuite) TestDisableExpansion(c *C) {
input := "key=value\nkey2=${key}"
p, err := parse(input)
p.DisableExpansion = true
c.Assert(err, IsNil)
c.Assert(p.MustGet("key"), Equals, "value")
c.Assert(p.MustGet("key2"), Equals, "${key}")
// with expansion disabled we can introduce circular references
p.Set("keyA", "${keyB}")
p.Set("keyB", "${keyA}")
c.Assert(p.MustGet("keyA"), Equals, "${keyB}")
c.Assert(p.MustGet("keyB"), Equals, "${keyA}")
}
func (s *TestSuite) TestMustGet(c *C) {
input := "key = value\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGet("key"), Equals, "value")
c.Assert(func() { p.MustGet("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetBool(c *C) {
for _, test := range boolTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetBool(test.key, test.def), Equals, test.value)
}
}
func (s *TestSuite) TestMustGetBool(c *C) {
input := "key = true\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetBool("key"), Equals, true)
c.Assert(func() { p.MustGetBool("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetDuration(c *C) {
for _, test := range durationTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetDuration(test.key, test.def), Equals, test.value)
}
}
func (s *TestSuite) TestMustGetDuration(c *C) {
input := "key = 123\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetDuration("key"), Equals, time.Duration(123))
c.Assert(func() { p.MustGetDuration("key2") }, PanicMatches, "strconv.ParseInt: parsing.*")
c.Assert(func() { p.MustGetDuration("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetParsedDuration(c *C) {
for _, test := range parsedDurationTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetParsedDuration(test.key, test.def), Equals, test.value)
}
}
func (s *TestSuite) TestMustGetParsedDuration(c *C) {
input := "key = 123ms\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetParsedDuration("key"), Equals, 123*time.Millisecond)
c.Assert(func() { p.MustGetParsedDuration("key2") }, PanicMatches, "time: invalid duration ghi")
c.Assert(func() { p.MustGetParsedDuration("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetFloat64(c *C) {
for _, test := range floatTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetFloat64(test.key, test.def), Equals, test.value)
}
}
func (s *TestSuite) TestMustGetFloat64(c *C) {
input := "key = 123\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetFloat64("key"), Equals, float64(123))
c.Assert(func() { p.MustGetFloat64("key2") }, PanicMatches, "strconv.ParseFloat: parsing.*")
c.Assert(func() { p.MustGetFloat64("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetInt(c *C) {
for _, test := range int64Tests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetInt(test.key, int(test.def)), Equals, int(test.value))
}
}
func (s *TestSuite) TestMustGetInt(c *C) {
input := "key = 123\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetInt("key"), Equals, int(123))
c.Assert(func() { p.MustGetInt("key2") }, PanicMatches, "strconv.ParseInt: parsing.*")
c.Assert(func() { p.MustGetInt("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetInt64(c *C) {
for _, test := range int64Tests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetInt64(test.key, test.def), Equals, test.value)
}
}
func (s *TestSuite) TestMustGetInt64(c *C) {
input := "key = 123\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetInt64("key"), Equals, int64(123))
c.Assert(func() { p.MustGetInt64("key2") }, PanicMatches, "strconv.ParseInt: parsing.*")
c.Assert(func() { p.MustGetInt64("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetUint(c *C) {
for _, test := range uint64Tests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetUint(test.key, uint(test.def)), Equals, uint(test.value))
}
}
func (s *TestSuite) TestMustGetUint(c *C) {
input := "key = 123\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetUint("key"), Equals, uint(123))
c.Assert(func() { p.MustGetUint64("key2") }, PanicMatches, "strconv.ParseUint: parsing.*")
c.Assert(func() { p.MustGetUint64("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetUint64(c *C) {
for _, test := range uint64Tests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetUint64(test.key, test.def), Equals, test.value)
}
}
func (s *TestSuite) TestMustGetUint64(c *C) {
input := "key = 123\nkey2 = ghi"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetUint64("key"), Equals, uint64(123))
c.Assert(func() { p.MustGetUint64("key2") }, PanicMatches, "strconv.ParseUint: parsing.*")
c.Assert(func() { p.MustGetUint64("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestGetString(c *C) {
for _, test := range stringTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, 1)
c.Assert(p.GetString(test.key, test.def), Equals, test.value)
}
}
func (s *TestSuite) TestMustGetString(c *C) {
input := `key = value`
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetString("key"), Equals, "value")
c.Assert(func() { p.MustGetString("invalid") }, PanicMatches, "unknown property: invalid")
}
func (s *TestSuite) TestComment(c *C) {
for _, test := range commentTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.MustGetString(test.key), Equals, test.value)
c.Assert(p.GetComments(test.key), DeepEquals, test.comments)
if test.comments != nil {
c.Assert(p.GetComment(test.key), Equals, test.comments[len(test.comments)-1])
} else {
c.Assert(p.GetComment(test.key), Equals, "")
}
// test setting comments
if len(test.comments) > 0 {
// set single comment
p.ClearComments()
c.Assert(len(p.c), Equals, 0)
p.SetComment(test.key, test.comments[0])
c.Assert(p.GetComment(test.key), Equals, test.comments[0])
// set multiple comments
p.ClearComments()
c.Assert(len(p.c), Equals, 0)
p.SetComments(test.key, test.comments)
c.Assert(p.GetComments(test.key), DeepEquals, test.comments)
// clear comments for a key
p.SetComments(test.key, nil)
c.Assert(p.GetComment(test.key), Equals, "")
c.Assert(p.GetComments(test.key), IsNil)
}
}
}
func (s *TestSuite) TestFilter(c *C) {
for _, test := range filterTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
pp, err := p.Filter(test.pattern)
if err != nil {
c.Assert(err, ErrorMatches, test.err)
continue
}
c.Assert(pp, NotNil)
c.Assert(pp.Len(), Equals, len(test.keys))
for _, key := range test.keys {
v1, ok1 := p.Get(key)
v2, ok2 := pp.Get(key)
c.Assert(ok1, Equals, true)
c.Assert(ok2, Equals, true)
c.Assert(v1, Equals, v2)
}
}
}
func (s *TestSuite) TestFilterPrefix(c *C) {
