mirror of https://github.com/kubernetes/kops.git
230 lines
5.5 KiB
Go
230 lines
5.5 KiB
Go
/*
|
|
Copyright 2023 The Kubernetes Authors.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
*/
|
|
|
|
package set
|
|
|
|
import (
|
|
"sort"
|
|
)
|
|
|
|
// Empty is public since it is used by some internal API objects for conversions between external
|
|
// string arrays and internal sets, and conversion logic requires public types today.
|
|
type Empty struct{}
|
|
|
|
// Set is a set of the same type elements, implemented via map[ordered]struct{} for minimal memory consumption.
|
|
type Set[E ordered] map[E]Empty
|
|
|
|
// New creates a new set.
|
|
func New[E ordered](items ...E) Set[E] {
|
|
ss := Set[E]{}
|
|
ss.Insert(items...)
|
|
return ss
|
|
}
|
|
|
|
// KeySet creates a Set[E] from a keys of a map[E](? extends interface{}).
|
|
func KeySet[E ordered, A any](theMap map[E]A) Set[E] {
|
|
ret := Set[E]{}
|
|
for key := range theMap {
|
|
ret.Insert(key)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// Insert adds items to the set.
|
|
func (s Set[E]) Insert(items ...E) Set[E] {
|
|
for _, item := range items {
|
|
s[item] = Empty{}
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Delete removes all items from the set.
|
|
func (s Set[E]) Delete(items ...E) Set[E] {
|
|
for _, item := range items {
|
|
delete(s, item)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Has returns true if and only if item is contained in the set.
|
|
func (s Set[E]) Has(item E) bool {
|
|
_, contained := s[item]
|
|
return contained
|
|
}
|
|
|
|
// HasAll returns true if and only if all items are contained in the set.
|
|
func (s Set[E]) HasAll(items ...E) bool {
|
|
for _, item := range items {
|
|
if !s.Has(item) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// HasAny returns true if any items are contained in the set.
|
|
func (s Set[E]) HasAny(items ...E) bool {
|
|
for _, item := range items {
|
|
if s.Has(item) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Union returns a new set which includes items in either s1 or s2.
|
|
// For example:
|
|
// s1 = {a1, a2}
|
|
// s2 = {a3, a4}
|
|
// s1.Union(s2) = {a1, a2, a3, a4}
|
|
// s2.Union(s1) = {a1, a2, a3, a4}
|
|
func (s Set[E]) Union(s2 Set[E]) Set[E] {
|
|
result := Set[E]{}
|
|
result.Insert(s.UnsortedList()...)
|
|
result.Insert(s2.UnsortedList()...)
|
|
return result
|
|
}
|
|
|
|
// Len returns the number of elements in the set.
|
|
func (s Set[E]) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
// Intersection returns a new set which includes the item in BOTH s1 and s2
|
|
// For example:
|
|
// s1 = {a1, a2}
|
|
// s2 = {a2, a3}
|
|
// s1.Intersection(s2) = {a2}
|
|
func (s Set[E]) Intersection(s2 Set[E]) Set[E] {
|
|
var walk, other Set[E]
|
|
result := Set[E]{}
|
|
if s.Len() < s2.Len() {
|
|
walk = s
|
|
other = s2
|
|
} else {
|
|
walk = s2
|
|
other = s
|
|
}
|
|
for key := range walk {
|
|
if other.Has(key) {
|
|
result.Insert(key)
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// IsSuperset returns true if and only if s1 is a superset of s2.
|
|
func (s Set[E]) IsSuperset(s2 Set[E]) bool {
|
|
for item := range s2 {
|
|
if !s.Has(item) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Difference returns a set of objects that are not in s2
|
|
// For example:
|
|
// s1 = {a1, a2, a3}
|
|
// s2 = {a1, a2, a4, a5}
|
|
// s1.Difference(s2) = {a3}
|
|
// s2.Difference(s1) = {a4, a5}
|
|
func (s Set[E]) Difference(s2 Set[E]) Set[E] {
|
|
result := Set[E]{}
|
|
for key := range s {
|
|
if !s2.Has(key) {
|
|
result.Insert(key)
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// Equal returns true if and only if s1 is equal (as a set) to s2.
|
|
// Two sets are equal if their membership is identical.
|
|
func (s Set[E]) Equal(s2 Set[E]) bool {
|
|
return s.Len() == s.Len() && s.IsSuperset(s2)
|
|
}
|
|
|
|
type sortableSlice[E ordered] []E
|
|
|
|
func (s sortableSlice[E]) Len() int {
|
|
return len(s)
|
|
}
|
|
func (s sortableSlice[E]) Less(i, j int) bool { return s[i] < s[j] }
|
|
func (s sortableSlice[E]) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
|
|
|
|
// SortedList returns the contents as a sorted slice.
|
|
func (s Set[E]) SortedList() []E {
|
|
res := make(sortableSlice[E], 0, s.Len())
|
|
for key := range s {
|
|
res = append(res, key)
|
|
}
|
|
sort.Sort(res)
|
|
return res
|
|
}
|
|
|
|
// UnsortedList returns the slice with contents in random order.
|
|
func (s Set[E]) UnsortedList() []E {
|
|
res := make([]E, 0, len(s))
|
|
for key := range s {
|
|
res = append(res, key)
|
|
}
|
|
return res
|
|
}
|
|
|
|
// PopAny returns a single element from the set.
|
|
func (s Set[E]) PopAny() (E, bool) {
|
|
for key := range s {
|
|
s.Delete(key)
|
|
return key, true
|
|
}
|
|
var zeroValue E
|
|
return zeroValue, false
|
|
}
|
|
|
|
// Clone returns a new set which is a copy of the current set.
|
|
func (s Set[T]) Clone() Set[T] {
|
|
result := make(Set[T], len(s))
|
|
for key := range s {
|
|
result.Insert(key)
|
|
}
|
|
return result
|
|
}
|
|
|
|
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
|
|
// For example:
|
|
// s1 = {a1, a2, a3}
|
|
// s2 = {a1, a2, a4, a5}
|
|
// s1.SymmetricDifference(s2) = {a3, a4, a5}
|
|
// s2.SymmetricDifference(s1) = {a3, a4, a5}
|
|
func (s Set[T]) SymmetricDifference(s2 Set[T]) Set[T] {
|
|
return s.Difference(s2).Union(s2.Difference(s))
|
|
}
|
|
|
|
// Clear empties the set.
|
|
// It is preferable to replace the set with a newly constructed set,
|
|
// but not all callers can do that (when there are other references to the map).
|
|
// In some cases the set *won't* be fully cleared, e.g. a Set[float32] containing NaN
|
|
// can't be cleared because NaN can't be removed.
|
|
// For sets containing items of a type that is reflexive for ==,
|
|
// this is optimized to a single call to runtime.mapclear().
|
|
func (s Set[T]) Clear() Set[T] {
|
|
for key := range s {
|
|
delete(s, key)
|
|
}
|
|
return s
|
|
}
|