for _, test := range filterPrefixTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
pp := p.FilterPrefix(test.prefix)
c.Assert(pp, NotNil)
c.Assert(pp.Len(), Equals, len(test.keys))
for _, key := range test.keys {
v1, ok1 := p.Get(key)
v2, ok2 := pp.Get(key)
c.Assert(ok1, Equals, true)
c.Assert(ok2, Equals, true)
c.Assert(v1, Equals, v2)
}
}
}
func (s *TestSuite) TestKeys(c *C) {
for _, test := range keysTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
c.Assert(p.Len(), Equals, len(test.keys))
c.Assert(len(p.Keys()), Equals, len(test.keys))
c.Assert(p.Keys(), DeepEquals, test.keys)
}
}
func (s *TestSuite) TestSet(c *C) {
for _, test := range setTests {
p, err := parse(test.input)
c.Assert(err, IsNil)
prev, ok, err := p.Set(test.key, test.value)
if test.err != "" {
c.Assert(err, ErrorMatches, test.err)
continue
}
c.Assert(err, IsNil)
c.Assert(ok, Equals, test.ok)
if ok {
c.Assert(prev, Equals, test.prev)
}
c.Assert(p.Keys(), DeepEquals, test.keys)
}
}
func (s *TestSuite) TestMustSet(c *C) {
input := "key=${key}"
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(func() { p.MustSet("key", "${key}") }, PanicMatches, "circular reference .*")
}
func (s *TestSuite) TestWrite(c *C) {
for _, test := range writeTests {
p, err := parse(test.input)
buf := new(bytes.Buffer)
var n int
switch test.encoding {
case "UTF-8":
n, err = p.Write(buf, UTF8)
case "ISO-8859-1":
n, err = p.Write(buf, ISO_8859_1)
}
c.Assert(err, IsNil)
s := string(buf.Bytes())
c.Assert(n, Equals, len(test.output), Commentf("input=%q expected=%q obtained=%q", test.input, test.output, s))
c.Assert(s, Equals, test.output, Commentf("input=%q expected=%q obtained=%q", test.input, test.output, s))
}
}
func (s *TestSuite) TestWriteComment(c *C) {
for _, test := range writeCommentTests {
p, err := parse(test.input)
buf := new(bytes.Buffer)
var n int
switch test.encoding {
case "UTF-8":
n, err = p.WriteComment(buf, "# ", UTF8)
case "ISO-8859-1":
n, err = p.WriteComment(buf, "# ", ISO_8859_1)
}
c.Assert(err, IsNil)
s := string(buf.Bytes())
c.Assert(n, Equals, len(test.output), Commentf("input=%q expected=%q obtained=%q", test.input, test.output, s))
c.Assert(s, Equals, test.output, Commentf("input=%q expected=%q obtained=%q", test.input, test.output, s))
}
}
func (s *TestSuite) TestCustomExpansionExpression(c *C) {
testKeyValuePrePostfix(c, "*[", "]*", "key=value\nkey2=*[key]*", "key", "value", "key2", "value")
}
func (s *TestSuite) TestPanicOn32BitIntOverflow(c *C) {
is32Bit = true
var min, max int64 = math.MinInt32 - 1, math.MaxInt32 + 1
input := fmt.Sprintf("min=%d\nmax=%d", min, max)
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetInt64("min"), Equals, min)
c.Assert(p.MustGetInt64("max"), Equals, max)
c.Assert(func() { p.MustGetInt("min") }, PanicMatches, ".* out of range")
c.Assert(func() { p.MustGetInt("max") }, PanicMatches, ".* out of range")
}
func (s *TestSuite) TestPanicOn32BitUintOverflow(c *C) {
is32Bit = true
var max uint64 = math.MaxUint32 + 1
input := fmt.Sprintf("max=%d", max)
p, err := parse(input)
c.Assert(err, IsNil)
c.Assert(p.MustGetUint64("max"), Equals, max)
c.Assert(func() { p.MustGetUint("max") }, PanicMatches, ".* out of range")
}
func (s *TestSuite) TestDeleteKey(c *C) {
input := "#comments should also be gone\nkey=to-be-deleted\nsecond=key"
p, err := parse(input)
c.Assert(err, IsNil)
c.Check(len(p.m), Equals, 2)
c.Check(len(p.c), Equals, 1)
c.Check(len(p.k), Equals, 2)
p.Delete("key")
c.Check(len(p.m), Equals, 1)
c.Check(len(p.c), Equals, 0)
c.Check(len(p.k), Equals, 1)
}
func (s *TestSuite) TestDeleteUnknownKey(c *C) {
input := "#comments should also be gone\nkey=to-be-deleted"
p, err := parse(input)
c.Assert(err, IsNil)
c.Check(len(p.m), Equals, 1)
c.Check(len(p.c), Equals, 1)
c.Check(len(p.k), Equals, 1)
p.Delete("wrong-key")
c.Check(len(p.m), Equals, 1)
c.Check(len(p.c), Equals, 1)
c.Check(len(p.k), Equals, 1)
}
func (s *TestSuite) TestMerge(c *C) {
input1 := "#comment\nkey=value\nkey2=value2"
input2 := "#another comment\nkey=another value\nkey3=value3"
p1, err := parse(input1)
c.Assert(err, IsNil)
p2, err := parse(input2)
p1.Merge(p2)
c.Check(len(p1.m), Equals, 3)
c.Check(len(p1.c), Equals, 1)
c.Check(len(p1.k), Equals, 3)
c.Check(p1.MustGet("key"), Equals, "another value")
c.Check(p1.GetComment("key"), Equals, "another comment")
}
// ----------------------------------------------------------------------------
// tests all combinations of delimiters, leading and/or trailing whitespace and newlines.
func testWhitespaceAndDelimiterCombinations(c *C, key, value string) {
whitespace := []string{"", " ", "\f", "\t"}
delimiters := []string{"", " ", "=", ":"}
newlines := []string{"", "\r", "\n", "\r\n"}
for _, dl := range delimiters {
for _, ws1 := range whitespace {
for _, ws2 := range whitespace {
for _, nl := range newlines {
// skip the one case where there is nothing between a key and a value
if ws1 == "" && dl == "" && ws2 == "" && value != "" {
continue
}
input := fmt.Sprintf("%s%s%s%s%s%s", key, ws1, dl, ws2, value, nl)
testKeyValue(c, input, key, value)
}
}
}
}
}
// tests whether key/value pairs exist for a given input.
// keyvalues is expected to be an even number of strings of "key", "value", ...
func testKeyValue(c *C, input string, keyvalues ...string) {
testKeyValuePrePostfix(c, "${", "}", input, keyvalues...)
}
// tests whether key/value pairs exist for a given input.
// keyvalues is expected to be an even number of strings of "key", "value", ...
func testKeyValuePrePostfix(c *C, prefix, postfix, input string, keyvalues ...string) {
printf("%q\n", input)
p, err := Load([]byte(input), ISO_8859_1)
c.Assert(err, IsNil)
p.Prefix = prefix
p.Postfix = postfix
assertKeyValues(c, input, p, keyvalues...)
}
// tests whether key/value pairs exist for a given input.
// keyvalues is expected to be an even number of strings of "key", "value", ...
func assertKeyValues(c *C, input string, p *Properties, keyvalues ...string) {
c.Assert(p, NotNil)
c.Assert(2*p.Len(), Equals, len(keyvalues), Commentf("Odd number of key/value pairs."))
for i := 0; i < len(keyvalues); i += 2 {
key, value := keyvalues[i], keyvalues[i+1]
v, ok := p.Get(key)
c.Assert(ok, Equals, true, Commentf("No key %q found (input=%q)", key, input))
c.Assert(v, Equals, value, Commentf("Value %q does not match %q (input=%q)", v, value, input))
}
}
// prints to stderr if the -verbose flag was given.
func printf(format string, args ...interface{}) {
if *verbose {
fmt.Fprintf(os.Stderr, format, args...)
}
}

31
vendor/github.com/magiconair/properties/rangecheck.go generated vendored Normal file
View File

@ -0,0 +1,31 @@
// Copyright 2016 Frank Schroeder. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package properties
import (
"fmt"
"math"
)
// make this a var to overwrite it in a test
var is32Bit = ^uint(0) == math.MaxUint32
// intRangeCheck checks if the value fits into the int type and
// panics if it does not.
func intRangeCheck(key string, v int64) int {
if is32Bit && (v < math.MinInt32 || v > math.MaxInt32) {
panic(fmt.Sprintf("Value %d for key %s out of range", v, key))
}
return int(v)
}
// uintRangeCheck checks if the value fits into the uint type and
// panics if it does not.
func uintRangeCheck(key string, v uint64) uint {
if is32Bit && v > math.MaxUint32 {
panic(fmt.Sprintf("Value %d for key %s out of range", v, key))
}
return uint(v)
}

7
vendor/github.com/mitchellh/mapstructure/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,7 @@
language: go
go:
- 1.4
script:
- go test

21
vendor/github.com/mitchellh/mapstructure/LICENSE generated vendored Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2013 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

46
vendor/github.com/mitchellh/mapstructure/README.md generated vendored Normal file
View File

@ -0,0 +1,46 @@
# mapstructure
mapstructure is a Go library for decoding generic map values to structures
and vice versa, while providing helpful error handling.
This library is most useful when decoding values from some data stream (JSON,
Gob, etc.) where you don't _quite_ know the structure of the underlying data
until you read a part of it. You can therefore read a `map[string]interface{}`
and use this library to decode it into the proper underlying native Go
structure.
## Installation
Standard `go get`:
```
$ go get github.com/mitchellh/mapstructure
```
## Usage & Example
For usage and examples see the [Godoc](http://godoc.org/github.com/mitchellh/mapstructure).
The `Decode` function has examples associated with it there.
## But Why?!
Go offers fantastic standard libraries for decoding formats such as JSON.
The standard method is to have a struct pre-created, and populate that struct
from the bytes of the encoded format. This is great, but the problem is if
you have configuration or an encoding that changes slightly depending on
specific fields. For example, consider this JSON:
```json
{
"type": "person",
"name": "Mitchell"
}
```
Perhaps we can't populate a specific structure without first reading
the "type" field from the JSON. We could always do two passes over the
decoding of the JSON (reading the "type" first, and the rest later).
However, it is much simpler to just decode this into a `map[string]interface{}`
structure, read the "type" key, then use something like this library
to decode it into the proper structure.

View File

@ -0,0 +1,154 @@
package mapstructure
import (
"errors"
"reflect"
"strconv"
"strings"
"time"
)
// typedDecodeHook takes a raw DecodeHookFunc (an interface{}) and turns
// it into the proper DecodeHookFunc type, such as DecodeHookFuncType.
func typedDecodeHook(h DecodeHookFunc) DecodeHookFunc {
// Create variables here so we can reference them with the reflect pkg
var f1 DecodeHookFuncType
var f2 DecodeHookFuncKind
// Fill in the variables into this interface and the rest is done
// automatically using the reflect package.
potential := []interface{}{f1, f2}
v := reflect.ValueOf(h)
vt := v.Type()
for _, raw := range potential {
pt := reflect.ValueOf(raw).Type()
if vt.ConvertibleTo(pt) {
return v.Convert(pt).Interface()
}
}
return nil
}
// DecodeHookExec executes the given decode hook. This should be used
// since it'll naturally degrade to the older backwards compatible DecodeHookFunc
// that took reflect.Kind instead of reflect.Type.
func DecodeHookExec(
raw DecodeHookFunc,
from reflect.Type, to reflect.Type,
data interface{}) (interface{}, error) {
// Build our arguments that reflect expects
argVals := make([]reflect.Value, 3)
argVals[0] = reflect.ValueOf(from)
argVals[1] = reflect.ValueOf(to)
argVals[2] = reflect.ValueOf(data)
switch f := typedDecodeHook(raw).(type) {
case DecodeHookFuncType:
return f(from, to, data)
case DecodeHookFuncKind:
return f(from.Kind(), to.Kind(), data)
default:
return nil, errors.New("invalid decode hook signature")
}
}
// ComposeDecodeHookFunc creates a single DecodeHookFunc that
// automatically composes multiple DecodeHookFuncs.
//
// The composed funcs are called in order, with the result of the
// previous transformation.
func ComposeDecodeHookFunc(fs ...DecodeHookFunc) DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
var err error
for _, f1 := range fs {
data, err = DecodeHookExec(f1, f, t, data)
if err != nil {
return nil, err
}
// Modify the from kind to be correct with the new data
f = nil
if val := reflect.ValueOf(data); val.IsValid() {
f = val.Type()
}
}
return data, nil
}
}
// StringToSliceHookFunc returns a DecodeHookFunc that converts
// string to []string by splitting on the given sep.
func StringToSliceHookFunc(sep string) DecodeHookFunc {
return func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
if f != reflect.String || t != reflect.Slice {
return data, nil
}
raw := data.(string)
if raw == "" {
return []string{}, nil
}
return strings.Split(raw, sep), nil
}
}
// StringToTimeDurationHookFunc returns a DecodeHookFunc that converts
// strings to time.Duration.
func StringToTimeDurationHookFunc() DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
if f.Kind() != reflect.String {
return data, nil
}
if t != reflect.TypeOf(time.Duration(5)) {
return data, nil
}
// Convert it by parsing
return time.ParseDuration(data.(string))
}
}
func WeaklyTypedHook(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
dataVal := reflect.ValueOf(data)
switch t {
case reflect.String:
switch f {
case reflect.Bool:
if dataVal.Bool() {
return "1", nil
} else {
return "0", nil
}
case reflect.Float32:
return strconv.FormatFloat(dataVal.Float(), 'f', -1, 64), nil
case reflect.Int:
return strconv.FormatInt(dataVal.Int(), 10), nil
case reflect.Slice:
dataType := dataVal.Type()
elemKind := dataType.Elem().Kind()
if elemKind == reflect.Uint8 {
return string(dataVal.Interface().([]uint8)), nil
}
case reflect.Uint:
return strconv.FormatUint(dataVal.Uint(), 10), nil
}
}
return data, nil
}

View File

@ -0,0 +1,229 @@
package mapstructure
import (
"errors"
"reflect"
"testing"
"time"
)
func TestComposeDecodeHookFunc(t *testing.T) {
f1 := func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
return data.(string) + "foo", nil
}
f2 := func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
return data.(string) + "bar", nil
}
f := ComposeDecodeHookFunc(f1, f2)
result, err := DecodeHookExec(
f, reflect.TypeOf(""), reflect.TypeOf([]byte("")), "")
if err != nil {
t.Fatalf("bad: %s", err)
}
if result.(string) != "foobar" {
t.Fatalf("bad: %#v", result)
}
}
func TestComposeDecodeHookFunc_err(t *testing.T) {
f1 := func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error) {
return nil, errors.New("foo")
}
f2 := func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error) {
panic("NOPE")
}
f := ComposeDecodeHookFunc(f1, f2)
_, err := DecodeHookExec(
f, reflect.TypeOf(""), reflect.TypeOf([]byte("")), 42)
if err.Error() != "foo" {
t.Fatalf("bad: %s", err)
}
}
func TestComposeDecodeHookFunc_kinds(t *testing.T) {
var f2From reflect.Kind
f1 := func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
return int(42), nil
}
f2 := func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
f2From = f
return data, nil
}
f := ComposeDecodeHookFunc(f1, f2)
_, err := DecodeHookExec(
f, reflect.TypeOf(""), reflect.TypeOf([]byte("")), "")
if err != nil {
t.Fatalf("bad: %s", err)
}
if f2From != reflect.Int {
t.Fatalf("bad: %#v", f2From)
}
}
func TestStringToSliceHookFunc(t *testing.T) {
f := StringToSliceHookFunc(",")
strType := reflect.TypeOf("")
sliceType := reflect.TypeOf([]byte(""))
cases := []struct {
f, t reflect.Type
data interface{}
result interface{}
err bool
}{
{sliceType, sliceType, 42, 42, false},
{strType, strType, 42, 42, false},
{
strType,
sliceType,
"foo,bar,baz",
[]string{"foo", "bar", "baz"},
false,
},
{
strType,
sliceType,
"",
[]string{},
false,
},
}
for i, tc := range cases {
actual, err := DecodeHookExec(f, tc.f, tc.t, tc.data)
if tc.err != (err != nil) {
t.Fatalf("case %d: expected err %#v", i, tc.err)
}
if !reflect.DeepEqual(actual, tc.result) {
t.Fatalf(
"case %d: expected %#v, got %#v",
i, tc.result, actual)
}
}
}
func TestStringToTimeDurationHookFunc(t *testing.T) {
f := StringToTimeDurationHookFunc()
strType := reflect.TypeOf("")
timeType := reflect.TypeOf(time.Duration(5))
cases := []struct {
f, t reflect.Type
data interface{}
result interface{}
err bool
}{
{strType, timeType, "5s", 5 * time.Second, false},
{strType, timeType, "5", time.Duration(0), true},
{strType, strType, "5", "5", false},
}
for i, tc := range cases {
actual, err := DecodeHookExec(f, tc.f, tc.t, tc.data)
if tc.err != (err != nil) {
t.Fatalf("case %d: expected err %#v", i, tc.err)
}
if !reflect.DeepEqual(actual, tc.result) {
t.Fatalf(
"case %d: expected %#v, got %#v",
i, tc.result, actual)
}
}
}
func TestWeaklyTypedHook(t *testing.T) {
var f DecodeHookFunc = WeaklyTypedHook
boolType := reflect.TypeOf(true)
strType := reflect.TypeOf("")
sliceType := reflect.TypeOf([]byte(""))
cases := []struct {
f, t reflect.Type
data interface{}
result interface{}
err bool
}{
// TO STRING
{
boolType,
strType,
false,
"0",
false,
},
{
boolType,
strType,
true,
"1",
false,
},
{
reflect.TypeOf(float32(1)),
strType,
float32(7),
"7",
false,
},
{
reflect.TypeOf(int(1)),
strType,
int(7),
"7",
false,
},
{
sliceType,
strType,
[]uint8("foo"),
"foo",
false,
},
{
reflect.TypeOf(uint(1)),
strType,
uint(7),
"7",
false,
},
}
for i, tc := range cases {
actual, err := DecodeHookExec(f, tc.f, tc.t, tc.data)
if tc.err != (err != nil) {
t.Fatalf("case %d: expected err %#v", i, tc.err)
}
if !reflect.DeepEqual(actual, tc.result) {
t.Fatalf(
"case %d: expected %#v, got %#v",
i, tc.result, actual)
}
}
}

50
vendor/github.com/mitchellh/mapstructure/error.go generated vendored Normal file
View File

@ -0,0 +1,50 @@
package mapstructure
import (
"errors"
"fmt"
"sort"
"strings"
)
// Error implements the error interface and can represents multiple
// errors that occur in the course of a single decode.
type Error struct {
Errors []string
}
func (e *Error) Error() string {
points := make([]string, len(e.Errors))
for i, err := range e.Errors {
points[i] = fmt.Sprintf("* %s", err)
}
sort.Strings(points)
return fmt.Sprintf(
"%d error(s) decoding:\n\n%s",
len(e.Errors), strings.Join(points, "\n"))
}
// WrappedErrors implements the errwrap.Wrapper interface to make this
// return value more useful with the errwrap and go-multierror libraries.
func (e *Error) WrappedErrors() []error {
if e == nil {
return nil
}
result := make([]error, len(e.Errors))
for i, e := range e.Errors {
result[i] = errors.New(e)
}
return result
}
func appendErrors(errors []string, err error) []string {
switch e := err.(type) {
case *Error:
return append(errors, e.Errors...)
default:
return append(errors, e.Error())
}
}

View File

@ -0,0 +1,771 @@
// The mapstructure package exposes functionality to convert an
// abitrary map[string]interface{} into a native Go structure.
//
// The Go structure can be arbitrarily complex, containing slices,
// other structs, etc. and the decoder will properly decode nested
// maps and so on into the proper structures in the native Go struct.
// See the examples to see what the decoder is capable of.
package mapstructure
import (
"errors"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
)
// DecodeHookFunc is the callback function that can be used for
// data transformations. See "DecodeHook" in the DecoderConfig
// struct.
//
// The type should be DecodeHookFuncType or DecodeHookFuncKind.
// Either is accepted. Types are a superset of Kinds (Types can return
// Kinds) and are generally a richer thing to use, but Kinds are simpler
// if you only need those.
//
// The reason DecodeHookFunc is multi-typed is for backwards compatibility:
// we started with Kinds and then realized Types were the better solution,
// but have a promise to not break backwards compat so we now support
// both.
type DecodeHookFunc interface{}
type DecodeHookFuncType func(reflect.Type, reflect.Type, interface{}) (interface{}, error)
type DecodeHookFuncKind func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error)
// DecoderConfig is the configuration that is used to create a new decoder
// and allows customization of various aspects of decoding.
type DecoderConfig struct {
// DecodeHook, if set, will be called before any decoding and any
// type conversion (if WeaklyTypedInput is on). This lets you modify
// the values before they're set down onto the resulting struct.
//
// If an error is returned, the entire decode will fail with that
// error.
DecodeHook DecodeHookFunc
// If ErrorUnused is true, then it is an error for there to exist
// keys in the original map that were unused in the decoding process
// (extra keys).
ErrorUnused bool
// ZeroFields, if set to true, will zero fields before writing them.
// For example, a map will be emptied before decoded values are put in
// it. If this is false, a map will be merged.
ZeroFields bool
// If WeaklyTypedInput is true, the decoder will make the following
// "weak" conversions:
//
// - bools to string (true = "1", false = "0")
// - numbers to string (base 10)
// - bools to int/uint (true = 1, false = 0)
// - strings to int/uint (base implied by prefix)
// - int to bool (true if value != 0)
// - string to bool (accepts: 1, t, T, TRUE, true, True, 0, f, F,
// FALSE, false, False. Anything else is an error)
// - empty array = empty map and vice versa
// - negative numbers to overflowed uint values (base 10)
// - slice of maps to a merged map
//
WeaklyTypedInput bool
// Metadata is the struct that will contain extra metadata about
// the decoding. If this is nil, then no metadata will be tracked.
Metadata *Metadata
// Result is a pointer to the struct that will contain the decoded
// value.
Result interface{}
// The tag name that mapstructure reads for field names. This
// defaults to "mapstructure"
TagName string
}
// A Decoder takes a raw interface value and turns it into structured
// data, keeping track of rich error information along the way in case
// anything goes wrong. Unlike the basic top-level Decode method, you can
// more finely control how the Decoder behaves using the DecoderConfig
// structure. The top-level Decode method is just a convenience that sets
// up the most basic Decoder.
type Decoder struct {
config *DecoderConfig
}
// Metadata contains information about decoding a structure that
// is tedious or difficult to get otherwise.
type Metadata struct {
// Keys are the keys of the structure which were successfully decoded
Keys []string
// Unused is a slice of keys that were found in the raw value but
// weren't decoded since there was no matching field in the result interface
Unused []string
}
// Decode takes a map and uses reflection to convert it into the
// given Go native structure. val must be a pointer to a struct.
func Decode(m interface{}, rawVal interface{}) error {
config := &DecoderConfig{
Metadata: nil,
Result: rawVal,
}
decoder, err := NewDecoder(config)
if err != nil {
return err
}
return decoder.Decode(m)
}
// WeakDecode is the same as Decode but is shorthand to enable
// WeaklyTypedInput. See DecoderConfig for more info.
func WeakDecode(input, output interface{}) error {
config := &DecoderConfig{
Metadata: nil,
Result: output,
WeaklyTypedInput: true,
}
decoder, err := NewDecoder(config)
if err != nil {
return err
}
return decoder.Decode(input)
}
// NewDecoder returns a new decoder for the given configuration. Once
// a decoder has been returned, the same configuration must not be used
// again.
func NewDecoder(config *DecoderConfig) (*Decoder, error) {
val := reflect.ValueOf(config.Result)
if val.Kind() != reflect.Ptr {
return nil, errors.New("result must be a pointer")
}
val = val.Elem()
if !val.CanAddr() {
return nil, errors.New("result must be addressable (a pointer)")
}
if config.Metadata != nil {
if config.Metadata.Keys == nil {
config.Metadata.Keys = make([]string, 0)
}
if config.Metadata.Unused == nil {
config.Metadata.Unused = make([]string, 0)
}
}
if config.TagName == "" {
config.TagName = "mapstructure"
}
result := &Decoder{
config: config,
}
return result, nil
}
// Decode decodes the given raw interface to the target pointer specified
// by the configuration.
func (d *Decoder) Decode(raw interface{}) error {
return d.decode("", raw, reflect.ValueOf(d.config.Result).Elem())
}
// Decodes an unknown data type into a specific reflection value.
func (d *Decoder) decode(name string, data interface{}, val reflect.Value) error {
if data == nil {
// If the data is nil, then we don't set anything.
return nil
}
dataVal := reflect.ValueOf(data)
if !dataVal.IsValid() {
// If the data value is invalid, then we just set the value
// to be the zero value.
val.Set(reflect.Zero(val.Type()))
return nil
}
if d.config.DecodeHook != nil {
// We have a DecodeHook, so let's pre-process the data.
var err error
data, err = DecodeHookExec(
d.config.DecodeHook,
dataVal.Type(), val.Type(), data)
if err != nil {
return err
}
}
var err error
dataKind := getKind(val)
switch dataKind {
case reflect.Bool:
err = d.decodeBool(name, data, val)
case reflect.Interface:
err = d.decodeBasic(name, data, val)
case reflect.String:
err = d.decodeString(name, data, val)
case reflect.Int:
err = d.decodeInt(name, data, val)
case reflect.Uint:
err = d.decodeUint(name, data, val)
case reflect.Float32:
err = d.decodeFloat(name, data, val)
case reflect.Struct:
err = d.decodeStruct(name, data, val)
case reflect.Map:
err = d.decodeMap(name, data, val)
case reflect.Ptr:
err = d.decodePtr(name, data, val)
case reflect.Slice:
err = d.decodeSlice(name, data, val)
default:
// If we reached this point then we weren't able to decode it
return fmt.Errorf("%s: unsupported type: %s", name, dataKind)
}
// If we reached here, then we successfully decoded SOMETHING, so
// mark the key as used if we're tracking metadata.
if d.config.Metadata != nil && name != "" {
d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
}
return err
}
// This decodes a basic type (bool, int, string, etc.) and sets the
// value to "data" of that type.
func (d *Decoder) decodeBasic(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
if !dataVal.IsValid() {
dataVal = reflect.Zero(val.Type())
}
dataValType := dataVal.Type()
if !dataValType.AssignableTo(val.Type()) {
return fmt.Errorf(
"'%s' expected type '%s', got '%s'",
name, val.Type(), dataValType)
}
val.Set(dataVal)
return nil
}
func (d *Decoder) decodeString(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
converted := true
switch {
case dataKind == reflect.String:
val.SetString(dataVal.String())
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetString("1")
} else {
val.SetString("0")
}
case dataKind == reflect.Int && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatInt(dataVal.Int(), 10))
case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatUint(dataVal.Uint(), 10))
case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatFloat(dataVal.Float(), 'f', -1, 64))
case dataKind == reflect.Slice && d.config.WeaklyTypedInput:
dataType := dataVal.Type()
elemKind := dataType.Elem().Kind()
switch {
case elemKind == reflect.Uint8:
val.SetString(string(dataVal.Interface().([]uint8)))
default:
converted = false
}
default:
converted = false
}
if !converted {
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeInt(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Int:
val.SetInt(dataVal.Int())
case dataKind == reflect.Uint:
val.SetInt(int64(dataVal.Uint()))
case dataKind == reflect.Float32:
val.SetInt(int64(dataVal.Float()))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetInt(1)
} else {
val.SetInt(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
i, err := strconv.ParseInt(dataVal.String(), 0, val.Type().Bits())
if err == nil {
val.SetInt(i)
} else {
return fmt.Errorf("cannot parse '%s' as int: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeUint(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Int:
i := dataVal.Int()
if i < 0 && !d.config.WeaklyTypedInput {
return fmt.Errorf("cannot parse '%s', %d overflows uint",
name, i)
}
val.SetUint(uint64(i))
case dataKind == reflect.Uint:
val.SetUint(dataVal.Uint())
case dataKind == reflect.Float32:
f := dataVal.Float()
if f < 0 && !d.config.WeaklyTypedInput {
return fmt.Errorf("cannot parse '%s', %f overflows uint",
name, f)
}
val.SetUint(uint64(f))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetUint(1)
} else {
val.SetUint(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
i, err := strconv.ParseUint(dataVal.String(), 0, val.Type().Bits())
if err == nil {
val.SetUint(i)
} else {
return fmt.Errorf("cannot parse '%s' as uint: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeBool(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Bool:
val.SetBool(dataVal.Bool())
case dataKind == reflect.Int && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Int() != 0)
case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Uint() != 0)
case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Float() != 0)
case dataKind == reflect.String && d.config.WeaklyTypedInput:
b, err := strconv.ParseBool(dataVal.String())
if err == nil {
val.SetBool(b)
} else if dataVal.String() == "" {
val.SetBool(false)
} else {
return fmt.Errorf("cannot parse '%s' as bool: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeFloat(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Int:
val.SetFloat(float64(dataVal.Int()))
case dataKind == reflect.Uint:
val.SetFloat(float64(dataVal.Uint()))
case dataKind == reflect.Float32:
val.SetFloat(float64(dataVal.Float()))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetFloat(1)
} else {
val.SetFloat(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
f, err := strconv.ParseFloat(dataVal.String(), val.Type().Bits())
if err == nil {
val.SetFloat(f)
} else {
return fmt.Errorf("cannot parse '%s' as float: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeMap(name string, data interface{}, val reflect.Value) error {
valType := val.Type()
valKeyType := valType.Key()
valElemType := valType.Elem()
// By default we overwrite keys in the current map
valMap := val
// If the map is nil or we're purposely zeroing fields, make a new map
if valMap.IsNil() || d.config.ZeroFields {
// Make a new map to hold our result
mapType := reflect.MapOf(valKeyType, valElemType)
valMap = reflect.MakeMap(mapType)
}
// Check input type
dataVal := reflect.Indirect(reflect.ValueOf(data))
if dataVal.Kind() != reflect.Map {
// In weak mode, we accept a slice of maps as an input...
if d.config.WeaklyTypedInput {
switch dataVal.Kind() {
case reflect.Array, reflect.Slice:
// Special case for BC reasons (covered by tests)
if dataVal.Len() == 0 {
val.Set(valMap)
return nil
}
for i := 0; i < dataVal.Len(); i++ {
err := d.decode(
fmt.Sprintf("%s[%d]", name, i),
dataVal.Index(i).Interface(), val)
if err != nil {
return err
}
}
return nil
}
}
return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind())
}
// Accumulate errors
errors := make([]string, 0)
for _, k := range dataVal.MapKeys() {
fieldName := fmt.Sprintf("%s[%s]", name, k)
// First decode the key into the proper type
currentKey := reflect.Indirect(reflect.New(valKeyType))
if err := d.decode(fieldName, k.Interface(), currentKey); err != nil {
errors = appendErrors(errors, err)
continue
}
// Next decode the data into the proper type
v := dataVal.MapIndex(k).Interface()
currentVal := reflect.Indirect(reflect.New(valElemType))
if err := d.decode(fieldName, v, currentVal); err != nil {
errors = appendErrors(errors, err)
continue
}
valMap.SetMapIndex(currentKey, currentVal)
}
// Set the built up map to the value
val.Set(valMap)
// If we had errors, return those
if len(errors) > 0 {
return &Error{errors}
}
return nil
}
func (d *Decoder) decodePtr(name string, data interface{}, val reflect.Value) error {
// Create an element of the concrete (non pointer) type and decode
// into that. Then set the value of the pointer to this type.
valType := val.Type()
valElemType := valType.Elem()
realVal := reflect.New(valElemType)
if err := d.decode(name, data, reflect.Indirect(realVal)); err != nil {
return err
}
val.Set(realVal)
return nil
}
func (d *Decoder) decodeSlice(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.Indirect(reflect.ValueOf(data))
dataValKind := dataVal.Kind()
valType := val.Type()
valElemType := valType.Elem()
sliceType := reflect.SliceOf(valElemType)
// Check input type
if dataValKind != reflect.Array && dataValKind != reflect.Slice {
// Accept empty map instead of array/slice in weakly typed mode
if d.config.WeaklyTypedInput && dataVal.Kind() == reflect.Map && dataVal.Len() == 0 {
val.Set(reflect.MakeSlice(sliceType, 0, 0))
return nil
} else {
return fmt.Errorf(
"'%s': source data must be an array or slice, got %s", name, dataValKind)
}
}
// Make a new slice to hold our result, same size as the original data.
valSlice := reflect.MakeSlice(sliceType, dataVal.Len(), dataVal.Len())
// Accumulate any errors
errors := make([]string, 0)
for i := 0; i < dataVal.Len(); i++ {
currentData := dataVal.Index(i).Interface()
currentField := valSlice.Index(i)
fieldName := fmt.Sprintf("%s[%d]", name, i)
if err := d.decode(fieldName, currentData, currentField); err != nil {
errors = appendErrors(errors, err)
}
}
// Finally, set the value to the slice we built up
val.Set(valSlice)
// If there were errors, we return those
if len(errors) > 0 {
return &Error{errors}
}
return nil
}
func (d *Decoder) decodeStruct(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.Indirect(reflect.ValueOf(data))
// If the type of the value to write to and the data match directly,
// then we just set it directly instead of recursing into the structure.
if dataVal.Type() == val.Type() {
val.Set(dataVal)
return nil
}
dataValKind := dataVal.Kind()
if dataValKind != reflect.Map {
return fmt.Errorf("'%s' expected a map, got '%s'", name, dataValKind)
}
dataValType := dataVal.Type()
if kind := dataValType.Key().Kind(); kind != reflect.String && kind != reflect.Interface {
return fmt.Errorf(
"'%s' needs a map with string keys, has '%s' keys",
name, dataValType.Key().Kind())
}
dataValKeys := make(map[reflect.Value]struct{})
dataValKeysUnused := make(map[interface{}]struct{})
for _, dataValKey := range dataVal.MapKeys() {
dataValKeys[dataValKey] = struct{}{}
dataValKeysUnused[dataValKey.Interface()] = struct{}{}
}
errors := make([]string, 0)
// This slice will keep track of all the structs we'll be decoding.
// There can be more than one struct if there are embedded structs
// that are squashed.
structs := make([]reflect.Value, 1, 5)
structs[0] = val
// Compile the list of all the fields that we're going to be decoding
// from all the structs.
fields := make(map[*reflect.StructField]reflect.Value)
for len(structs) > 0 {
structVal := structs[0]
structs = structs[1:]
structType := structVal.Type()
for i := 0; i < structType.NumField(); i++ {
fieldType := structType.Field(i)
fieldKind := fieldType.Type.Kind()
if fieldType.Anonymous {
if fieldKind != reflect.Struct {
errors = appendErrors(errors,
fmt.Errorf("%s: unsupported type: %s", fieldType.Name, fieldKind))
continue
}
}
// If "squash" is specified in the tag, we squash the field down.
squash := false
tagParts := strings.Split(fieldType.Tag.Get(d.config.TagName), ",")
for _, tag := range tagParts[1:] {
if tag == "squash" {
squash = true
break
}
}
if squash {
if fieldKind != reflect.Struct {
errors = appendErrors(errors,
fmt.Errorf("%s: unsupported type for squash: %s", fieldType.Name, fieldKind))
} else {
structs = append(structs, val.FieldByName(fieldType.Name))
}
continue
}
// Normal struct field, store it away
fields[&fieldType] = structVal.Field(i)
}
}
for fieldType, field := range fields {
fieldName := fieldType.Name
tagValue := fieldType.Tag.Get(d.config.TagName)
tagValue = strings.SplitN(tagValue, ",", 2)[0]
if tagValue != "" {
fieldName = tagValue
}
rawMapKey := reflect.ValueOf(fieldName)
rawMapVal := dataVal.MapIndex(rawMapKey)
if !rawMapVal.IsValid() {
// Do a slower search by iterating over each key and
// doing case-insensitive search.
for dataValKey, _ := range dataValKeys {
mK, ok := dataValKey.Interface().(string)
if !ok {
// Not a string key
continue
}
if strings.EqualFold(mK, fieldName) {
rawMapKey = dataValKey
rawMapVal = dataVal.MapIndex(dataValKey)
break
}
}
if !rawMapVal.IsValid() {
// There was no matching key in the map for the value in
// the struct. Just ignore.
continue
}
}
// Delete the key we're using from the unused map so we stop tracking
delete(dataValKeysUnused, rawMapKey.Interface())
if !field.IsValid() {
// This should never happen
panic("field is not valid")
}
// If we can't set the field, then it is unexported or something,
// and we just continue onwards.
if !field.CanSet() {
continue
}
// If the name is empty string, then we're at the root, and we
// don't dot-join the fields.
if name != "" {
fieldName = fmt.Sprintf("%s.%s", name, fieldName)
}
if err := d.decode(fieldName, rawMapVal.Interface(), field); err != nil {
errors = appendErrors(errors, err)
}
}
if d.config.ErrorUnused && len(dataValKeysUnused) > 0 {
keys := make([]string, 0, len(dataValKeysUnused))
for rawKey, _ := range dataValKeysUnused {
keys = append(keys, rawKey.(string))
}
sort.Strings(keys)
err := fmt.Errorf("'%s' has invalid keys: %s", name, strings.Join(keys, ", "))
errors = appendErrors(errors, err)
}
if len(errors) > 0 {
return &Error{errors}
}
// Add the unused keys to the list of unused keys if we're tracking metadata
if d.config.Metadata != nil {
for rawKey, _ := range dataValKeysUnused {
key := rawKey.(string)
if name != "" {
key = fmt.Sprintf("%s.%s", name, key)
}
d.config.Metadata.Unused = append(d.config.Metadata.Unused, key)
}
}
return nil
}
func getKind(val reflect.Value) reflect.Kind {
kind := val.Kind()
switch {
case kind >= reflect.Int && kind <= reflect.Int64:
return reflect.Int
case kind >= reflect.Uint && kind <= reflect.Uint64:
return reflect.Uint
case kind >= reflect.Float32 && kind <= reflect.Float64:
return reflect.Float32
default:
return kind
}
}

View File

@ -0,0 +1,279 @@
package mapstructure
import (
"encoding/json"
"testing"
)
func Benchmark_Decode(b *testing.B) {
type Person struct {
Name string
Age int
Emails []string
Extra map[string]string
}
input := map[string]interface{}{
"name": "Mitchell",
"age": 91,
"emails": []string{"one", "two", "three"},
"extra": map[string]string{
"twitter": "mitchellh",
},
}
var result Person
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}
// decodeViaJSON takes the map data and passes it through encoding/json to convert it into the
// given Go native structure pointed to by v. v must be a pointer to a struct.
func decodeViaJSON(data interface{}, v interface{}) error {
// Perform the task by simply marshalling the input into JSON,
// then unmarshalling it into target native Go struct.
b, err := json.Marshal(data)
if err != nil {
return err
}
return json.Unmarshal(b, v)
}
func Benchmark_DecodeViaJSON(b *testing.B) {
type Person struct {
Name string
Age int
Emails []string
Extra map[string]string
}
input := map[string]interface{}{
"name": "Mitchell",
"age": 91,
"emails": []string{"one", "two", "three"},
"extra": map[string]string{
"twitter": "mitchellh",
},
}
var result Person
for i := 0; i < b.N; i++ {
decodeViaJSON(input, &result)
}
}
func Benchmark_DecodeBasic(b *testing.B) {
input := map[string]interface{}{
"vstring": "foo",
"vint": 42,
"Vuint": 42,
"vbool": true,
"Vfloat": 42.42,
"vsilent": true,
"vdata": 42,
}
var result Basic
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}
func Benchmark_DecodeEmbedded(b *testing.B) {
input := map[string]interface{}{
"vstring": "foo",
"Basic": map[string]interface{}{
"vstring": "innerfoo",
},
"vunique": "bar",
}
var result Embedded
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}
func Benchmark_DecodeTypeConversion(b *testing.B) {
input := map[string]interface{}{
"IntToFloat": 42,
"IntToUint": 42,
"IntToBool": 1,
"IntToString": 42,
"UintToInt": 42,
"UintToFloat": 42,
"UintToBool": 42,
"UintToString": 42,
"BoolToInt": true,
"BoolToUint": true,
"BoolToFloat": true,
"BoolToString": true,
"FloatToInt": 42.42,
"FloatToUint": 42.42,
"FloatToBool": 42.42,
"FloatToString": 42.42,
"StringToInt": "42",
"StringToUint": "42",
"StringToBool": "1",
"StringToFloat": "42.42",
"SliceToMap": []interface{}{},
"MapToSlice": map[string]interface{}{},
}
var resultStrict TypeConversionResult
for i := 0; i < b.N; i++ {
Decode(input, &resultStrict)
}
}
func Benchmark_DecodeMap(b *testing.B) {
input := map[string]interface{}{
"vfoo": "foo",
"vother": map[interface{}]interface{}{
"foo": "foo",
"bar": "bar",
},
}
var result Map
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}
func Benchmark_DecodeMapOfStruct(b *testing.B) {
input := map[string]interface{}{
"value": map[string]interface{}{
"foo": map[string]string{"vstring": "one"},
"bar": map[string]string{"vstring": "two"},
},
}
var result MapOfStruct
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}
func Benchmark_DecodeSlice(b *testing.B) {
input := map[string]interface{}{
"vfoo": "foo",
"vbar": []string{"foo", "bar", "baz"},
}
var result Slice
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}
func Benchmark_DecodeSliceOfStruct(b *testing.B) {
input := map[string]interface{}{
"value": []map[string]interface{}{
{"vstring": "one"},
{"vstring": "two"},
},
}
var result SliceOfStruct
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}
func Benchmark_DecodeWeaklyTypedInput(b *testing.B) {
type Person struct {
Name string
Age int
Emails []string
}
// This input can come from anywhere, but typically comes from
// something like decoding JSON, generated by a weakly typed language
// such as PHP.
input := map[string]interface{}{
"name": 123, // number => string
"age": "42", // string => number
"emails": map[string]interface{}{}, // empty map => empty array
}
var result Person
config := &DecoderConfig{
WeaklyTypedInput: true,
Result: &result,
}
decoder, err := NewDecoder(config)
if err != nil {
panic(err)
}
for i := 0; i < b.N; i++ {
decoder.Decode(input)
}
}
func Benchmark_DecodeMetadata(b *testing.B) {
type Person struct {
Name string
Age int
}
input := map[string]interface{}{
"name": "Mitchell",
"age": 91,
"email": "foo@bar.com",
}
var md Metadata
var result Person
config := &DecoderConfig{
Metadata: &md,
Result: &result,
}
decoder, err := NewDecoder(config)
if err != nil {
panic(err)
}
for i := 0; i < b.N; i++ {
decoder.Decode(input)
}
}
func Benchmark_DecodeMetadataEmbedded(b *testing.B) {
input := map[string]interface{}{
"vstring": "foo",
"vunique": "bar",
}
var md Metadata
var result EmbeddedSquash
config := &DecoderConfig{
Metadata: &md,
Result: &result,
}
decoder, err := NewDecoder(config)
if err != nil {
b.Fatalf("err: %s", err)
}
for i := 0; i < b.N; i++ {
decoder.Decode(input)
}
}
func Benchmark_DecodeTagged(b *testing.B) {
input := map[string]interface{}{
"foo": "bar",
"bar": "value",
}
var result Tagged
for i := 0; i < b.N; i++ {
Decode(input, &result)
}
}

View File

@ -0,0 +1,47 @@
package mapstructure
import "testing"
// GH-1
func TestDecode_NilValue(t *testing.T) {
input := map[string]interface{}{
"vfoo": nil,
"vother": nil,
}
var result Map
err := Decode(input, &result)
if err != nil {
t.Fatalf("should not error: %s", err)
}
if result.Vfoo != "" {
t.Fatalf("value should be default: %s", result.Vfoo)
}
if result.Vother != nil {
t.Fatalf("Vother should be nil: %s", result.Vother)
}
}
// GH-10
func TestDecode_mapInterfaceInterface(t *testing.T) {
input := map[interface{}]interface{}{
"vfoo": nil,
"vother": nil,
}
var result Map
err := Decode(input, &result)
if err != nil {
t.Fatalf("should not error: %s", err)
}
if result.Vfoo != "" {
t.Fatalf("value should be default: %s", result.Vfoo)
}
if result.Vother != nil {
t.Fatalf("Vother should be nil: %s", result.Vother)
}
}

View File

@ -0,0 +1,203 @@
package mapstructure
import (
"fmt"
)
func ExampleDecode() {
type Person struct {
Name string
Age int
Emails []string
Extra map[string]string
}
// This input can come from anywhere, but typically comes from
// something like decoding JSON where we're not quite sure of the
// struct initially.
input := map[string]interface{}{
"name": "Mitchell",
"age": 91,
"emails": []string{"one", "two", "three"},
"extra": map[string]string{
"twitter": "mitchellh",
},
}
var result Person
err := Decode(input, &result)
if err != nil {
panic(err)
}
fmt.Printf("%#v", result)
// Output:
// mapstructure.Person{Name:"Mitchell", Age:91, Emails:[]string{"one", "two", "three"}, Extra:map[string]string{"twitter":"mitchellh"}}
}
func ExampleDecode_errors() {
type Person struct {
Name string
Age int
Emails []string
Extra map[string]string
}
// This input can come from anywhere, but typically comes from
// something like decoding JSON where we're not quite sure of the
// struct initially.
input := map[string]interface{}{
"name": 123,
"age": "bad value",
"emails": []int{1, 2, 3},
}
var result Person
err := Decode(input, &result)
if err == nil {
panic("should have an error")
}
fmt.Println(err.Error())
// Output:
// 5 error(s) decoding:
//
// * 'Age' expected type 'int', got unconvertible type 'string'
// * 'Emails[0]' expected type 'string', got unconvertible type 'int'
// * 'Emails[1]' expected type 'string', got unconvertible type 'int'
// * 'Emails[2]' expected type 'string', got unconvertible type 'int'
// * 'Name' expected type 'string', got unconvertible type 'int'
}
func ExampleDecode_metadata() {
type Person struct {
Name string
Age int
}
// This input can come from anywhere, but typically comes from
// something like decoding JSON where we're not quite sure of the
// struct initially.
input := map[string]interface{}{
"name": "Mitchell",
"age": 91,
"email": "foo@bar.com",
}
// For metadata, we make a more advanced DecoderConfig so we can
// more finely configure the decoder that is used. In this case, we
// just tell the decoder we want to track metadata.
var md Metadata
var result Person
config := &DecoderConfig{
Metadata: &md,
Result: &result,
}
decoder, err := NewDecoder(config)
if err != nil {
panic(err)
}
if err := decoder.Decode(input); err != nil {
panic(err)
}
fmt.Printf("Unused keys: %#v", md.Unused)
// Output:
// Unused keys: []string{"email"}
}
func ExampleDecode_weaklyTypedInput() {
type Person struct {
Name string
Age int
Emails []string
}
// This input can come from anywhere, but typically comes from
// something like decoding JSON, generated by a weakly typed language
// such as PHP.
input := map[string]interface{}{
"name": 123, // number => string
"age": "42", // string => number
"emails": map[string]interface{}{}, // empty map => empty array
}
var result Person
config := &DecoderConfig{
WeaklyTypedInput: true,
Result: &result,
}
decoder, err := NewDecoder(config)
if err != nil {
panic(err)
}
err = decoder.Decode(input)
if err != nil {
panic(err)
}
fmt.Printf("%#v", result)
// Output: mapstructure.Person{Name:"123", Age:42, Emails:[]string{}}
}
func ExampleDecode_tags() {
// Note that the mapstructure tags defined in the struct type
// can indicate which fields the values are mapped to.
type Person struct {
Name string `mapstructure:"person_name"`
Age int `mapstructure:"person_age"`
}
input := map[string]interface{}{
"person_name": "Mitchell",
"person_age": 91,
}
var result Person
err := Decode(input, &result)
if err != nil {
panic(err)
}
fmt.Printf("%#v", result)
// Output:
// mapstructure.Person{Name:"Mitchell", Age:91}
}
func ExampleDecode_embeddedStruct() {
// Squashing multiple embedded structs is allowed using the squash tag.
// This is demonstrated by creating a composite struct of multiple types
// and decoding into it. In this case, a person can carry with it both
// a Family and a Location, as well as their own FirstName.
type Family struct {
LastName string
}
type Location struct {
City string
}
type Person struct {
Family `mapstructure:",squash"`
Location `mapstructure:",squash"`
FirstName string
}
input := map[string]interface{}{
"FirstName": "Mitchell",
"LastName": "Hashimoto",
"City": "San Francisco",
}
var result Person
err := Decode(input, &result)
if err != nil {
panic(err)
}
fmt.Printf("%s %s, %s", result.FirstName, result.LastName, result.City)
// Output:
// Mitchell Hashimoto, San Francisco
}

File diff suppressed because it is too large Load Diff

9
vendor/gopkg.in/yaml.v2/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,9 @@
language: go
go:
- 1.4
- 1.5
- 1.6
- tip
go_import_path: gopkg.in/yaml.v2

13
vendor/gopkg.in/yaml.v2/LICENSE generated vendored Normal file
View File

@ -0,0 +1,13 @@
Copyright 2011-2016 Canonical Ltd.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

31
vendor/gopkg.in/yaml.v2/LICENSE.libyaml generated vendored Normal file
View File

@ -0,0 +1,31 @@
The following files were ported to Go from C files of libyaml, and thus
are still covered by their original copyright and license:
apic.go
emitterc.go
parserc.go
readerc.go
scannerc.go
writerc.go
yamlh.go
yamlprivateh.go
Copyright (c) 2006 Kirill Simonov
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Some files were not shown because too many files have changed in this diff Show More